Terrain Design Prototyping With Diffusion Models

Progress of My Graduation Research (2024/12/11)

s1290102 Hajime Fukai

Background

- Modern 3D games require a vast expanse of world map
 - Designing such a world map by hand is a demanding task
 - It is difficult to design natural terrain for nonexperts

Objective

- Our goal is to facilitate the prototyping of a world map
 - By creating a terrain generation model
 - Can be guided by hand-drawn sketch
- Use diffusion models primarily; instead of traditional GAN
- Previous study
 - T. Wang and S. Kurabayashi, "Sketch2Map: A Game Map Design Support System Allowing Quick Hand Sketch Prototyping" 2020 IEEE Conference on Games (CoG)

Models to Use

- Diffusion Model
 - Saharia et al.
- GAN (Generative Adversarial Network)
 - Networks" introduced by Phillip Isola et al.

• "Palette: Image-to-Image Diffusion Models" introduced by Chitwan

pix2pix: "Image-to-Image Translation with Conditional Adversarial

Dataset Creation

- We created dataset from NASADEM_HGT v001
- NASADEM_HGT consists of elevation data and water body data

Height map from NASADEM_HGT

Updated Dataset Creation

- Previously the height-maps represented its height by a single 8-bit channel (red)
 - The height information was compressed from 16 bits to 8 bits, resulting in lower precision
- The height is now represented by two channels (red and green) and each channel is 16-bit
 - The green area is higher than the base-height
 - The red area is lower than the base-height

Updated Dataset Creation

Contour-Map

Height-Map

Updated Dataset Creation

Contour-Map

Height-Map

Terrain Design Prototyping With Diffusion Models

Training Environment

- Intel Core i7 6700K
- 32GB DDR4
- NVIDIA GeForce RTX 4060 Ti 16GB

Model Implementations

pix2pix

- "Image-to-Image Translation in PyTorch"
- <u>https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix</u>
- Palette
 - Models by Pytorch"
 - Models

"Unofficial implementation of Palette: Image-to-Image Diffusion

<u>https://github.com/Janspiry/Palette-Image-to-Image-Diffusion-</u>

Training of pix2pix Model

- Completed training the pix2pix model
 - Trained for 1200 epochs
 - \approx 280 seconds per epoch
 - ≈ 93 hours in total

Results of pix2pix Model

Input

Output (1200 epoch)

Ground Truth

Results of pix2pix Model

Input

Output (1189 epoch)

Ground Truth

Results of pix2pix Model

- Problem: Sometimes the output has an unnatural pattern
 - Recognizable especially when the area is full of water
- Potential cause
 - The lack of training epoch
 - The limitation of pix2pix

Training of Palette Model

Now we are training the Palette model

- 520/1200 epochs completed
- ≈ 24 minutes per epoch
- ≈ 20 days in total, ≈ 11 days to complete

Results of Palette Model

Input

Output (470 epoch)

Ground Truth

Results of Palette Model

.

Input

Output (485 epoch)

Ground Truth

Results of Palette Model

- Problem: Training is unstable. Most of the time the output is completely full of noise
- Potential cause
 - The lack of training epoch

Thank you for your attention