DIFFUSION MODELS
ARE REAL-TIME GAME
ENGINES

Dani1 Valevski, Yaniv Leviathan, Moab Arar, Shlomi Fruchter

ICLR 2025: The Thirteenth International Conference on Learning Representations

AIM

Demonstrate that a neural model running 1n real-time can simulate a
complex game at high quality.

INTERACTIVE WORLD SIMULATION

An Interactive Environment & consists of:

S: a space of latent states
O: a space of observations of the latent space
V . § — O: apartial projection function

A: a set of actions

p(s|a, s') such that s, s' € S, a € A: a transition probability function

INTERACTIVE WORLD SIMULATION

E: an 1input interactive environment

s, & S: an mitial state

go|lo_ ,a),0<0,a <A

INTERACTIVE WORLD SIMULATION

D : O x O — R: a distance metric between observations
m(a,lo.,, a.,): apolicy as human gameplay
SO . a distribution on 1nitial states

N, :a distribution on episode lengths

E(D(ocj, 015)) where n ~N, 0 <i <n,and o q’; qd,
0,~ V(p)

GAMENGEN

GameNGen is a generative diffusion model that learns to simulate the
game under the settings of Interactive World Simulation.

Agent records all its actions and observations with teacher forcing.

Generative trained by Agent collected data.

GAMENGEN

DATA COLLECTION VIA AGENT PLAY

1. Player hit: -100 points.

2. Player death: -5,000 points.

3. Enemy hit: 300 points.

4. Enemy kill: 1,000 points.

5. Item/weapon pick up: 100 points.

6. Secret found: 500 points.

7. New area: 20 * (1 + 0.5 * L1 distance) points.
8. Health delta: 10 * delta points.

9. Armor delta: 10 * delta points.

10. Ammo delta: 10 * max(0, delta) + min(0, delta) points.

Data Collection via Agent Play

Action

ST T

[]
Agent 'g' RL Training ’ Game :
nvironmen
\/

Observations

Reward

Store episodes
during training

(

Frames

bDDDDDmHH

Actions

GAMENGEN
TRAINING THE GENERATIVE DIFFUSION MODEL

Data Collection via Agent Play : Generative Model Training
Action i b ﬂ‘ /7‘] i Diffusion
. /’\ E \ﬂ"i)/“—&’ :I"tll_. ; Loss
Agent (G ini Game Heaia — -
g RL Training Ervironment ey ;‘ Denoising Network *{ ’
Observations : On ‘ 4} ext Frame
Revard e ek
Store episodes E Soooa) to £ T] [I
during training : Iﬁ."l’;ﬁ‘ +Ea @]—-[Cross-Attention Features]
. { ’ : concat
[' P ass
r==es ()OO | | ’ : Egrm (Action Embedding Aems |
Actions S | | U E ao aas aM
o : Previous Current
Ac Acti
2
— Lt e, s L0 — Ugr\Lt, by i<n) S em i<n 2
L=Eier [|lv(€ zo,t) — vor (w2, t, {#(0icn) }s {Aemb(@icn) PI2] (1)

where T = {0i<n,@i<n} ~ Tagent, t ~ U(0,1), € ~ N(0,I), z; = \/arxo + /1 — due,
xo = ¢(0,), v(€,xg,t) = Jaze — /1 — a;xo, and vy is the v-prediction output of the model
fo- The noise schedule @; is linear, similarly to Rombach et al. (2022).

GAMENGEN
TRAINING THE GENERATIVE DIFFUSION MODEL

Figure 4: Auto-regressive drift. Top: we present every 10th frame of a simple trajectory with 50
frames in which the player is not moving. Quality degrades fast after 20-30 steps. Bottom: the same
trajectory with noise augmentation does not suffer from quality degradation.

GAMENGEN
INFERENCE

Setup:

Used DDIM Sampling.

Employed Classifier-Free Guidance only for the past observations.
Did not find guidance for the past actions to improve quality.

The weight of Classifier-Free Guidance was 1.5.

GAMENGEN
INFERENCE

Table 1: Generation with Varying Sampling Steps. We evaluate the generation quality of a
GameNGen model with an increasing number of steps using PSNR and LPIPS metrics. “D” marks

a 1-step distilled model. See Appendix A.6 for more details.

Steps PSNR 1 LPIPS |
D 31.10+£0.098 0.208 = 0.002

1 25.474+0.098 0.255 =+ 0.002

2 31.9140.104 0.205 4 0.002

4 325840.108 0.198 & 0.002

8 32.5540.110 0.196 % 0.002
16 32.4440.110 0.196 & 0.002
32 32.3240.110 0.196 & 0.002
64 32.1940.110 0.197 & 0.002

EXPERIMENTAL SETUP
AGENT TRAINING

trained using PPO with a simple CNN
trained on CPU using the Stable Baselines 3 infrastructure
provided with downscaled versions of the frame 1images and in-game map, each at
resolution 160x120
also had access to the last 32 actions it performed
the feature network computes a representation of size 512 for each image
PPQO’s actor and critic are 2-layer MLP heads on top of a concatenation of the outputs
of the image feature network and the sequence of past actions
trained the agent to play the game using the ViZDoom environment
run 8 games in parallel, each with a replay buffer size of 512, a discount factor y =
0.99, and an entropy coefficient of 0.1

In each iteration, the network is trained using a batch size of 64 for 10 epochs,
with a learning rate of 1e-4. We perform a total of 50M environment steps

EXPERIMENTAL SETUP
GENERATIVE MODEL TRAINING

trained all simulation models from a pretrained checkpoint of Stable Diffusion 1.4, unfreezing
all U-Net parameters

used a batch size of 128 and a constant learning rate of 2e-5, with the Adafactor optimizer
without weight decay and gradient clipping of 1.0

the context frames condition i1s dropped with probability 0.1 to allow CFG during inference
trained using 128 TPU-v5e devices with data parallelization

unless noted otherwise, all results in the paper are after 700,000 training steps

for noise augmentation, used a maximal noise level of 0.7, with 10 embedding buckets

used a batch size of 2,048 for optimizing the latent decoder, other training parameters are
identical to those of the denoiser

for training data, used a random subset of 70M examples from the recorded trajectories played
by the agent during RL training and evaluation

fll image frames are at a resolution of 320x240 padded to 320x256

used a context length of 64

RESULTS
SIMULATION QUALITY

PSNR: 29.43, LPIPS: 0.249

Past Observa tions Prediction Ground Truth
A A

Figure 5: Model predictions vs. ground truth. Only the last 4 frames of the past observations
context are shown.

RESULTS
SIMULATION QUALITY

28+ 0.450
0.425 4
26 4 0.400 A
4 s 0.3754
= el
n 24 - Q
o 2 0.350
0.325
22
0.300 A
20 - 0.2754
T T T T T T Ll T T I | I T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Auto-regressive Step Auto-regressive Step

Figure 6: Auto-regressive evaluation. PSNR and LPIPS metrics over 64 auto-regressive steps.

RESULTS

SIMULATION QUALITY
1.6s — 58%, 3.2s — 60%, 3s after 5 or 10 minutes — 50%

» 0:00/0:03 i : 0:00/ 0:03

This is the game This is the game

Figure 17: A screenshot of the tool used for human evaluations (see Section 5.1).

RESULTS
ABLATIONS

Table 2: Number of history frames. We ablate the number of history frames used as context
using 8912 test-set examples from 5 levels. More frames generally improve both PSNR and LPIPS

metrics.

History Context Length

PSNR 1

LPIPS |

64
32
16
8

4
2
1

22.36 £0.033
22.31 £+ 0.033
22.28 £ 0.033
22.26 £ 0.033
22.26 £ 0.034
22.03 £0.037
20.94 £ 0.044

0.295 £ 0.001
0.296 &= 0.001
0.296 == 0.001
0.296 + 0.001
0.298 + 0.001
0.304 £ 0.001
0.358 = 0.001

RESULTS
ABLATIONS

26 z :
e ——— —— Noise augmentation
0.7 - > 244 —— No noise augmentation
0.6
n
o
% 0.5+
0.4 4 3
: : s
—— Noise augmentation 12 N
/ ----- No noise augmentation —
0.3 10+
T T T T T T T I 1 1 1 1 1 1
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Auto-regressive Step Auto-regressive Step

Figure 7: Impact of Noise Augmentation. The plots show average LPIPS (lower is better) and
PSNR (higher is better) values for each auto-regressive step. When noise augmentation is not used
quality degrades quickly after 10-20 frames. This is prevented by noise augmentation.

RESULTS
ABLATIONS

Table 3: Performance on Different Difficulty Levels. We compare the performance of models
trained using Agent-generated and Random-generated data across easy, medium, and hard splits of
the dataset. Easy and medium have 112 items, hard has 232 items. Metrics are computed for each
trajectory on a single frame after 3 seconds.

Difficulty Level Data Generation Policy PSNR 1 LPIPS |
Easy Agent 2094 +£0.76 0.48 £0.01
Random 20.20 £0.83 0.48 £0.01
Medium Agent 20.21 +0.36 0.50 £ 0.01
Random 16.50 £0.41 0.59+0.01
Hard Agent 17.531 £0.35 0.60£0.01

Random 15.39 +0.43 0.61 +0.00

DISCUSSION

Summary:

High-quality real-time gameplay at 20 frames per second is possible on a neural
model. However, there are some limitations.

Limitations:
GameNGen suffers from a limited amount of memory.
There are differences between the agent’s behaviour and those of human players.
We are not able to easily produce new games with GameNGen.

Future Work:

Nothing in their technique i1s DOOM-specific except for the reward function for
the RL agent.

Thank you for your attention.

