
Opponent Behaviour Recognition for Real-Time Strategy Games

Froduald Kabanza and Philipe Bellefeuille and Francis Bisson

Université de Sherbrooke
Sherbrooke, QC J1K 2R1, Canada

{kabanza, philipe.bellefeuille,francis.bisson}@usherbrooke.ca

Abder Rezak Benaskeur and Hengameh Irandoust

Defence R&D Canada - Valcartier
Québec, QC G3J 1X5, Canada

{abderrezak.benaskeur, hengameh.irandoust}@drdc-rddc.gc.ca

Abstract

In Real-Time Strategy (RTS) video games, players (con-
trolled by humans or computers) build structures and recruit
armies, fight for space and resources in order to control strate-
gic points, destroy the opposing force and ultimately win the
game. Players need to predict where and how the opponents
will strike in order to best defend themselves. Conversely, as-
sessing how the opponents will defend themselves is crucial
to mounting a successful attack while exploiting the vulnera-
bilities in the opponent’s defence strategy. In this context, to
be truly adaptable, computer-controlled players need to rec-
ognize their opponents’ behaviour, their goals, and their plans
to achieve those goals. In this paper we analyze the algorith-
mic challenges behind behaviour recognition in RTS games
and discuss a generic RTS behaviour recognition system that
we are developing to address those challenges. The applica-
tion domain is that of RTS games, but many of the key points
we discuss also apply to other video game genres such as
multiplayer first person shooter (FPS) games.

Introduction

Year 2735: the human race has colonized a distant area of
the galaxy. Under the threat of an aggressive alien race
called the Zerg, the colonies have united under the banner
of the Terran Dominion. The war against the Zerg has been
very taxing and we are in dire need of natural resources. A
new hospitable planet was just discovered and a small force,
with you as their leader, was sent to take control of it. Un-
fortunately, as your ship orbits the newly found planet prior
to landing, initial readings tell you that the Zerg were one
step ahead and have just settled a small colony on the larger
continent. You decide to land your army on that same conti-
nent to destroy the enemy’s colony while it’s still young and
assert control of the new planet.

The small army you brought with you will not be enough,
however; you will need reinforcements. Unfortunately,
because of the resource problem the Terran Dominion is
already facing, you are expected to gather the resources
needed to gear your men and build your structures. You

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

may even be required to build your own factories to produce
warships, tanks and any other war machines you may need.
Nonetheless, you are encouraged by the fact that the enemy
is in a similar situation and if you can outwit them, predict
their moves and stay one step ahead, this planet will soon be
under the Terran Dominion’s control, a first step towards its
victory, and its survival.

The previous paragraphs describe StarCraft I, a real-time
strategy (RTS) computer game released in 1998 by Blizzard
Entertainment. As with other similar RTS games – such as
the Age of Empires series and the Command & Conquer
series – StarCraft involves multiple opposing forces, each
consisting of a team of one or more players, and each player
controlling a given number of army units. The victory con-
dition can be different from one scenario to another, but usu-
ally involves destroying some or all the opponents’ buildings
or controlling strategic points for a certain period of time.
Units are typically recruited from structures that the players
build using different resources, as the game advances. As
armies build up on each side, initial skirmishes can quickly
escalate into all-out wars.

Players in RTS games need to be constantly aware of the
behaviours of their opponents to evaluate the threat they
pose and anticipate the potential threat that may arise in the
near future. Correctly predicting the adversary’s moves is
key to deciding winning moves, whereas incorrectly iden-
tifying them often puts the player in a dire position. The
infinite creativity of the human mind coupled with its some-
times chaotic and unpredictable nature makes the behaviour
recognition of human players a very difficult algorithmic
problem for an AI system. Time becomes a very important
factor because one wants to predict the adversary’s strategy
as soon as possible in order to counter it in time. Any infor-
mation gathered to predict the enemy’s strategy is only valid
for a certain amount of time. If a player scouted the enemy’s
army a few minutes ago, he can expect that the army’s com-
position has changed since. If he has not scouted an area in
a while, he cannot be sure that it is still free of enemies.

Uncertainty is another important factor. Players only have
a partial view of the situation as a whole. A player does not
see areas where he does not control any units. He usually

29

cannot see the units that are being recruited by the enemy,
even if he sees the structures in which the unit is being re-
cruited. He does not know the amount of resources his oppo-
nent has gathered or the amount he has remaining. In some
cases, he may not even know what abilities are available to
an opposing unit. The number of strategies available to the
opponent adds to the uncertainty as one does not know for
certain what his opponent will do next.

The 2010 conference on Artificial Intelligence and Inter-
active Digital Entertainment (AIIDE) will be hosting a Star-
Craft AI competition as part of the conference program. The
objective is to enable academic researchers to evaluate their
AI systems by having them compete against each other in
the StarCraft environment. We are planning to eventually
participate in such competitions. With this objective, be-
haviour recognition is only one component of a larger AI
system which in addition involves components to make de-
cisions on how to act against the opposing force, execute
and monitor planned and reactive actions, and learn from
past interactions to adapt accordingly.

The architecture of our behaviour recognition system is
sketched in Figure 1. The system is named Hostile Intent,
Capability and Opportunity Recognizer (HICOR), and con-
sists of three intertwined inferences for recognizing the in-
tent, capability, and opportunity of the opposing force. The
intent recognition process takes as input a plan library, game
state updates, and an influence map. The influence map is
a heuristically computed overlay of the map in the current
game state characterizing the current influence of the differ-
ent units in the game. The output of the intent recognition
process is a set of plans recognized as being concurrently
pursued by the opposing force and hypothetically consistent
with observations from the game state updates. The plans
are annotated with the corresponding goals.

In the intent recognition process, some details on the use
of resources by actions are abstracted away. It is the role of
the capability analysis component to analyze in detail the re-
sources associated to actions in the plan and to determine to
what extent the plans are achievable. The output is a refine-
ment of the recognized plan by detailing the involved actions
and resources.

Considering that a plan is recognized based on the obser-
vations to date, the opportunity analysis component projects
the “future part of the recognized plan” into the near future
to evaluate its potential success (i.e., opportunities from the
opponent’s standpoint) and vulnerabilities (i.e., opportuni-
ties to counter the plan from the RTS AI system’s stand-
point). Potential success or vulnerabilities correspond to ac-
tion preconditions that may become enabled by the environ-
ment – not just by the opposing force but also possibly by
the own force.

In this paper we focus on the intent recognition compo-
nent. The opponent intent recognition problem is framed
as one of hypothesizing a set of concurrent plans cur-
rently being executed and the corresponding current exe-
cution status. We adopt the Probabilistic Hostile Agent
Task Tracker (PHATT) (Goldman, Geib, and Miller 1999;
Geib and Goldman 2009), to which we add three improve-
ments. Firstly, we introduce explicit time and resources,

Figure 1: HICOR’s high level architecture

which are crucial in the RTS domain for an accurate mod-
elling of intent, capability and opportunity. Secondly, we
take into account the current influence of the units compos-
ing the opposing force to initialize the prior probabilities for
the plan library. This is important because opponents strate-
gize by aiming to cause as much damage as possible, while
taking into account the opposing force. Finally, we explic-
itly model actions used by the agent to gather information
helping recognizing the opponent’s strategy.

The rest of this paper continues with a brief discussion
on related work with a particular emphasis on PHATT from
which much of our inspiration is drawn. We then discuss
the plan recognition problem within the RTS domain, using
scenarios taken from StarCraft. A description of the plan
recognition module of HICOR’s intent recognition compo-
nent follows, succeeded by preliminary experiments and a
conclusion with future developments.

Related Work

It is natural to approach the problem of recognizing the ad-
versary’s behaviour as a plan recognition problem. After
all, players (human or artificial) in video games behave by
executing plans or similar goal-oriented strategies. For arti-
ficial agents, the plans are often implemented as finite state
machines (Rabin 2005) – that is, fundamentally predefined
goal-driven reaction rules.

Plan recognition has long been recognized as a key
reasoning process at the heart of human cognition. In
his 1976 psychological experiment, Schmidt provided ev-
idence that humans do infer hypotheses about the plans
and goals of other agents and use these hypotheses in sub-
sequent reasoning (Schmidt 1976). Later, with his col-
leagues Sridharan and Goodson, they positioned plan recog-
nition as a central problem in the design of intelligent sys-
tems (Schmidt, Sridharan, and Goodson 1978). Many the-
ories and computational frameworks for plan recognition
have since been introduced and experimented with in var-

30

ious domains (e.g., (Kautz 1991; Avrahami-Zilberbrand and
Kaminka 2007; Pynadath and Wellman 1995; Blaylock and
Allen 2006; Bui, Venkatesh, and West 2002)).

The recognition of strategies and tactics of opponents in
RTS games is a particular case of the adversarial plan recog-
nition problem, in which the observed agent may adopt dif-
ferent behaviours to try to fool the observer. Many adver-
sarial plan recognition frameworks have been proposed and
a significant sample of them is collected in (Kott and McE-
neaney 2007). We embraced PHATT because of its easy im-
plementation, yet being one of the existing approaches pro-
viding a higher coverage of the basic features required for
RTS games, such as the handling of concurrent plans and
being able to model plan abandonment.

PHATT frames the adversarial plan recognition problem
into a Hidden Markov Model (HMM). The HMM is not ex-
plicitly specified. Instead, it is unfolded on the fly through
the simulation of concurrent plans being hypothetically exe-
cuted by the observed agent. A state of the HMM is a set of
concurrent plans the agent may be pursuing and the current
status in the execution of these plans. From these current
plan execution statuses, the set of actions that could be exe-
cuted next by the observed agent is derived (called pending
set in PHATT) and thereby constraining the model of ob-
servation (observations are mapped to effects of the pending
actions to infer the probability distribution for the observed
action). Using a hierarchical task network (HTN) represen-
tation, an HTN plan conveys both the goal (root of the HTN
tree) and the plan (the HTN itself).

HICOR extends PHATT’s approach by introducing the
world state and metric-time constraints in the modelling of
plan libraries. In addition, to determine the prior probabil-
ity of goals adopted by the observed agent, HICOR takes
into account how the current world state affects preferences
of the observed agent. This is done by keeping an influence
map recording how the different game state features (includ-
ing units and their positions on the map) affect the desir-
ability of the current state from the opponent’s plan stand-
point. We also use influence maps to instantiate the plan
library by taking into account strategies and tactics that are
most consistent with the observations. A further improve-
ment brought by HICOR is the modelling of actions of the
observing agent designed to provoke reactions from the ob-
served (opponent) agent – reactions which provide cues as
to his intent.

HICOR’s Plan Recognition Features
We separate the adversary’s plans into strategic and tactical
plans. Strategic plans dictate what kind of units the player
will produce, whether he will play aggressively, or defen-
sively. Tactical plans dictate how units are deployed and
used. These two types of plans are not independent; the
strategy a player chooses will affect the composition of his
army and therefore will affect how he will use it on the tac-
tical level. It is useful to separate them, however, because
the cues used to recognize strategic plans are for the most
part different from the ones used to recognize tactical plans.
Recognizing these plans separately does not prevent using
the output of one plan recognizer as input to the other.

Strategy-Plan Recognition

At the strategic level, the key to victory lies in building an
army that makes the most out of each unit’s strengths while
taking advantage of the opposing army’s weaknesses. For
instance, while one side may choose to build an aerial army
to use the great speed and manoeuvrability of its flying units,
this strategy, if discovered early, could very well be coun-
tered by the opposing side building up an anti-aerial de-
fence, hence the necessity to predict the opponent’s strategy
as soon as possible.

Consider a StarCraft duel between a player using the Ter-
ran faction and one using the Zerg faction, seen from the
Terran player’s point of view. Let us assume both players
know their opponent’s chosen faction, as would be typically
the case in StarCraft. The Zerg player’s strategy might be to
attack very early, in which case the Terran player would have
to sacrifice his early resource gathering to build a defence.
An alternative strategy may be to gather more resources in
the early game to mount a stronger attack later on.

To correctly assess the Zerg’s strategy, the Terran player
needs knowledge about the typical strategies a Zerg player
might use when facing a Terran player – that is, a strategic
plan library. Figure 2 illustrates the 12 Hatch strategy using
a Hierarchical Task Network (HTN). Note that in StarCraft,
early strategies are often named after the first structure(s)
built preceded by the number of workers required before
that structure is built. For instance, 5 Pool means that the
player builds a Spawning Pool after he recruited his fifth
worker unit. High level goals (understood as tasks in an
HTN representation) are represented with ovals while ac-
tions (understood as primitive tasks) are represented with
boxes. The actions use the following convention: the first
letter is the action taken by the opponent (B for “Build
Structure”, R for “Recruit Unit” and U for “Research Up-
grade”) and between parentheses is the object that is be-
ing built/recruited/researched (for structures: H stands for
“Hatchery”, SP for “Spawning Pool”, L for “Lair” and E
for “Extractor”; for units: W stands for “Worker”, O for
“Overlord” and Z for “Zergling”; and for upgrades MB is for
“Metabolic Boost”, an upgrade that augments the speed of
Zerglings). If there is a number in the parentheses, it refers
to the number of units that should be recruited. The arrows
between tasks show precedence relations. The dotted arrows
mean that the task needs to be started for the next one to start
while the full arrows mean that the task needs to be success-
ful for the next one to start.

For the sake of simplicity, we will stick to opening tasks
for this scenario. The opening tasks for the other three strate-
gies are described in Figure 3. To keep the figure sim-
ple, some high-level tasks were not expanded. 5 Pool is a
very aggressive opening strategy while 12 Hatch is the most
long-term oriented strategy. 9 Pool and 12 Pool are middle
grounds, with 9 Pool being the more aggressive of the two.

Let us say that, at the third minute of the game, the Terran
player notices that the opponent does not have a spawning
pool yet, but did not have the time to see the number of
workers before his scout was chased away. With the cur-
rent representation, we do not have enough information to
rule out any plan. However, 5 Pool only works because it

31

Figure 2: A partial view of the 12 Hatch strategy

Figure 3: The opening task for the 5 Pool, 9 Pool and 12
Pool strategies

sends a small force very early. We could therefore add to
the strategy description that the player must have started his
spawning pool before a minute from the start of the game
(or the Spawning Pool must be finished by a minute and a
half after the start of the game). With this information, the
Terran player could rule out the 5 Pool strategy even without
knowing the number of workers the opponent possesses.

Tactic-Plan Recognition

At the tactical level, units can be used in multiple ways or
can target different units or areas, so it is important for a
player to predict how the enemy will use its units to turn the
combat in his favour. For instance, if the player can predict
that the opponent will try to destroy one of his valuable units,
he can move the unit out of range to protect it or even use
it to set a trap. Inversely, the opponent would do well to
recognize the trap before it is too late.

Let us keep our previous match between Terran and Zerg.
The Zerg went with a 12 Hatch strategy and the Terran, after
correctly recognizing it, decides to play it safe and gather
a maximum of resources to build a strong foundation for a

mid-to-late game army. Now the game has been going on
for a while and although there have been a few skirmishes,
no battle has swung the tide either way. Both players control
several important locations, some more critical than others,
some better defended than others. A Terran scout suddenly
dies after noticing a large army gathering. This army is now
on the move and although the Terran player can muster a
force strong enough to stop it, he does not have enough time
to intercept it before it reaches one of his locations. He needs
to send his own army to defend the location the enemy will
attack, but with his scout dead, he cannot see where the en-
emy is heading. Sending the army to the wrong place will
most likely cause the Terran player to lose valuable struc-
tures and will result in a major set back.

A variety of evidence helps predict where the opponent
will attack. His previous actions are some of them. For in-
stance, Where and when did he scout? Did the Zerg scout all
of the Terran’s locations? Did he attack any locations pre-
viously? If so, how successful was the attack? His strategy
is also strong evidence, as it affects his army’s strengths and
weaknesses and also affects the kind of resources or loca-
tions he needs to further his strategy. The current situation is
another thing that will affect his decision. If the Zerg player
holds fewer locations and produces less resources, then he
will probably choose to attack a lightly defended Terran po-
sition in order to get on par and set himself for a stronger at-
tack later. If, however, the Zerg player has the resource and
location advantage, he may opt for a direct assault against
the Terran’s main base to cripple his enemy and win out-
right.

Assume the Terran successfully predicted where the Zerg
will attack. The two armies meet on either side of three
bridges leading to the Terran base, as seen in Figure 4. The
armies are equally matched and the combat could easily
swing either way. Predicting how the Zerg player will use
his units is key to defeating the attackers and protecting the
Terran’s base.

Figure 4: Terran (bottom right) and Zerg (top left) armies
facing off

32

Understanding Structural Relationships from
Observations

HICOR uses influence maps to model the game configura-
tion and the area of influence of all observed units. Influence
maps are usually used to plan the AI’s course of action in
RTS games. Here, we use them to find the most profitable
course of action for our opponent and therefore predict his
actions. In Figure 4 for instance, the influence map would
tell us, amongst other things, that the Terrans have little anti-
air influence in the area to the left of the tanks, which would
therefore be a good place to attack the tank with aerial units
such as Mutalisks. In other words, although there may be
many possible plans available to the Zerg player in the cur-
rent situation, the influence map tells us that plans where the
Mutalisks attack from the left are more probable. If the Ter-
ran player uses that information to move his marines to the
left to protect his tanks, shifting his influence, the probabili-
ties of each possible plans will shift accordingly.

Provoking to Observe the Reaction

As part of the plan recognition process, one could provoke
the observed agent to observe its reaction and use it as a
cue. For instance, suppose that the Terran player gets the
upper hand in the previous fight that followed the encounter
of Figure 4 and the Zerg player decides to retreat his sur-
viving units. It is quite possible that he is simply trying to
save those units in order to raise another army or help defend
against a possible counter attack. In that case, it would be
beneficial for the Terran player to pursue and kill as many
fleeing units as possible. However, the Zerg player may also
be trying to lure the Terran army towards an ambush. In
that case, his plan would be to retreat his units, join with re-
inforcements and wait for the Terran army. However, it is
unlikely that the Terran player will get to see those actions
(after all, traps only work if the victim is unaware). What
he can do, if he suspects an ambush, is to send a single unit
rather than his entire army. If the Zerg player set up a trap,
he will attack that unit and the trap will be uncovered.

HICOR allows for the modelling of provoking actions by
including goals and actions executed by the observing agent
into the plan structure. The interpretation of such a plan
tree is that the observing agent simply waits for the observed
actions to occur, but can decide to execute his own actions
whenever they become available. To illustrate, in the HTN
plan of Figure 5, the parallelograms are parts of the plan
where the observer gets to act in order to provoke a reaction
from the observed agent.

Making Active Observations

Active observations concern observations initiated by the in-
tent recognition process. Usually, in RTSs, a player only
sees regions around units he controls. The intent recogni-
tion process may need information about regions under en-
emy control to see what the opponent is preparing. In order
to get this information, the AI will need to send a scout in
that region. This gives an active role to an otherwise passive
module and the question now becomes, how much control
should the plan recognition process have on scouting. One

Figure 5: A plan for an ambush with an opportunity for
provocation to observe a possible reaction

option could be be to have the plan recognition process take
control of a unit and scout as it wants, giving it full con-
trol of the information gathering process. Another option
would be to have a separate scouting manager that would ac-
cept requests from other modules, including the plan recog-
nition algorithm. Since HICOR allows plan libraries includ-
ing actions of the observing agent, active observation actions
just become particular cases of the actions for the observing
agent.

HICOR’s Intent Recognition Algorithm

HICOR’s intent recognition algorithm proceeds by updating
upon each new observation a current set of PESs, that is,
a set of current plan execution statuses, explaining the ob-
servations to date. To allow for such reasoning, however, we
need to have prior knowledge of the plans the observed agent
could be following. Therefore, HICOR uses a plan library
to model all the plans our opponent could follow. When-
ever HICOR observes an action, it uses the plan library as
well as its previous hypotheses to update the possible op-
ponent’s PESs. A new observation may contradict previous
hypotheses, in which case they are removed, may generate
new hypotheses or may support previous hypotheses. This
process is shown in Figure 6 (to keep the figure simple, only
one plan is shown at a time, but in reality, each PES may
contain multiple concurrent plans). The goal of this process
is to have the considered hypotheses get increasingly closer
to the opponent’s actual PES until we recognize it with high
enough certainty.

For added flexibility, HICOR uses parameterized plans in
its plan library, that is, a plan template using variables as
placeholders for quantities (objects, positions, etc.) to be
bound dynamically during plan recognition. For instance,
the arguments in the plan shown in Figure 5 are parameters
instantiated to specific corresponding units, consistent with
preconditions attached to plan nodes.
Definition 1. A plan library PL is a tuple (Π, P r,O) where,
Π is a set of plans, Pr : Π → [0, 1] is a function that gives
the a priori probability that the observed agent will have that
plan, and O is a set of possible observations.

33

Figure 6: The plan recognition process in HICOR

The above definition does not constrain the formalism
used to specify the plans. For HICOR, we chose to spec-
ify them in the form of HTNs where precedence constraints
can be augmented with time constraints. For instance, in the
5 Pool plan presented in Figure 3, the arrow between B(SP)
and R(Z, 6) specifies that the B(SP) task must be finished
before R(Z, 6), but we could augment this arrow with a con-
straint stating that R(Z, 6) must start withing five seconds of
B(SP) completion.

Definition 2. A timed precedence constraint is an expres-
sion of the form u ≺tc v where u and v are tasks and tc is a
time constraint formed according to the grammar:

tc → t < c|t > c|tc ∧ tc

where t is the time since u was completed and c ∈ R
+ is a

value in seconds. u ≺tc v means that v must be executed
after u, within the time frame specified by tc.

For example, the constraint described above would be
written B(SP) ≺t<5 R(Z, 6).

When a game starts, if we specified multiple plan li-
braries, we must tell the algorithm which plan library it
should use for the game. This allows us to specify a dif-
ferent plan library for each possible match-up and type of
games. During the game, the algorithm is given as input a
stream of observations, or evidences. The algorithm uses
this evidence to generate the set of possible hypotheses H .

Definition 3. A plan execution status PES is a tuple
(T, 〈En0, . . . , Enn〉) where, T is a forest of partially com-
pleted plan trees (i.e., trees with zero or more actions marked
as “completed”1), and 〈En0, . . . , Enn〉 is the sequence of
set of enabled actions generated at each new observation.

1In practice, we do not store entire trees; we only need to store
the PES (minus the world state).

When the algorithm starts, the only explanation in the set
E is (∅, 〈〉), stating that the opponent has no plan. When-
ever the algorithm receives a new evidence ei, it creates a
new set of explanations E′ by extending all explanations in
E to fit ei in two ways.

First, it tries to match the evidence ei to an enabled action
in each plan tree τ ∈ T .
Definition 4. An action is enabled if:
• all constraints on it are met, or
• there are no constraints on it and all the constraints on all

of its ancestors are met.
If a match is found, it calculates the new set of enabled

actions Eni and adds it to the sequence of set of enabled ac-
tions. The algorithm then adds (T, 〈En0, . . . , Eni〉) to E′.
Note that this may generate more than one new explanation
per explanation in E. Indeed, if ei fits multiple enabled ac-
tions, then a new explanation is generated for each one of
them.

The second way to extend an explanation is by adding a
new plan to it. To this end, it loops through all plans π ∈ Π
to try and match ei to one of π’s leftmost actions.
Definition 5. An action is leftmost if there is no constraint
on it nor on any of its ancestors.

If a leftmost action of π matches, that action is marked
as completed and π is added to T . Eni is computed in the
same way, but because we assume that the agent had this
new plan since the beginning, we “backpatch” all previous
sets of enabled actions by adding to each of them all leftmost
actions of π. This new explanation is added to E′.

Before extending an explanation, however, ∀v ∈ Eni−1

we check all time constraints of the form u ≺tc v. If such
a constraint is violated, the explanation is removed and not
extended. Similarly, when extending an explanation if an ac-
tion could not be added to the set of enabled actions because
it was violating a time constraint of that form, the explana-
tion is not added to E′. Indeed, if the task under an AND-
node was not executed in time, we assume it will never be
executable again and therefore the whole plan cannot be ful-
filled2.

Probabilities The probability of each plan execution sta-
tus PESk is computed as in Equation 1 :

Pr(PESk, 〈e1, . . . , ek〉) =
T∏

τ

Pr(τ)

×
PESk∏

o,
c=child(o)

Pr(c|o)

×
k∏

t=1

Pr(et|En(t))

(1)

2When a plan contains an OR-node, the algorithm generates a
different explanation for each possible alternative. Therefore, if
an action under an OR-node violates a time constraint, the whole
explanation for that alternative will be removed, but there might
still be explanations left for the plan containing that OR-node if
other alternatives are still possible.

34

The first factor of the equation corresponds to the a pri-
ori probability of each plan tree in PESk. This function is
given with the specification of the plan library.

The second factor denotes the probability of choice in the
plan tree. Recall that plans containing OR-nodes generate a
different explanation for each possible alternative. The prob-
ability of choosing a particular child sub-tree c ∈ PESk

given its parent OR-node o ∈ PESk must thus be consid-
ered.

The last factor of the equation is the probability that the
evidence et (observed at time-step t) is the one chosen next
for execution by the agent. This enables the algorithm to
consider the sequence of evidence 〈e1, . . . , ek〉 as an ordered
trace of execution.

Using Equation 1, the algorithm is able to compute the
probability of a goal, given the sequence of evidence, as seen
in Equation 2. That is, the algorithm computes the sum of
the probabilities of all PESk in the set of hypotheses H
that contain the goal Gi, and divides it by the sum of all
PESk ∈ H .

Pr(Gi|〈e1, . . . , ek〉) =

HGi∑

PESk

Pr(PESk, 〈e1, . . . , ek〉)

H∑

PESk

Pr(PESk, 〈e1, . . . , ek〉)

(2)

Influence Map An influence map is a grid overlaid on top
of the physical map where each cell has a value representing
the influence each side has in that area. In HICOR, the in-
fluence is a function of the units’ range and fire power. The
influence in a cell is represented by a single integer value.
If this value is positive, then the cell is under our control
whereas a cell with a negative value can be seen as being un-
der the opponent’s control. To calculate the influence map,
each unit adds (or subtracts) its fire power to the influence
of all cells in its weapon range, then adds gradually less in-
fluence to the cells outside of its range to model the fact that
it can move to attack that cell if necessary3. A highly nega-
tive influence in a cell means that this cell is very dangerous
whereas a highly positive influence means the cell is very
safe (or very dangerous for our opponent). We keep both an
air and ground influence map because some units can only
attack on the ground while others can only attack in the air.
Even units which can attack on both levels may not have the
same range and power when attacking on the ground or in
the air.

The influence map is very useful for tactical plan recog-
nition as it requires high spacial awareness. It is used in two
different situations. First, HICOR uses it to recognize and
instantiate actions. If a plan contains an action such as “At-
tack Flank” for instance, we first need to use the influence
map to locate our flanks before we can recognize an attack

3The rate at which the influence reduces depends on the mobil-
ity of the unit. It will reduce slower for fast units whereas immobile
units will not spread influence outside their range at all.

on it. Similarly, if a plan has a high level task “Harass(base)”
where base is a variable and “Harass(base)” has a precondi-
tion stating that the base must be lightly defended, then we
need to check the influence map to find which of our bases
are lightly defended before we can instantiate this task for
each of those bases.

The second use for the influence map is to update the
probabilities for plans or for branches of an OR-node. For
example, if we are considering two possible plans, “Attack
Flank” and “Attack Front”, we can use the influence map to
see which one is more likely. If the opponent is using aerial
units to fulfil his plan and our anti-air influence is bigger
on our front than on our flank, then we can raise the prob-
abilities of the latter plan and lower the probabilities of the
former plan, even if a priori probabilities tell us that in the
abstract, “Attack Front” is more likely.

Preliminary Experiments

HICOR is implemented in Java and is connected with the
StarCraft C++ API provided for the AIIDE competition. As
mentioned in the introduction, our motivation is to partici-
pate in the AIIDE StarCraft competition. This competition
comprises of 4 different tournaments, one of which gives the
AI complete observation of the opponent’s actions. The ex-
periments reported herein are preliminary and consider com-
plete observation of the opponent’s actions. Note that even
with complete observation, inferring goals remains uncer-
tain.

All the experiments were run on an Intel Core 2 Duo 2.4
GHz. The experiments deal with recognizing the plan of a
Zerg player playing against a Terran player. Because we are
strictly interested in recognizing adversarial plans and not in
planning a response to it, we used replays of Terran vs Zerg
games. Our algorithm acts as if it was seeing a game as it
is played, from the Terran player’s point of view (but again,
with full knowledge of the opponent’s actions). The replays
were taken from the Team Liquid website, one of the biggest
StarCraft communities 4. All games were chosen randomly
from a base of competitive Terran vs Zerg games where the
Zerg players range from C level iCCup players to top pro
players. Those games are completely unbiased as they were
played without knowing that they would eventually be used
for this experiment. The games’ durations range from five
to forty five minutes. In these experimentations, we limit
ourselves to recognizing strategic plans.

At the strategic level, goals (not plans) are for the most
part mutually exclusive. As such, the results below hold
for cases where only one goal is considered at a time, even
though the algorithm implementation inherently allows mul-
tiple goal recognition. We used five different plans simi-
lar to the one seen in Figure 2. Two plans have around
twenty primitive actions while the other three have around
sixty primitive actions. Two have no OR-nodes, one has one
OR-node and the other two have three OR-nodes. This may
seem small, but it’s more than enough to model the typical
Zerg strategies against Terran players.

4http://www.teamliquid.net

35

Currently, HICOR refreshes the plan recognition results
every time it gets a new observation. In our experiments, the
rate of observation ranges around an observation every three
seconds, but this is because we only send HICOR observa-
tions related to strategic plans and because there is very little
happening in the first minute or two of a game. In theory,
however, HICOR with single-goal recognition could refresh
at a much faster rate considering that our experiments show
that updating the explanations from an observation never
takes more than 50 ms. This makes this solution perfect for
our real-time needs.

Because it is often impossible to tell some plans apart
early on, HICOR relies heavily on the a priori probabili-
ties of the plans to tell which one is more likely. If we take
the plan with the highest probability as HICOR’s prediction,
then early on HICOR will be “wrong” very often. This is
not how HICOR’s output should be used, however. If the
plan with the highest probability only has a probability of
25%, it would be silly to pretend HICOR made a wrong pre-
diction when the opponent is actually using another plan. A
better way to use HICOR’s output is to use a threshold. In
our experiments, when we used a threshold of 50%, HICOR
made wrong predictions only about 11% of the time. That
is, during the whole time where an hypothesis’ probability
goes above 50%, until the time where the hypothesis is con-
firmed, the hypothesis given by HICOR is correct for about
89% of that time. HICOR always converges on the correct
plan before the plan is finished, including which branch of
the OR-nodes will be used.

Those are preliminary results, however. We have assumed
full observability of the opponent’s action, which makes it
impossible for him to hide key elements of his plan from us.
Furthermore, because a player almost always has a single
strategic plan at a time, HICOR does not have to deal with
concurrent plans. Finally, the small number of plans makes
it less likely for HICOR to be wrong. When we will move to
experiments with tactical plan recognition, we expect this to
take more CPU time 5 and lead to more incorrect predictions.
This will most certainly lead us to examining improvements
to the current implementation.

Conclusion

In this paper we discussed some of the the main challenges
in building an RTS plan recognizer. We also introduced
a new solution approach to the problem along with results
from a preliminary implementation. The preliminary results
are promising. The addition of metric time already sim-
plifies significantly the plan recognition problem in RTSs,
allowing for the creation of both more descriptive plans as
well as more generic ones. It allows for plans that would
otherwise be very difficult, or even impossible to specify.

The continuing implementation will focus on testing with
more complex plan libraries. This includes developing tac-
tical plan libraries and scenarios with multiple concurrent
goals. In the current experiments, we have not yet dealt with

5Multiple goal recognition leads to a time complexity exponen-
tial in the size of the conjunctive goal because this lead to an expo-
nential explosion of possible PESs.

active observations and provoking actions. We have also
limited the scenarios to strategic plan recognition, assuming
one strategy goal being pursued at a time. All these features
provide additional dimensions for validating the current im-
plementation. Integration with a decision making module
is another area of current investigation. This will lead to a
fully-fledged RTS AI, making use of recognized intent, ca-
pability and opportunity of the opposing force to decide and
execute plans against the force. All these incremental devel-
opments will converge towards the ultimate objective of par-
ticipating to the announced AIIDE StarCraft competitions.

Acknowledgement

The work presented herein was supported by the Natural
Sciences and Engineering Research Council (NSERC) of
Canada. We would also like to thank Robert Goldman for
numerous exchanges helping us understanding PHATT.

References

Avrahami-Zilberbrand, D., and Kaminka, G. 2007. To-
wards dynamic tracking of multi-agents teams: An initial
report. In Proceedings of the AAAI Workshop on Plan, Ac-
tivity, and Intent Recognition (PAIR), 17–22.
Blaylock, N., and Allen, J. 2006. Fast hierarchical goal
schema recognition. In American Association for Artificial
Intelligence (AAAI).
Bui, H.; Venkatesh, S.; and West, G. 2002. Policy recog-
nition in the abstract hidden markov model. JAIR 17:451–
499.
Geib, C., and Goldman, R. 2009. A probabilistic plan
recognition algorithm based on plan tree grammars. Artifi-
cial Intelligence 117(11):1101–1132.
Goldman, R.; Geib, C.; and Miller, C. 1999. A new model
of plan recognition. In fifteenth Uncertainty in Artificial
Intelligence Conference.
Kautz, H. A. 1991. A formal theory of plan recognition and
its implementation. In Reasoning About Plans. Maurgan
Kaufmann Publishers. 69–125.
Kott, A., and McEneaney, W. M. 2007. Adversarial Rea-
soning: Computational Approaches to Reading the Oppo-
nent’s Mind. Chapman & Hall/CRC.
Pynadath, D. V., and Wellman, M. P. 1995. Accounting for
context in plan recognition, with application to traffic mon-
itoring. In Proc. the Eleventh Conference on Uncertainty
in Artificial Intelligence, 472–481.
Rabin, S. 2005. Introduction To Game Development. Rock-
land, MA, USA: Charles River Media, Inc.
Schmidt, C. F.; Sridharan, N. S.; and Goodson, J. L. 1978.
The plan recognition problem : an intersection of psychol-
ogy and artificial intelligence. Artificial Intelligence 11:45–
83.
Schmidt, C. F. 1976. Understanding human action: Rec-
ognizing the plans and motives of other persons. Cognition
and Social Behavior.

36

