Better Understanding of Humans for Cooperative AI through Clustering

Edward Su, William Raffe, Luke Mathieson, YuKai Wang

2024 IEEE Conference on Games (CoG) s1300037 Tokuda Yuna

Background

- Cooperative and alignment research has typically lagged behind other machine learning application.
- Creating a framework that leverages Archetypal Analysis.

Introduction

- archetypal analysis (AA)
	- This clusters data around outliers known as 'archetypes' as opposed to mean data points typical of other clustering techniques.
	- \circ These archetypes are defined as extremal points in the data
	- Create a boundary that encapsulates all other observations.
- AA agent
	- we refer to the RL model capable of cooperating with human partners as the AA agent.
	- At runtime, a linear least-squares method calculates human alignment, and the AA agent stochastically selects and performs a cooperative model action.

Introduction

- Create a dataset of game playthroughs
- Extract 'archetypal' playstyles using AA offline
- Train separate PPO models to cooperate with each archetype
	- called cooperative model

Enviroment

- Use 'Overcooked' environment developed by Carroll et. al.
- This game is complexity, with multiple tasks and others that may force coordination between agents.
- To support our custom AA agent, adding data structures for agent profile information.

Archetypal Analysis

- Create playthrough dataset from representative players to identify archetypal playstyles using AA.
- Train RL models optimized to cooperate with each archetypal playstyle.
- Created N number of RL models for archetypal playstyles.
- Generate RL models to represent human playstyles instead of recording playthroughs.
	- This included training five self-play agents using a PPO policy, with checkpoints representing different levels of player skill.

About five self-play agents

- Use 4 feature
- Initialize with a runtime seed and train for 10,000 steps.
- Create checkpoints at steps 2000, 5000, and 7500.
- perform archetypal analysis on this dataset, which provides us with K number of archetypes
- calculated explained variance to determine the optimal number of archetypes.

TABLE I: Archetype Profiles

Implementation

- Evidently benefits of additional archetypes tapers off after 5
- Since we are using 4 features, the number of archetypes was set to 3.
- The profiles of the archetypes generated with $K = 3$ archetypes are seen in Table I
- data-points in the feature-set can be expressed as a convex combination of these 3 archetypes shown in Fig. 4.

- Afterward,trained the RL model to cooperate with the model closest to each archetype.
- During runtime, the AA agent uses the player's current play data, scaled by time, to observe their alignment with each archetype through a least-squares algorithm.
- The resulting vector is used to probabilistically select the appropriate action, weighted by the player's proximity to each archetype.

Benchmarks

this cooperative agent framework against other models

- Self-play agent
- Human-aware PPO agent
- Random action agent
- AA agent

Experimant

- Gather participants and conduct the experiment.
- The host randomly pairs AI agents with participants to play the game.
- Each game lasts 30 seconds, and the host records the score achieved.
- After the game ends, the host switches to an unselected AI agent and continues.

Result

- The standard deviation shows variability in both Human-trained and AA agents, while Random and Self-play agents have noticeably lower values in comparison.(Table3)
- These results reinforced the findings obtained from theTable5.(Table4)

TABLE III: Descriptives

Agent Type	Mean	SD	SE	CoV
AA	47.500	17.701	4.425	0.373
SelfPlay	50.000	12.649	3.162	0.253
Random	28.750	10.247	2.562	0.356
Human Trained	56.250	15.000	3.750	0.267

TABLE IV: Bayesian Wilcoxon Signed-Rank Test

Result

- When it came to cooperative ratings, the AA and human-trained models were equivalent, with a BF10 < 3.(Table5)
- Using the same measure, the self-play model performed significantly worse than AA and human-trained models(Table 5)

TABLE V: Post Hoc Comparisons - Agent Type Rating

		$BF_{10,U}$	error $%$
AA	SelfPlay	0.414	8.686×10^{-7}
	Random	0.414	3.079×10^{-7}
	Human Trained	0.414	0.019
SelfPlay	Random	0.414	7.208×10^{-7}
	Human Trained	0.414	2.228×10^{-7}
Random	Human Trained	0.414	2.155×10^{-7}

TABLE VI: Descriptives Rating

Agent Type	Mean	SD	SE	CoV
AA	3.750	0.856	0.214	0.228
SelfPlay	2.750	0.683	0.171	0.248
Random	1.875	0.719	0.180	0.383
Human Trained	4.063	0.772	0.193	0.190

TABLE VII: Bayesian Wilcoxon Signed-Rank Test Rating

Result

The AA agent matched self-play and human-trained models in scores and cooperated as well as the human-trained model, outperforming self-play and random models. It showed the highest result variance in both metrics.

Conslusion

- AA agents are suitable for AI to adapt to a variety of human partners, are generalizable, and can be easily incorporated into existing model designs.
- Future directions include facilitating smoother strategy transitions, etc.
- In doing so, we have established a promising direction for future research on improving the cooperative capabilities of deep reinforcement learning models.

Thank you for your attention