Efficient Octree-based 3D
Pathfinding

2024 |EEE Conference on Games
(CoG)

Quentin Massonnat, Clark Verbrugge
McGill University Montreal, Canada

Introduction

e 3D virtual environments are commonplace in modern games.
However movement planning is still largely 2D.

e Pathfinding in 3D is expensive. Full 3D pathfinding is heavy on memory
and computation time, and real-time use is challenging.

* Exact shortest path in 3D is NP-hard.

Approach

* This work proposes a hybrid 3D pathfinding method by extending 2D
graph-based navigation meshes to a hierarchical environment
representation.

— Hertel-Mehlhorn method to merge cells for a coarser map,
reducing path cost.

— A* search on transition graph between cells.
— Visibility pruning and 3D funnel algorithm.

Building the navigation mesh

* This work uses an octree-based navigation mesh for 3D pathfinding.

e Starting from a root cube that recursively subdivides obstacle-
intersecting cells until a defined minimize size is reached, we build an
octree representation.

* To reduce the number of cells, we merge adjacent convex cells using
a greedy method based on the Hertel-Mehlhorn approach.

Path Finding and Path Refinement

* This work performs 3D pathfinding by constructing a graph over valid,
convex octree cells.

 Each node lies at the center of a transition surface between adjacent
cells, and edges are weighted by Euclidean distance.

— This work define as transition surfaces the surfaces connecting two
adjacent valid cells.
 A*isused to find the shortest path on this graph.

Path Finding and Path Refinement

* To refine paths, this work implements two methods
— Visibility-based pruning heuristic that skips intermediate nodes,

— Extension of the 2D funnel algorithm to 3D using the octree as
convex decomposition.

Algorithm 1 Pseudocode for the path pruning algorithm

Input: A path between two points s and t (s = L0, L1y ey Lho1, LTl =

t
{;utput: The pruned path
Let anchor = t and prunedPath = [t]
for : decreasing from k£ — 1 to 0 do
if x; is visible from anchor then
Discard the node z;
else
Add the node x;+1 to prunedPath and let it be the new anchor
end if
end for
Add s to prunedPath
return prunedPath in reverse order

Path Finding in Dynamic 3D
Environments

* In dynamic scenes we track moving obstacles and apply local octree

updates.
— If a valid cell(none obstacle) becomes obstructed, it is recursively
split until the target granularity is reached.
— Conversely, when a cell(Obstacles were) becomes free, we
attempt to merge its siblings to restore the parent.
» After update, corresponding changes are applied to the movement

graph.

Experiments and Results

* Datasets: 6 handmade scenes and 19 Warframe voxel maps.
— Warframe voxel maps come with 10,000 “test scenarios”

4

Fig. 1. Snapshot of the Industrial map from our handmade dataset (left), and the Complex (middle) and Full4 (right) maps from the Warframe dataset.

Impact of Merging and Path
Refinement

* Merging significantly reduces the number of valid octree cells

TABLE 1
COMPARISON OF THE NUMBER OF VALID CELLS ACROSS SEVERAL MAPS
USING EITHER THE VOXEL BASELINE, THE REGULAR, OR MERGED

OCTREE.
Map name Voxel | Unmerged | Merged
Building_1 28,190 4,226 303
Building_2 28,628 3,975 147
Building_3 29,816 4,243 182
Cave 29.510 8,190 316
Industrial 31,833 1,671 157
Zigzag 31,488 2,130 52
Complex (Warframe) 8.3M 41,385 10,552

Impact of Merging and Path
Refinement

« The merged octree is faster than other approaches.

Building 1

—— \oxel
OctTree
—— Merged OctTree

Compute time (ms)

I

0 25 5 75 10 125 15 175 20 225 25
Path length bucket

Experiments and Results

* This work evaluated this method by adding moving obstacles to
existing datasets.

TABLE 11
AVERAGE COST OF THE OCTREE UPDATE, GRAPH UPDATE, AND PATH
RECOMPUTING IN MILLISECONDS OVER 1,000 UPDATES ON THE
INDUSTRIAL MAP, USING EITHER REGULAR (O) OR MERGED OCTREES
(MO), AND LOCAL GRAPH UPDATES (LGU) OR REBUILDING THE GRAPH

Update method Octree Graph Path Total

update update | recomputing time

O + no LGU 1.36 0.92 1.82 4.10

O + LGU 0.22 0.03 1.26 1.51

MO + no LGU 0.44 0.34 0.72 1.50

xel MO + LGU 0.39 0.03 0.55 0.97

ets

Comparison with JPS-3D

Average compute time (ms)

250
200
150
100

50

S A o TP S S T 0 Jod ok
%%%L&aon%QL@%L@@QvQ&Q&\ » W

N
¥ &Y
(_,0

(=]
]
[|
%
\) I

Median compute time (ms)

40
35
30
25
20

E ||I| I“
5
UIII -l-.-lI' Illl II

'\y'\/'\f S I I
& & & \\@\\@\\@\\

L
O‘{?
Oé\)
0{}

3

Fig. 5. Average and median compute time of merged octrees (in blue) and
JPS-3D (in orange) on the 3D benchmark Warframe.

Comparison with JPS-3D

Evolution of compute time with path length on BA1

400

)
E
u
=

]
=]
o
E
o -
u]
u
=
=
W
>

L=+

Path length bucket

Octree IPS

Evolution of compute time with path length on Full4

Average compute time (ms)

o 600
Path length bucket

Octree IPs

Fig. 6. Evolution of the compute time with path length on the BA1 and Full4

W maps.

Comparison with JPS-3D

e JPSis faster on average, but slower for longer paths.
* This work method finds shorter and more stable paths, especially in
long or complex situations and it works in real time.

Conclusion

 Combining octrees with greedy merging enables real-time 3D
pathfinding.

 These path refinement cuts path length by up to 10%

* This method is better than JPS-3D on long paths

* This work supports dynamic environments via local updates and
repair-based merging

* Future work:
— Flexible initial octree shape, for example rectangular base

— Incorporate agent constraints (turning radius, smooth paths via
Bezier)

Thank you for listening

	Slide 1: Efficient Octree‑based 3D Pathfinding
	Slide 2: Introduction
	Slide 3: Approach
	Slide 4: Building the navigation mesh
	Slide 5: Path Finding and Path Refinement
	Slide 6: Path Finding and Path Refinement
	Slide 7: Path Finding in Dynamic 3D Environments
	Slide 8: Experiments and Results
	Slide 9: Impact of Merging and Path Refinement
	Slide 10: Impact of Merging and Path Refinement
	Slide 11: Experiments and Results
	Slide 12: Comparison with JPS‑3D
	Slide 13: Comparison with JPS‑3D
	Slide 14: Comparison with JPS‑3D
	Slide 15: Conclusion
	Slide 16: Thank you for listening

