NeuralKart: A Real-Time
Mario Kart 64 Al

Harison Ho
Varun Ramesh
Eduardo Toress Montano
2017 - cs231n.stanford.edu

Abstract

a real-time Mario Kart 64 autopilot
two main components

-an omniscient search Al simulates different possible actions and generates a
training set

-a convolutional neural network (CNN) trains

Introduction

Mario Kart 64

only looking at image of the screen
constantly hold accelerate

return a steering value

learn feature extraction with CNNs

Background / Related Work

Imitation Learning
Reinforcement Learning
Game Playing
Autonomous Vehicles

Mario Kart 64

Method

Bizhawk

emulater

-save/load states

-play for any number of frames
-access in-game memory locations

-save screenshots

Method

Search Al

determine the best steering action

-save current position as root state

-11 different steering values, simulates the results of the gameplay for 30 frames
reward

-a weighted sum of the current progress

-current kart speed

-

’ ~ Search Root

Figure 1. A demonstration of the search process. The search Al
simulates the outcomes of 11 different angles, chooses the angle
yielding the greatest progress, and stores the search root image and
steering angle as a single datapoint.

100

150

200

0 100 200 300

10

0.5 4

0.0 4

0 10 20 30 40 50 60

Figure 2. The bottom graph displays the steering values that the
search Al has chosen up to the current point in time.

Method

Real-time CNN
-incorporates 5 batch
-normalization-2D
-convolution-ReLU layers

-5 dense layers

Method

DAGGER(Dataset Aggregation) Algorithm

-run the search Al

-initialize the weights of the CNN

-playing with predicted steering angles

-randomly pause and run the search Al from current point

-run the search Al for 120 frames and save image-steering angle pairs

-retrain the CNN with new data set

Figure 3. The paths that the kart takes using the DAGGER ap-
proach. The blue line shows the path of the CNN Al playing in
real-time. The green lines show the trajectories chosen by the
search Al when started at states randomly sampled from the CNN
ATl’s play-through.

Method

Playing in Real-time

-takes a screenshot

-sends a request to the server
-receives the prediction

-sets the joystick value.

Method

Input Remapping

linearly interpolated our potential angles from range from —-128 to 127

issues

-most of this space is a dead-zone

-the horizontal displacement of a turn is not linear w.r.t. the joystick value

solution

-a mapping function J(s) that maps a “steer” input domain s € [-1, 1] to joystick values
- a(s) = (sgn(s) x V(0.24 x |s| + 0.01) + 1)/ 2

- J(s) = floor(-128 x (1 — a(s)) + 127 x a(s))

X Displacement vs. Input Value, With and
Without Remapping

100

80 ,

15 1 Lo 0 05 1 1.5

X Displacement

-100
Input Value

® Without Remapping @ With Remapping

Figure 5. The horizontal displacement of the player with respect to
the input trajectory is non-linear, and most of the values are taken
up by dead zones. Our input remapping removes the dead-zones
and makes the displacement linear with respect to the input value.

Results

Quantitative Evaluation

run 10 races in real-time and calculate the mean race time

Track Autopilot Time (s) Human Time (s)
Moo Moo Farm 97.46 94.07
Luigi’s Raceway 129.09, 1 DNF* 125.30
Choco Mountain 138.37, 2 DNF* 129.50
Rainbow Road 389.18 365.60

Table 1. Achieved track times for the autopilot bot and the human;
the autopilot times have been averaged over 10 runs. *DNF sig-

nifies that the autopilot got stuck and was unable to finish some
number of races.

Results

Qualitative Evaluation
-stable to perturbations by an external force [figure7]
-The steering behavior resembles how a human would play Mario Kart

- Al is able to ignore the information added by new elements, despite never having
seen those elements before [figure 8]

-situations where the autopilot would slow down

slide against walls or drive on the edge of the road next to sand or grass

Figure 7. On Luigi’s Raceway, our Al is stable to perturbations.
Here, an actual joystick is overriding our Al, pushing it to the right.
However, the Al correctly sees that the proper response is to turn
to the left. We don’t observe the same level of stability on every
track.

Figure 8. Our Al is trained in Time-Trial mode, but can still race
in Grand Prix mode. Grand Prix introduces new Ul elements, item
boxes, opponents, and hazards like bananas.

Experiments

Image Reflection
-model may not be looking at the curvature of the road
Classification-based Model

-model performed worse than the regression model

Experiments

Training on All Tracks Together Track Individual Data (s) All Data (s)
Moo Moo Farm 97.46 97.63
Luigi’s Raceway 12909, 1 DNF 129.03
Choco Mountain 138.37, 2 DNF 131.93, 3 DNF
Rainbow Road 389.18 396.74, 1 DNF

Table 2. The performance of our model when trained on all of the
data at once, versus keeping a separate dataset and weights file for
each track. DNF signifies that some runs did not finish.

Beam Search
-increased the flexibility of the search Al

-play more difficult map

Conclusion

end to end neural systems can yield good performance as real-time controllers in
games like Mario Kart 64

