
Efficient Octree-based 3D 
Pathfinding

2024 IEEE Conference on Games 
(CoG)

Quentin Massonnat, Clark Verbrugge 
McGill University Montreal, Canada



Introduction

• 3D virtual environments are commonplace in modern games. 
However movement planning is still largely 2D.

• Pathfinding in 3D is expensive. Full 3D pathfinding is heavy on memory 
and computation time, and real-time use is challenging.

• Exact shortest path in 3D is NP-hard.



Approach

• This work proposes a hybrid 3D pathfinding method by extending 2D 
graph-based navigation meshes to a hierarchical environment 
representation.

– Hertel-Mehlhorn method to merge cells for a coarser map, 
reducing path cost.

– A* search on transition graph between cells.

– Visibility pruning and 3D funnel algorithm.



Building the navigation mesh

• This work uses an octree-based navigation mesh for 3D pathfinding. 
• Starting from a root cube that recursively subdivides obstacle-

intersecting cells until a defined minimize size is reached, we build an 
octree representation.

• To reduce the number of cells, we merge adjacent convex cells using 
a greedy method based on the Hertel-Mehlhorn approach.



Path Finding and Path Refinement

• This work performs 3D pathfinding by constructing a graph over valid, 
convex octree cells.

• Each node lies at the center of a transition surface between adjacent
cells, and edges are weighted by Euclidean distance. 

– This work define as transition surfaces the surfaces connecting two 
adjacent valid cells.

• A* is used to find the shortest path on this graph.



Path Finding and Path Refinement

• To refine paths, this work implements two methods
– Visibility-based pruning heuristic that skips intermediate nodes, 
– Extension of the 2D funnel algorithm to 3D using the octree as 

convex decomposition.



Path Finding in Dynamic 3D 
Environments
• In dynamic scenes we track moving obstacles and apply local octree 

updates.
– If a valid cell(none obstacle) becomes obstructed, it is recursively 

split until the target granularity is reached.
– Conversely, when a cell(Obstacles were) becomes free, we 

attempt to merge its siblings to restore the parent.
• After update, corresponding changes are applied to the movement 

graph.



Experiments and Results

• Datasets: 6 handmade scenes and 19 Warframe voxel maps.

– Warframe voxel maps come with 10,000 “test scenarios”



Impact of Merging and Path 
Refinement

• Merging significantly reduces the number of valid octree cells



Impact of Merging and Path 
Refinement

• The merged octree is faster than other approaches.



Experiments and Results

• This work evaluated this method by adding moving obstacles to 
existing datasets. 



Comparison with JPS-3D



Comparison with JPS-3D



Comparison with JPS-3D

• JPS is faster on average, but slower for longer paths.
• This work method finds shorter and more stable paths, especially in 

long or complex situations and it works in real time.



Conclusion

• Combining octrees with greedy merging enables real-time 3D 
pathfinding.

• These path refinement cuts path length by up to 10%

• This method is better than JPS-3D on long paths

• This work supports dynamic environments via local updates and 
repair-based merging

• Future work:

– Flexible initial octree shape, for example rectangular base

– Incorporate agent constraints (turning radius, smooth paths via 
Bezier)



Thank you for listening


	Slide 1: Efficient Octree‑based 3D Pathfinding
	Slide 2: Introduction
	Slide 3: Approach
	Slide 4: Building the navigation mesh
	Slide 5: Path Finding and Path Refinement
	Slide 6: Path Finding and Path Refinement
	Slide 7: Path Finding in Dynamic 3D Environments
	Slide 8: Experiments and Results
	Slide 9: Impact of Merging and Path Refinement
	Slide 10: Impact of Merging and Path Refinement
	Slide 11: Experiments and Results
	Slide 12: Comparison with JPS‑3D
	Slide 13: Comparison with JPS‑3D
	Slide 14: Comparison with JPS‑3D
	Slide 15: Conclusion
	Slide 16: Thank you for listening

