
Training Interactive Agent in Large FPS Game Map
with Rule-enhanced Reinforcement Learning

Chen Zhang1,2, Huan Hu2, Yuan Zhou2, Qiyang Cao2, Ruochen Liu2, Wenya Wei2, Elvis S. Liu2,∗
1 School of Software Engineering, University of Science and Technology of China, Hefei, China

2 Tencent Games
zhangchenzc@mail.ustc.edu.cn,

{luckyhu, ariellezhou, hughyycao, ruochenliu, wenyawei, elvissyliu}@tencent.com

Abstract—In the realm of competitive gaming, 3D first-person
shooter (FPS) games have gained immense popularity, prompting
the development of game AI systems to enhance gameplay.
However, deploying game AI in practical scenarios still poses
challenges, particularly in large-scale and complex FPS games.
In this paper, we focus on the practical deployment of game
AI in the online multiplayer competitive 3D FPS game called
Arena Breakout, developed by Tencent Games. We propose a
novel gaming AI system named Private Military Company Agent
(PMCA), which is interactable within a large game map and
engages in combat with players while utilizing tactical advantages
provided by the surrounding terrain.

To address the challenges of navigation and combat in modern
3D FPS games, we introduce a method that combines navigation
mesh (Navmesh) and shooting-rule with deep reinforcement
learning (NSRL). The integration of Navmesh enhances the
agent’s global navigation capabilities while shooting behavior
is controlled using rule-based methods to ensure controllability.
NSRL employs a DRL model to predict when to enable the
navigation mesh, resulting in a diverse range of behaviors for
the game AI. Customized rewards for human-like behaviors are
also employed to align PMCA’s behavior with that of human
players.

Index Terms—game AI, deep reinforcement learning, naviga-
tion mesh, shooting rules, self-play, rule-enhanced.

I. INTRODUCTION

First-person shooter (FPS) games in 3D have gained im-
mense popularity in the competitive gaming realm. As these
games have evolved from early titles like Maze War and
Half-Life to more recent ones such as Apex Legends, CS:
GO, and Valorant, there has been a growing interest in
developing intelligent AI systems for FPS games. Traditional
decision-making approaches based on behavior trees (BT)
have proven inadequate in exploring all possible decisions
within complex 3D environments. To address this limitation,
deep reinforcement learning (DRL) has been introduced as a
flexible alternative for designing game AI in 3D FPS games.

However, despite significant advancements that have shown
the power of DRL agents [1, 2, 3, 4, 5], the practical deploy-
ment of game AI in FPS games still faces challenges. Existing
environments used for training and testing AI agents often
have small game maps and limited game duration, which do
not align with the scale and complexity of modern FPS games.

*Corresponding author

Joystick Bag Equipment ShootReload Posture

Remaining time

Fig. 1. The interface of Arena Breakout

For example, in environments like VizDoom [1], the duration
of each match is typically around 100 frames. Additionally,
the complexity of 3D FPS game environments, with physically
modeled terrain and objects, poses difficulties for environment
perception and global navigation for AI agents. Furthermore,
balancing global navigation and combat engagement within
the game AI presents significant demands, requiring simultane-
ous macro-level navigation and micro-level combat decision-
making. There is also a need to ensure that the game AI
exhibits both competitive strength and human-like behavior.

In this paper, we try to solve these issues and focus on
the practical deployment of game AI in an online multiplayer
3D FPS game developed by Tencent Games called Arena
Breakout. Players in Arena Breakout control a first-person
perspective game character and aim to reach a designated
location for evacuation within a limited timeframe. Throughout
the game, players interact with other players or game AI, either
by evading or eliminating them, to achieve evacuation.

To enhance players’ gaming experience, we propose a novel
game AI system named Private Military Company Agent
(PMCA) which is interactiable in a large game map. PMCA
is primarily deployed in matches involving high-level players.
When PMCA encounters players at any location on the map,
it will initiate attacks and engage in combat with the player,
utilizing the surrounding terrain to gain tactical advantages. In
order to achieve the objectives, PMCA must not only address
the challenges of navigation and combat in modern 3D FPS979-8-3503-5067-8/24/$31.00 ©2024 IEEE

ar
X

iv
:2

41
0.

04
93

6v
1

 [
cs

.A
I]

 7
 O

ct
 2

02
4

games but also perform effectively in large-scale matches with
an average duration exceeding forty minutes. Furthermore,
PMCA needs to constrain its behavior so that does not confuse
the players.

To tackle these challenges, we propose a novel method
that combines Navigation Mesh (Navmesh) [6] and shooting
rules with reinforcement learning (NSRL). The integration of
Navmesh enhances the agent’s global navigation capabilities
while considering firefights and shooting behavior is executed
using rule-based methods to enhance controllability. Unlike
previous approaches that directly incorporate rules into the
program, NSRL takes a more subtle approach by using a DRL
model to predict whether to enable the navigation mesh. The
decision to switch to the navigation mesh is made only when
the DRL model determines it is appropriate, resulting in a
more diverse range of behaviors for the game AI. Additionally,
customized rewards for human-like behaviors are employed
to ensure that PMCA’s behavior aligns with human players,
further enhancing its human-like behavior.

Overall, we construct the Markov decision process (MDP)
of Arena Breakout and employ the Proximal Policy Optimiza-
tion (PPO) [7] algorithm to update the policy. Experimental
results show the ability of PMCA in global navigation and the
diversity of behavior.

The contributions of this paper are as follows:
• We propose a novel game AI system based on rule-

enhanced reinforcement learning, integrating Navmesh
and shooting rules into deep reinforcement learning
(DRL) to enhance the performance of the DRL agent.
This design allows the agent to balance global navigation
across the entire map while accurately aiming and firing
at targets.

• We deploy the system in Arena Breakout and engage
in long-term interactions with players, representing a
significant milestone for the practical application of DRL.

II. NOTATION AND BACKGROUND

A. Arena Breakout

Arena Breakout is a 3D first-person shoot game developed
by Tencent Games based on Unreal Engine 4. Its interface
is shown in fig. 1. At the time of writing this paper, it has
more than 80 million registered players worldwide. Different
from the games mentioned above, Arena Breakout not only
retains the original shooting game logic but also adds more
tactical content. Players need to compete for resources and
reach a designated location for evacuation within a limited
timeframe. The objective of the game is to survive while
obtaining as many resources (weapons, equipment, etc.) as
possible, storing them in a secure box, and reaching the
evacuation point to complete the evacuation. Each player has
a secure box, and resources stored in the box will not be
lost upon death, while items outside the box will be lost.
Therefore, the core of the gameplay is how players can obtain
the maximum amount of resources while staying alive. Owing
to developed by Unreal Engine 4, Arena Breakout features

complex 3D modeling and detailed maps where most objects
are physically modeled. The player in Arena Breakout requires
intricate operation, as players need to control their direction
and movement while aiming and firing at targets. The game
also includes actions such as crouching, crawling, and jumping
to change the player’s posture. The complex environment and
diverse operations add more replayability to the game while
increasing the difficulty of training the game AI.

B. State Space and Action Space

In order to apply reinforcement learning algorithms to Arena
Breakout, we need to construct the Markov Decision Process
(MDP) for the game. We decompose Arena Breakout into the
state space and the action space.

In the state space of the Arena Breakout, we have devised
multiple information sources concerning the agent, encom-
passing scalar game variables and perception information
derived from raycast detection. The scalar game variables,
including the agent’s position, rotation angle, orientation, and
combat status (such as health and engagement in combat), are
directly acquired through the APIs provided by Unreal Engine
4. These variables are subjected to mathematical processing
and synthesizing them into five distinct categories of funda-
mental information for input into the neural network (Table I).
Each category of information influences the agent’s decision-
making and behavior differently. The perception information
based on raycast detection is also implemented through the
Unreal Engine 4. The agent emits rays from its position
towards entities within the game and captures pertinent details,
such as the entity’s surface normal vector. Consequently, the
agent can ascertain the distance and position of the entity
relative to itself utilizing these rays. We further process
this information to generate depth maps and encapsulate the
circular ray, which are subsequently employed as inputs for
the neural network.

The operation of Arena Breakout is achieved through a
joystick that determines the direction combined with different
action buttons. Therefore, in the action space, we imitate the
left and right-hand operations of human players. Based on
Euler rotation angles, we divide the executable actions into
nine action heads (table I). Each action head is represented
by a one-hot vector that indicates the execution state of that
action. Fire determines whether to initiate the firing action.
Gun yaw and Gun pitch represent how to adjust the position
of the gun barrel. Move type determines the movement mode,
such as running or walking. Path type indicates the pathfind-
ing method, where the model determines whether to use
atomic movement or Navmesh movement. Motion represents
the movement direction, indicating a source motion at a fixed
angle. Posture type expresses the current character’s posture,
such as crouching, prone, jumping, etc. Lean type indicates
whether to perform a leaning action. Special type represents
special operations in the game, such as aiming down sights
(ADS) or other specific actions.

Scalar info

Depth Map

Lindar

Embedding

Conv2D

Conv1D

Env info

Embedding

LSTM Policy

Special type

Lean type

Posture type

Fire

Gun pitch

Gun yaw Embedding

Embedding

Embedding

Embedding

Embedding

Embedding

... ...

Perception Decision

Fig. 2. Framework of PMCA.

State Type Dim
Basic info float [1,124]

Opponent info float [1,99]
Env info float [1,301]

Depth Map float [40,80]
Lindar[8] float [144,3]

Action Type Dim
Fire int [2]

Gun yaw int [13]
Gun pitch int [8]
Move type int [4]
Path type int [4]

Motion int [17]
Posture type int [4]

Lean type int [3]
Special type int [3]

TABLE I
STATE SPACE AND ACTION SPACE OF ARENA BREAKOUT

C. Reinforcement Learning

In a standard reinforcement learning setting, the agent
interacts with the environment and receives full perceptual in-
formation about the state. The Markov decision process (MDP)
of Arena Breakout is formulated as a 5-tuple ⟨S,A,P, r, γ⟩,
where S and A are the state and action spaces; r : S×A → R
and P : S × A → ∆A are the reward function and transition
probability distribution, with r(s, a) ∈ [Rmin, Rmax] and
P (·|s, a) being the reward and the next state probability of
taking action a in state s; γ is discount factor. In each step
t, the agent gets a state st ∈ S as the current state of the
environment. The agent predicting an action at ∈ A given
the state s with the policy π(at|st). Agent gets a reward
r(st, at) after the action is executed. The state value function

Vπ(s) = Eπ[
T∑

k=0

γkRt+k+1|St = s] and the action value

function Qπ(s) = Eπ[
T∑

k=0

γkRt+k+1|St = s,At = a] are

always leveraged to optimize policy. The advantage function
A(s, a) = Q(s, a) − V (s) is used to measure the quality of
action a compared to the average quality.

The goal of the RL algorithm is to find an optimal policy
π∗ to maximize the expectation of the discounted cumulative
reward:

π∗ = argmax
π

E[
n∑

t=0

γtr(st, at)] (1)

Several DRL algorithms have been proposed, some use
value-based methods to find an optimal value function such
as Deep Q-net work (DQN)[9], and others use policy gradient
to optimize policy with the gradient of reward[10]. Schulman
et al. [7] utilizing importance sampling to improve conver-
gence efficiency, the characteristic of data reuse also enables
the application of distributed algorithms. Our work is based
on PPO.

III. METHODS

Modern 3D FPS shooter games typically exhibit charac-
teristics such as complex environments and large-scale maps.
The need for precise positioning in specific locations poses
challenges for global navigation. In Arena Breakout, PMCA
is required to pursue any encountered player on the map,
further emphasizing the need for accurate navigation. On
the other hand, engaging in combat with players presents

challenges as modern 3D FPS games often simulate firearm
recoil, resulting in realistic bullet trajectories. This becomes
a training challenge for the agent, as it must learn how to
control the bullet trajectory to hit opponents accurately. This
section will discuss how to train a globally interactive game
on a 1000×400 (unit: meters in UE4) map and the approaches
adopted to address these two challenges. The results of these
approaches will be demonstrated in the section IV.

A. Framework

We illustrate our framework as shown in fig. 2. In each
step, the game’s basic information is separately input into a
feature extraction module. All scalar information undergoes
feature extraction through a feed-forward network. The depth
map and the Lindar [8] is input into the feature extraction
module. By utilizing two-dimensional convolution to perceive
the contour features of objects represented in the depth map
and employing one-dimensional circular convolution to ex-
tract surrounding terrain features, we achieve a multi-modal
fusion-based environmental perception approach by fusing
the features from each feature extraction module with the
environment information of the game after concatenation.

To give the model memory capacity, we utilized LSTM
(Long Short-Term Memory) networks. The features filtered
through the LSTM are then input into the policy network
and value network, which are used for action prediction and
value calculation respectively. As mentioned in section II-B,
we divided the action space into nine action heads based
on human operation. Each action head is represented by
a one-hot vector that indicates the execution state of the
corresponding action. There are certain dependencies among
the action heads. For example, according to the limitations
of the game itself, the model should not predict both firing
and movement simultaneously. To decouple the dependencies
among actions, we did not adopt the approach of parallel
prediction for action heads. Instead, we sequentially output
the action heads using a hierarchical action mask with auto-
regressive embedding [11].

In typical reinforcement learning tasks, action masking is
employed to block corresponding actions in specific states
to enhance exploration efficiency. In our policy network, all
action heads are sequentially generated. Except for the first
action head, the output of each subsequent action head is
determined jointly by the embedding of the previous action
and the policy network’s output. Through auto-regressive em-
bedding, the policy implicitly learns the dependencies between
preceding and succeeding actions and propagates them layer
by layer. During action prediction, the policy can temporarily
mask actions in subsequent layers that conflict with the cur-
rent action. The policy also determines whether to mask the
actions in the current layer based on the preceding actions.
In this way, we conduct hierarchical action masking through
auto-regressive prediction, ensuring action compliance while
improving exploration efficiency. After all action heads have
completed their outputs, these actions are delivered to the
game client for execution.

B. Navigation Mesh and Shooting-rule Enhanced Reinforce-
ment Learning

To address the challenges of global navigation on a 1000×
400 (unit: meters in UE4) map and the issue of firing when
encountering enemies in-game, we employ Navigation Mesh
And Shooting-rule enhanced Reinforcement Learning (NSRL).
This approach combines the integration of a Navigation Mesh
(Navmesh) and atomic shooting rules to enhance the perfor-
mance of the game’s AI.

Global Navigation. In the context of global navigation,
simply incorporating Navmesh directly into the program would
lead to rule-based behavior in game AI, thereby sacrificing
the diversity provided by DRL models. Therefore, in NSRL,
a more gentle approach is employed. The decision-making
power to use the Navmesh is delegated to the DRL model,
allowing the model to predict whether to enable the Navmesh.
By setting Navmesh as a predictable action, NSRL maintains
the ability for global navigation while still preserving the
diversity of the game AI provided by the DRL model.

New step

NO
YES

If combat？

NO
YES

If condition？

1 20 3

Path type

Atomic move Navmesh Keep
Navmesh

Stop
Navmesh

Query best path

Best path

Move to target

Fig. 3. The illustration of Navmesh enhanced global navigation.

As fig. 3 shown, in each step, the DRL agent will predict
the Path type before motion. When the DRL model predicts
atomic movement, it also needs to select an orientation from
a set of 16 orientations, with each orientation spaced at a
fixed angle interval. Subsequently, the agent moves forward
a fixed distance according to the specified orientation. When
the model chooses to use the Navmesh (fig. 3), it searches for
the optimal path between the agent and the target using the

confidence region with radius r/3

confidence region with radius r

15m

40

Fig. 4. The illustration of shoot rules.

Navmesh and moves along that path. The Path type includes
an action to keep the previous Navmesh, which aims to avoid
re-calling the Navmesh when the target is stationary, reducing
resource consumption.

It is not feasible to call the Navmesh throughout the entire
game as it would be indistinguishable from directly using
Navmesh for movement. To address this, we divide the entire
game into time slices. At fixed intervals, the client will check
for any requests to use the Navmesh. Once a request to use
the Navmesh is detected, the predictions of the DRL model
for other Path types are masked, and the agent executes the
Navmesh until it reaches the target, encounters an enemy, or
reaches the time limit for Navmesh usage. This approach en-
sures global navigation while reducing resource consumption
and preserving the diversity inherent in DRL models. Note that
when the agent is in a combat scenario, it typically implies
that the opponent is visible to the agent. Therefore, to ensure
smooth combat, atomic movement is preferred over Navmesh
usage. Navmesh is usually predicted when pursuing enemy
targets.

Shooting Rules. In Arena Breakout, where realistic firearm
ballistics and recoil are simulated, NSRL only needs to predict
the gun barrel direction and whether to fire to ensure shooting
control. This approach offers the advantage of maintaining sta-
ble shooting while enhancing the diversity of shooting actions.
In combat scenarios, the baseline firing point is determined
based on the visibility priority of the opponent’s body parts.
A shooting confidence region is calculated that defines the area
within which random shots are fired, while shots outside the
confidence region are truncated. As shown in fig. 4, We have
set arctan(40/1500) as the baseline angle, and the confidence
region radius r for different distances is calculated based on
the baseline radius. Additionally, we have incorporated an
extra confidence region between two consecutive shots, which
is represented by a circle with a radius of r/3. This imitates
the behavior of human players controlling recoil in the game,
simulating the concept of ”burst shooting” where shots are
fired within a certain range to maintain accuracy.

C. Reward Design

In reward design, it is important to ensure that the agent
has a comprehensive understanding of both global navigation

and shooting. Therefore, when designing the rewards, it is
necessary to consider global navigation, shooting performance,
and the final reward. Since the PMCA is primarily used
in high-level matches, it needs to exhibit a certain level of
strength. Given a horizon T , the final reward rT can be defined
as follows:

rT =


20, if win,

−20, if lose,

−25, if draw,

The navigation reward rd is rd = ∆d×0.05. Where ∆d is the
distance between agent and opponent. We have implemented
additional auxiliary rewards raux for the agent’s shooting
behavior to enhance its human-like characteristics. These
rewards are categorized into two parts: combat and movement,
based on expert priors. This ensures that our agent does not
exhibit confusing behaviors that might perplex players. The
final reward r defined as:

r = rT + rd + raux

D. Training Process

To train the agent on a large 1000 × 400 (unit: meters
in UE4) map, we initially divided the entire map into eight
regions (red square in fig. 5). At the beginning of each match,
the agent and the opponent are randomly generated within
the same region. There is guaranteed to be cover or obstacles
between the spawn points of the two sides. When the two
sides encounter each other, a battle begins as long as one side
has a line of sight to the other. This approach not only trains
the agent’s combat abilities but also enhances its strategic
decision-making by encouraging the use of non-combat tactics
to defeat opponents. During the training process, an episode
ends when either one of the players dies or the time reaches
the timeout limit.

PPO is used in our system for policy improvement. We
employed the importance-weighted actor-learner Architecture
(IMPALA) [12] algorithm as the primary algorithm in our
training framework, which enables agents to learn from mul-
tiple sources of experience. The agent interacts with the
environment to collect data. After several episodes, the data
obtained by the agent is used to estimate the advantage

Fig. 5. The map in Arena Breakout, the farmland.

function. We use Generalized Advantage Estimation[13] to
estimate the advantage function at each time step t:

Â =

T∑
t=0

(γλ)
t
Aπθ

t+1 (2)

And the advantage function A is defined as:

Aπθ (st, at) = r(st, at) + γV πθ (St+1)− V πθ (St) (3)

Where at ∼ πθ(·|st). r(st, at) is the reward function accord-
ing to the current state and action. V πθ is the value function,
which defines the state value of the current policy.

After having the advantage function, we can calculate the
loss of the policy. We use PPO with clip, and the loss function
is defined as:

Lπ(θ) = min[ρ(θ)Ât, clip(ρ(θ), 1− ϵ, 1 + ϵ)Â], (4)

to constrain the distance between the sample policy and the
target policy. The value loss is defined as:

Lv(ϕ) = Ea∼πθ
[

T∑
k=t

γk−tr(sk, ak)− V (st)]
2 (5)

And the total loss of current policy πθ is defined as:

L(θ) = Lπ(θ)− αLv(ϕ) + βLe (6)

Le is the entropy of policy which enhances the exploration.

IV. EXPERIMENT

A. Experimental Setup

In this section, we will present our experimental results. We
will demonstrate the improvements brought by NSRL in global
navigation, shooting, and final win rate. The experiments were
conducted using 8 GPUs and 3200 CPU cores, with 4 actors,
4 learners, and 6000 clients involved in each training session.
All experiments were based on the PPO algorithm. To ensure
fairness, all training sessions used the same set of resources.

B. Results

Global Navigation. To compare the global navigation per-
formance of the NSRL agent and the RL agent under identical
conditions, we conducted a study where both agents were
trained and tested in the same environment. The NSRL and RL
agents were trained using the same expert prior behavior tree
as their opponent. The starting points and in-game resources
were kept consistent across the experiments. In this scenario,

we recorded the traversal points of both the NSRL agent and
the RL agent on the map. We collected data from over 1000
game sessions for analysis. The NSRL and RL agent global
navigation visualization is shown in fig. 6. From the fig. 6(a)
and fig. 6(b), it is evident that NSRL has a wider motion
range in terms of the length on the x-axis, breadth on the y-
axis, and height on the z-axis compared to RL. This indicates
that under the same conditions, NSRL, which benefits from
rule enhancement, effectively improves the global navigation
capability of the DRL agent. Indeed, NSRL agent possesses
a more diverse range of behaviors. This diversity allows
the NSRL agent to explore a wider range of areas in the
environment, enabling it to gather more valuable experiences.
This result assists us in designing more interactive agents that
can navigate the entire map more effectively.

Competence of NSRL agent. To demonstrate the com-
petence of NSRL compared to pure RL, both agents were
trained using identical resources and opponents (based on
expert prior behavior trees) throughout the training process.
We extracted the win rate changes of the NSRL agent and
RL agent at 200 timesteps and plotted them in fig. 7. At
the same timestep, the win rate of NSRL was consistently
around 30% higher on average compared to the RL agent.
This highlights the superior performance of NSRL in adapting
to expert prior behavior trees. Furthermore, it emphasizes the
improved training efficiency of NSRL, as it is capable of
producing more competent agents at the same timestep.

Shooting of NSRL. Due to the prevalent use of realistic
firearm recoil and ballistic effects in modern 3D FPS games,
it is crucial for DRL agents to exhibit human-like shooting
behavior that does not confuse players. To analyze this, we
designed a specific experimental scenario where the NSRL and
RL agents were tasked with shooting at fixed target locations.
We collected the coordinates of bullet impact patterns near
the target locations and integrated them into fig. 8. From
the fig. 8(a), it can be observed that when human players
shoot, their bullets are dispersed around the central target
point, which aligns with the logic of realistic firearm recoil
and ballistic effects. The result in fig. 8(b) shows the bullet
distribution of the NSRL agent exhibits a similar trend to
that of humans but with a higher degree of dispersion. This
may be due to a lack of sufficient understanding of the
concept of ”spray control” in FPS games within the model.
fig. 8(c) illustrates that pure RL alone cannot effectively
control firearms and may exhibit perplexing behaviors.

In summary, NSRL effectively enhances the global navi-
gation capabilities of DRL agents, enabling them to exhibit
more diverse strategies and behaviors. NSRL improves training
efficiency while maintaining a certain level of competitive-
ness, making it a necessary asset for deployment in high-
level scenarios. Moreover, NSRL’s shooting rule augmentation
enhances the human-like nature of DRL agents, ensuring that
they do not exhibit confusing behaviors that diminish the
players’ gaming experience.

X

0
200

400
600

800
1000

Y

50
0

50
100

150
200

250
300

350

Z

4
2

0
2
4
6
8
10
12

(a) Visualization of RL Global Navigation

X

0
200

400
600

800
1000

Y

0
50

100
150

200
250

300
350

400

Z

20
10
0
10
20
30
40

(b) Visualization of NSRL Global Navigation

Fig. 6. Visualization of RL and NSRL Global Navigation. The closer the color is to purple, the higher the number of traversals, while the closer it is to
blue, the fewer the number of traversals. The NSRL visualization shows that most areas are closer to purple, indicating a higher number of traversals, while
there are fewer areas close to blue. On the other hand, the RL visualization reveals that only a small portion is close to purple, suggesting limitations in RL’s
global navigation capabilities.

0 50 100 150 200
Timestep

0.2

0.3

0.4

0.5

0.6

0.7

0.8

W
in

ra
te

NSRL
RL

Fig. 7. The trend of win rates verses BT changes during the training process
for the RL agent and NSRL agent.

V. RELATED WORK

A. Reinforcement Learning in FPS Games

In the field of reinforcement learning, FPS is a highly
valuable research environment. In FPS games, it is necessary
to balance both movement and firing actions under partial
observation and achieve the best performance in a competitive
environment. Currently, many FPS games are used for research
on reinforcement learning algorithms. Two 1990s games were
introduced to the RL environment in the early stage. Kempka
et al. [14] introduced ViZDoom and Jaderberg et al. [3]
built Quake III Arena as RL environment. There have been
many excellent works published based on these environments
currently. The DRQN, proposed by Hosu and Rebedea [9],
is one of the most influential works in ViZDoom. DRQN is

also modularized to allow different models to be independently
trained for different phases of the game which substantially
outperforms built-in AI agents of the game as well as average
humans in deathmatch scenarios. Wu and Tian [1] using
Actor-Critic curriculum learning to train vision-based agents
in VizDoom and win the champion of Track1 in ViZDoom AI
Competition 2016. Jaderberg et al. [3] demonstrate for the first
time that an agent can achieve human-level in a popular 3D
multiplayer first-person video game, Quake III Arena Capture
the Flag (28), using only pixels and game points as input. The
result is achieved by a novel two-tier optimization process
in which a population of independent RL agents is trained
concurrently from thousands of parallel matches with agents
playing in teams together and against each other on randomly
generated environments.

Besides ViZDoom and Quake III Arena, Pearce and Zhu
[4] learn an agent to play deathmatch in CS: GO with
adopting behavioral cloning. Their method shows reasonably
good performance and high data efficiency, a new way to
apply RL in FPS games. Chen et al. [5] develop WILD-
SCAV, a powerful and extensible environment based on a
3D open-world FPS game which is an environment with
greater diversity and complexity. They want to bridge the gap
that the existing environment is hardly extensible to more
complicated problems. zhao at al propose a rule-enhanced
deep reinforcement learning algorithm for three tasks. And
their agent has better performance over multiple rule-based
and RL-based agents.

VI. CONCLUSION

In this paper, we propose a full-map interactive agent,
PMCA, for Arena Breakout that addresses the challenges
of global navigation and realistic ballistic behavior inher-
ent in applying DRL to modern FPS games. To address
these challenges, we propose a novel method that combines

0.100 0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100
0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100
Points
Target

(a) Bullet Distribution of Human Players

0.100 0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100
0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100
Points
Target

(b) Bullet Distribution of NSRL agent

0.100 0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100
0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100
Points
Target

(c) Bullet Distribution of RL agent

Fig. 8. Bullet Distribution of Human Players, NSRL agent, and RL agent.

Navmesh and NSRL. The shooting-rule constraint is used to
address the human-like behavior problem, while the Navmesh
enhances global movement capabilities. Through experiments,
we demonstrate the superiority of NSRL. This agent has
been deployed to Arena Breakout since early 2024, marking
an important milestone in the practical application of rein-
forcement learning in gaming. In our future work, we will
further investigate the agent’s ability to explore large-scale
3D environments by adopting occupancy maps and different
computer vision techniques.

REFERENCES

[1] Yuxin Wu and Yuandong Tian. Training agent for
first-person shooter game with actor-critic curriculum
learning. In International Conference on Learning Rep-
resentations, 2016.

[2] Guillaume Lample and Devendra Singh Chaplot. Playing
fps games with deep reinforcement learning. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 31, 2017.

[3] Max Jaderberg, Wojciech M Czarnecki, Iain Dunning,
Luke Marris, Guy Lever, Antonio Garcia Castaneda,
Charles Beattie, Neil C Rabinowitz, Ari S Morcos, Avra-
ham Ruderman, et al. Human-level performance in 3d
multiplayer games with population-based reinforcement
learning. Science, 364(6443):859–865, 2019.

[4] Tim Pearce and Jun Zhu. Counter-strike deathmatch
with large-scale behavioural cloning. In 2022 IEEE
Conference on Games (CoG), pages 104–111. IEEE,
2022.

[5] Xi Chen, Tianyu Shi, Qingpeng Zhao, Yuchen Sun, Yun-
fei Gao, and Xiangjun Wang. Wild-scav: Benchmarking
fps gaming ai on unity3d-based environments. arXiv
preprint arXiv:2210.09026, 2022.

[6] Greg Snook. Simplified 3d movement and pathfinding
using navigation meshes. In Mark DeLoura, editor, Game
Programming Gems, pages 288–304. Charles River Me-
dia, 2000.

[7] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[8] Bowen Baker, Ingmar Kanitscheider, Todor Markov,
Yi Wu, Glenn Powell, Bob McGrew, and Igor Mordatch.
Emergent tool use from multi-agent autocurricula. arXiv
preprint arXiv:1909.07528, 2019.

[9] Ionel-Alexandru Hosu and Traian Rebedea. Playing
atari games with deep reinforcement learning and human
checkpoint replay. arXiv preprint arXiv:1607.05077,
2016.

[10] David Silver, Guy Lever, Nicolas Heess, Thomas Degris,
Daan Wierstra, and Martin Riedmiller. Deterministic
policy gradient algorithms. In International conference
on machine learning, pages 387–395. Pmlr, 2014.

[11] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki,
Michaël Mathieu, Andrew Dudzik, Junyoung Chung,
David H Choi, Richard Powell, Timo Ewalds, Petko
Georgiev, et al. Grandmaster level in starcraft ii using
multi-agent reinforcement learning. Nature, 575(7782):
350–354, 2019.

[12] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Si-
monyan, Vlad Mnih, Tom Ward, Yotam Doron, Vlad
Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scal-
able distributed deep-rl with importance weighted actor-
learner architectures. In International conference on
machine learning, pages 1407–1416. PMLR, 2018.

[13] John Schulman, Philipp Moritz, Sergey Levine, Michael
Jordan, and Pieter Abbeel. High-dimensional continuous
control using generalized advantage estimation. arXiv
preprint arXiv:1506.02438, 2015.

[14] Michał Kempka, Marek Wydmuch, Grzegorz Runc,
Jakub Toczek, and Wojciech Jaśkowski. Vizdoom: A
doom-based ai research platform for visual reinforcement
learning. In 2016 IEEE conference on computational
intelligence and games (CIG), pages 1–8. IEEE, 2016.

	Introduction
	Notation And Background
	Arena Breakout
	State Space and Action Space
	Reinforcement Learning

	METHODS
	Framework
	Navigation Mesh and Shooting-rule Enhanced Reinforcement Learning
	Reward Design
	Training Process

	Experiment
	Experimental Setup
	Results

	RELATED WORK
	Reinforcement Learning in FPS Games

	Conclusion

