
Suphx: Mastering Mahjong with
Deep Reinforcement Learnig

Junjie Li, Qiwei Ye, Li Zhao, Tao Qin, Tie-Yan Liu, Hsiao-Wuen Hon Microsoft Research Asia
Sotetsu Koyamada Kyoto University

Guoqing Liu University of Science and Technology of China
Chao Wang Tsinghua University
Ruihan Yang Nankai University

Introduction
Mahjong

complex rules and abundance of hidden
information

↓

 very challenging game for AI research.

Introduction
Suphx (short for Super Phoenix),

An AI system for 4-player Japanese Mahjong (Riichi
Mahjong),

Suphx adopts a deep convolutional neural network as its
model.

Introduction
1, It trained through supervised learning from the logs of
human professional players.

2, It boosted through self-play reinforcement learning (RL),
with the networks as the policy.

This network introduces several techniques to address
challenges.

Introduction
・Global reward prediction

It trains a predictor to predict the final reward of the game
based on information from the current and previous
rounds.

Introduction
・Oracle guiding
It introduces the Oracle Agent, which allows players to see
complete information about other players, including their
private and wall tiles.
In their RL training process, they gradually drop the perfect
information from the oracle agent, and finally convert it to a
normal agent which only takes observable information as input.

Introduction
・parametric Monte-Carlo policy adaptation (pMCPA)

As rounds progress, policies trained offline are gradually
modified and adapted to specific rounds during the online
play phase to improve agent run-time performance.

Introduction
They evaluated Suphx on the most popular and
competitive Mahjong platform, Tenhou, which has more
than 350,000 active users.

Overview

Suphx learns five models to handle different situations: the
discard model, the Riichi model, the Chow model, the Pong
model, and the Kong model, as summarized in Table 1.

Overview
There are two kinds of situations that a Mahjong player
needs to take actions.

・The Draw situation

・The Other-Discard situation

Overview
・The Draw situation

Suphx draws a tile from the wall. If its private tiles can form a
winning hand with the drawn tile, the winning model decides whether
to declare winning. If yes, it declares and the round is over.
Otherwise, the round proceeds in the following order

1. Kong step
2. Riichi step
3. Discard step

Check each action in turn to see if it can be done.

Overview
・The Other-Discard situation

Other players discard a tile. If Suphx can form a winning
hand with this tile, the winning model decides whether to
declare winning. If yes, it declares and the round is over.
Otherwise, it checks whether a Chow, Pong, or Kong can
be made with the discarded tile. If not, it is the other
players’ turn to take actions; otherwise, the Chow, Pong,
or Kong model decides what action to take:

Overview

Overview
Deep convolutional neural networks (CNNs) have shown
powerful representational capabilities.

Suphx has adopted it as the model architecture for its
policies.

They design a set of features to encode the observed
information into channels that can be digested by CNNs.

Overview

Figure 2: Example of state

Overview

As there are 34 unique tiles in Japanese Mahong, they
use multiple 34 × 1 channels to represent a state.

Overview

Learning Algorithm
The learning of Suphx contains three major steps.

1, They train the five models of Suphx by supervised learning, using (state,
action) pairs of top human players collected from the Tenhou platform.

2, They improve the supervised models through self-play reinforcement
learning (RL), with the models as policy.

They adopt the popular policy gradient algorithm and introduce global reward
prediction and oracle guiding to handle the unique challenges of Mahjong.

3, During online playing, they employ run-time policy adaptation to leverage
the new observations on the current round in order to perform even better.

Learning Algorithm
・Distributed Reinforcement Learning

The training of Suphx is based on distributed reinforcement learning.

Learning Algorithm
・Global Reward Prediction

To provide effective signal for RL training, they need to
appropriately attribute the final game reward (a global
reward) to each round of the game.

For this purpose, they introduce a global reward predictor
Φ, which predicts the final game reward given the
information of the current round and all previous rounds of
this game.

Learning Algorithm

N: the number of games in the training data, Ri: the final game reward of the i-th game, Ki: the
number of rounds in the i-th game,

x k i: the feature vector of the k-th round in the i-th game, including the score of this round, the
current accumulated round score, the dealer position, the counters of repeat dealer and Riichi
bets.

・Global Reward Prediction

The training data for this reward predictor Φ come from the logs of top human players
in Tenhou, and Φ is trained by minimizing the following mean square error:

Learning Algorithm
・Oracle Guiding

Facilitate learning with oracle agents that have access to
complete information.

First, they train the oracle agent through reinforcement
learning, using all the features including the perfect ones.
Then they gradually drop out the perfect features so that
the oracle agent will eventually transit to a normal agent:

Learning Algorithm
・ Parametric Monte-Carlo Policy Adaptation
 The mahjong playing order is not fixed, making it difficult to
construct a regular game tree.
Therefore, MCTS cannot be applied directly to mahjong.
In this study, they devise a new method, named parametric
Monte Carlo policy adaptation (pMCPA).

Learning Algorithm
・ Parametric Monte-Carlo Policy Adaptation

1. Simulations: Randomly sample private tiles for the three opponents and
wall tiles from the pool of tiles excluding their own private tiles, and then use
the offline-trained policy to roll out and finish the whole trajectory.

2. Adaptation: Perform gradient updates using the rollout trajectories to
finetune the offline policy.

3. Inference: Use the fine tuned policy to play against other players in this
round.

Offline Evaluation
・Supervised Learning

Offline Evaluation
・Reinforcement Learning

To demonstrate the value of each RL component in Suphx, they trained several Mahjong agents:

• SL: the supervised learning agent.

• SL-weak: an under-trained version of the SL agent.

 • RL-basic: the basic version of the reinforcement learning agent. In RLbasic, the discard model was
initialized with the SL discard model and then boosted through the policy gradient method with round scores
as reward and entropy regularization. The Riichi, Chow, Pong, and Kong models remain the same as those
of the SL agent.6

• RL-1: the RL agent that enhances RL-basic with global reward prediction.

• RL-2: the RL agent that further enhances RL-1 with oracle guiding.

In both RL-1 and RL-2, they also only trained the discard model using RL, and left the other four models the
same as those of the SL agent.

Offline Evaluation
Each agent plays against 3 SL-weak agents on these games. For the evaluation
metric, they computed the stable rank of an agent following the rules of Tenhou.

Online Evaluation
To evaluate the real performance of Suphx, they let it play
on Tenhou in the expert room.

Suphx played 5000+ games in the expert room and
achieved 10 dan in terms of record rank9 and 8.74 dan in
terms of stable rank.10 It is the first and only AI in Tenhou
that achieves 10 dan in terms of record rank.

Online Evaluation

Stable Rank

Online Evaluation

Online Evaluation

Conclusion and Discussion
• Global Reward Prediction
In this system, the reward predictor takes limited
information as its input. Clearly, more information will lead
to better reward signal.
They are investing how to leverage prefect information
(e.g., by comparing the private initial hands of different
players) to measure the difficulty of a round/game and then
boost the reward predictor.

Conclusion and Discussion
• Oracle Guiding

They instantiated this concept using the gradual
transition from an oracle agent to a normal agent by
means of perfect feature dropout.

Conclusion and Discussion
• Run-time Policy

They did not adapt the policy only for the first hand, but
continued to adapt the policy as the game progressed and more
information became observable.

Doing so should further improve the performance of the policy.

Furthermore, since the policy is adapted gradually, it is even
possible to use policy adaptation in online play with affordable
computational resources.

Thank you for your attention!

