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Abstract—Cooperative AI and AI alignment research are
increasingly important fields of study as machine learning models
are becoming more prevalent in society. Applications such as
self-driving cars, realistic AI in games, and human-AI teams,
all require further advancement in cooperative and alignment
research before more widespread applications can be achieved.
However, research in these fields has typically lagged behind other
machine learning applications due to the difficulty of creating
models that are robust to and can adapt to novel human partners.
We attempt to address this through the creation of a framework
that uses Archetypal Analysis, a unique clustering algorithm that
finds extremal ’archetype’ points in a dataset and expresses each
other point as a convex combination of these archetypes. This
framework creates understandable archetypes of players which
a reinforcement learning agent can use to adapt accordingly to
unseen partners. We show that this framework not only results in
performance comparable to other cooperative benchmark models
but also achieves higher levels of perceived cooperativeness
without the need for human involvement during the training
process. As such, we demonstrate that the use of clustering
techniques to better model different types of human behaviour
and strategies can be an effective approach in improving the
ability of AI models to adapt to and improve cooperation with
novel partners.

Index Terms—Cooperation, Reinforcement learning, Archety-
pal analysis, Clustering, Multi-agent

I. INTRODUCTION

Reinforcement Learning (RL) has been used to produce
models capable of competing with humans in high-skill games
such as Chess, Go and Dota 2 [1]–[3]. However, much of this
success has been focused on the domain of zero-sum problems,
where AI models are designed to perform optimal actions
and compete with their opponents. As machine learning tools
become increasingly complex and integrated into society,
evidence shows that more work needs to be done on improving
their capacity to cooperate with humans. [4].

Early attempts at developing AI capable of cooperation
took the form of multiagent reinforcement learning (MARL),
where multiple RL agents are trained simultaneously with one
another [5]–[7]. In this approach, agents attempt to maximize
a reward function similar to traditional RL but have the
additional property that agents can interact with one another
and share knowledge, communicate, and perform joint actions
[8]. MARL has found success in numerous areas spanning
tasks in games [9], economic interactions [10], and joint-
decision making [11], but these have largely been between AI
agents. It is often the case that RL models generalize poorly
to human partners in cooperative settings [12].

Proposed to address this problem is the use of techniques
that aim to replicate human behaviour as closely as possible,
such as imitation learning, behaviour cloning, and inverse rein-
forcement learning, which attempt to replicate human action as
closely as possible [12], [13]. Another approach that has found
success is known as fictitious co-play, a novel framework
that involves having an agent training with a pool of deep
reinforcement learning (DRL) models that are checkpointed
at different stages during training to better represent a diverse
range of skills and playstyles [14]. These models likely found
more success due to having exposed the DRL models with
partners with more diverse behaviours that make them more
robust and generalizable to human behaviours. Making more
robust agents is a step towards better cooperative models but
we believe that generalisability is not equivalent to better
cooperation or alignment with humans. We assume that to
improve cooperation and alignment, AI models need to have
a better understanding of the different playstyles humans have
manifested by their unique personalities and backgrounds.

Games have made use of clustering techniques in the past
to better understand their players or to enhance the capabilities
of traditional AI systems [15]–[17]. We hypothesize that there
may be potential to use similar techniques alongside RL
models to enhance cooperation and alignment. One clustering
technique that stands out is archetypal analysis (AA), which979-8-3503-5067-8/24/$31.00 ©2024 IEEE
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Fig. 1: The framework of our AA agent. In the left-most image, we use fictitious co-play to train models and have the models complete
episodes in the environment while tracking play data. Illustrated in the centre image, we then performed AA on the dataset to generate
archetypes representing outlier playstyles. We then train separate PPO models to cooperate with each archetype as shown in the right-most
image.

uniquely clusters data around outliers known as ’archetypes’
as opposed to mean data points typical of other clustering tech-
niques [18]. These archetypes are defined as extremal points
in the data that create a boundary that encapsulates all other
observations. The benefit of doing so is that the basis vectors
are significantly different, which provides more meaningful
information when contrasting strategies and makes it simpler
to interpret the results achieved [19]. Though computation-
ally inefficient in comparison to more developed clustering
algorithms such as DBSCAN and spectral clustering, AA’s
approach to clustering better aligns with research into how
human personality models in the form of the Five-Factor [20]
and HEXACO models [21], where personality is determined
to be a combination of extremal features.

In this paper, we propose a framework for developing RL
models with the ability to cooperate with novel human partners
which we refer to as the AA agent. To test the framework, we
use the ’Overcooked’ environment developed by Carroll et. al.
[12] and take inspiration from the fictitious co-play techniques
proposed by Strouse et. al. [14]. Our framework works by
creating a dataset of game playthroughs representative of
human players and extracting ’archetypal’ playstyles using AA
offline as seen in Fig. 1. For each archetype, an agent is trained
to optimally cooperate with them, which we will refer to as
a cooperative model. During runtime, a linear least-squares
algorithm is used to calculate a human partner’s alignment to
each archetype, and the relevant cooperative model action is
stochastically chosen for the AA agent to perform, weighted
by the strength of the alignment. We call the resulting model,
the AA agent.

In our experiments, we found that the AA agent performed
similarly to self-play and human-trained models regarding the
score it achieved in the game. However, the AA agent was
perceived as significantly more cooperative than the self-play
model and similar to the human-trained model according to
participant feedback and ratings. Though achieving similar
results to human-trained models, we find that the AA agent

demonstrates a lot of potential having done so without the use
of human data and demonstrating more adaptive behaviour.

II. PREVIOUS WORK

For AI models to improve in their ability to cooperate with
humans, there is a need for them to be able to understand
the intentions of humans such as through mental models
[22]–[25]. Much research has been conducted in measuring
and discerning human intentions in robotics, however, the
techniques have yet to be applied to cooperative AI or RL
settings in general [26]–[28]. Existing methods in robotics for
collecting information on human intent generally involve the
use of wearable technology [29], [30] or sensors [27] which
can enable the collection of more data suitable for informing
the actions of AI in cooperative contexts.

An approach addressing the construction of mental models
of humans for cooperative settings is human-AI Shared Mental
Models (SMMs) which proposes that for humans and AI
agents to cooperate, they must both have an understanding of
their individual and shared goals [22]. Though they have found
some success in improving cooperation, the approaches are
context-specific and/or context-sensitive often requiring spe-
cialized architecture which limits more widespread adoption
and testing. These methods remain relatively unexplored with
only a few minor experiments in the past decade [23]–[25],
largely due to how abstract they are, with minimal concrete
benefits. More developed approaches to model and predict
human intentions and behaviours include Dynamic Function
Allocation and Adaptive Automation [31]–[33]. Though these
methods have found success in areas such as aerospace [34]
and navigating vehicles [33], they often require bespoke solu-
tions for different contexts, struggle to generalize to different
partners and only consider unidirectional adaptation with the
AI adapting to the human.

Though applications of human profiles in the context of
RL have been minimal, there has been much research into
the features that make up personalities, a crucial piece of
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Fig. 2: The ‘Cramped Room’ layout we built upon, and conducted
experiments with, from the ‘Overcooked ai’ environment developed

by Carroll et al. [12].

knowledge when determining what techniques are best for
capturing it. The main approaches to model these personalities
are the Five-Factor model [20] and the HEXACO model [21],
which though differ from one another in the choice of traits,
each express human personality as a combination of various
extremal traits or features, rather than a single, fixed trait. The
result is that when the model is applied to individuals, they
will have a unique combination of different degrees of these
traits which when combined, define their characteristics such
as how they approach learning and process information [35].

A promising approach to developing better mental mod-
els of humans, reflective of the aforementioned research of
personality is through the use of clustering techniques such
as Archetypal Analysis which has already seen applications
in contexts outside of cooperative AI [18], [19], [36] and
allows human partners to be represented as combinations of
archetypal behaviours which can be effective in informing AI
models on how to best adapt to them.

III. IMPLEMENTATION

A. Environment

An environment that has seen increasing use for developing
cooperative AI models is ‘Overcooked’, a multi-agent envi-
ronment that challenges multiple agents in their ability to
cooperate with one another [12], [14]. In this game, players
act as chefs responsible for delivering as many dishes to
customers within a given time frame. In order to do so, they
must coordinate with one another in the kitchen by delegating
tasks, sharing ingredients and avoiding running into one other.

Overcooked serves as a great testbed for our purposes as
it has a high level of complexity, with multiple tasks to be
performed simultaneously and others that may force coordina-
tion between agents. This complexity enables the emergence
of more diverse play patterns, which in turn leads to more
meaningful archetypes when applying archetypal analysis. In
addition, the multi-agent nature of the environment is ideal
for assessing what archetypes may perform better with others,

which can be invaluable when attempting to coordinate with
an unseen player. This is supported by the sparse nature of
rewards that encourages agents to work together to achieve
long-term goals as opposed to acquiring fast rewards they
could get themselves.

We used the environment implementation developed by
Carroll et. al. [12], as seen in Fig. 2, with a few adjustments in
order to facilitate our custom AA agent. This included a few
data structures to hold information of each episode as well as
information on the archetypal profile of each agent.

B. Archetypal Analysis

Our approach in integrating AA to develop cooperative AI
models is by using it as a heuristic in an ensemble framework,
where it can be used to determine the most appropriate model
action to use. In order to achieve this, we first created a dataset
of playthroughs by representative human players to run AA on
and find archetypal playstyles. Once this was developed, we
would then train an RL model with each archetypal playstyle
so that they were optimised to cooperate with them. This
would leave us with N number of RL models where N is the
number of archetypal playstyles which we would shift between
to select actions during runtime using ensemble learning.

To produce the initial dataset of playstyles, we chose to
create RL models that were representative of human playstyles
as opposed to recording real human playthroughs. This was as
it would be expensive and time-consuming to have a human
play through a large number of levels to create the dataset.
To create the RL models, we took inspiration from Strouse et
al. [14] and their use of fictitious co-play models and take
a similar approach in creating this initial dataset to avoid
the use of human data. This involved training 5 self-play
agents using a PPO policy that are checkpointed during the
process to represent levels of player skill. These models then
play with one another and the data from each playthrough
is saved. Through observations collected during recordings
of multiple playthroughs of the overcooked environment by
human players, we found that the most relevant features
conducive to determining the archetype of a player were:

• Number of objects placed
• Number of objects boiled
• Number of soup delivered
• Number of soup plated

Each of the 5 PPO agents were initiated with a random
seed and trained for 10,000 timesteps and checkpointed af-
ter timesteps 2500, 5000 and 7500, producing 20 different
models. These models would then play a random number of
playthroughs with themselves in an overcooked level ranging
from 100-150 times each. In the end, we produced 2647
playthroughs which served as our dataset representing different
approaches to the environment.

We then perform archetypal analysis on this dataset, which
provides us with K number of archetypes, where K is an
arbitrary integer we choose. To aid us in choosing an effective
number of archetypes, we calculated the explained variance of
different numbers of archetypes, which can be seen in Fig. 3.
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TABLE I: Archetype Profiles

Arch- Features
type objects

placed
objects
boiled

soup deliv-
ered

soup placed

A1 0.000000 0.770684 0.582924 1.000000
A2 0.000000 0.846997 0.834530 0.000000
A3 0.954288 0.000000 0.000000 0.295429
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Fig. 3: Comparison of different number of archetypes

Evidently, benefits of additional archetypes tapers off after 5
archetypes with 3-5 archetypes explaining most of the variance
in the dataset. Using fewer archetypes would fail to encode all
the information from the dataset, while using more archetypes
would take away the benefits of the dimensionality reduction
effects afforded by the algorithm. With the original feature
set having a dimensionality of 4, we chose to proceed with 3
archetypes to take advantage of the dimensionality reduction
benefits of archetypal analysis. The profiles of the archetypes
generated with K = 3 archetypes are seen in Table I and the
data-points in the feature-set can be expressed as a convex
combination of these 3 archetypes shown in Fig. 4.

Afterward, we trained a RL model with a PPO policy to
cooperate with the model that had the closest alignment to
each archetype for 10,000 timesteps. The result of this was
3 policies that were each tailored to cooperate with one of
the 3 player archetypes produced previously. During runtime,
the AA agent observes the players alignment to one of the
aforementioned archetypes through a least-squares algorithm
comparing the players current play data scaled by time.
Using the resulting vector representing alignment, the agent
stochastically selects the appropriate cooperative model action
weighted by the players proximity to the given archetypes.
For example, based on a players actions, performing a least-
squares operation may result in a distribution of [0.001, 0.87,
0.129] representing the convex combination of 3 archetypes.
The model will then select the 1st archetype with 0.001
probability, the 2nd archetype with 0.87 probability and the
3rd archetype with 0.129 probability.

C. Benchmarks

To assess the capabilities of our custom cooperative agent
framework, we compare it with other models that have been

Fig. 4: Datapoints expressed as a convex combination of 3
archetypes.

used for cooperation. A variety of agents were used in the
experiment including 2 benchmark models from Carroll et al.
[12]:

• Self-play agent: This benchmark agent was trained from
scratch with itself using Proximal Policy Optimization
(PPO). It had access to information about its state, such
as what object it was holding, as well as the state of the
environment, such as the number of objects in the pot.
To expedite training, it was given rewards for positive
intermediate actions, including putting onions into the pot
and picking up soup with a dish.

• Human-aware PPO agent: This benchmark agent was
developed by first training a model to act as similarly to a
human as possible using behaviour cloning, a technique
where the model learns a policy from demonstrations.
The agent then trains with this model using PPO and im-
plements a model-based planner that uses a hierarchical
A* search to act and strategize optimally in response to
the policy of their partner.

• Random action agent: This agent selects an action to
perform at complete random. It is not expected that this
agent will perform well and it largely acts as a point of
comparison for participants to evaluate the cooperativity
of a partner.

• AA agent: This ensemble agent was trained using our
custom framework described previously under the Imple-
mentation section. It makes use of archetypal analysis to
select the appropriate model action in response to their
partner’s perceived playstyle.

IV. EXPERIMENT

A. Procedure

The experiment was held in person at a university computer
lab. Upon entry, participants were greeted and informed of
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the experiment’s procedure. They would then be required to
complete a written consent form and be given an initial safety
brief. They were then directed to a computer with instructions
for how to play the game while a host would answer any
questions they had. To ensure that players understand the
directions, they would play a test game that was not recorded
with a random AI agent. They were allowed to play as many
test games as necessary until they felt confident in playing the
game.

Once ready, the host will randomly pair the participant with
an AI agent among the list of agents listed above, who they
would then play a game with. Each game lasted for 30 seconds,
after which they were prompted to complete the relevant
sections of the questionnaire and the experiment host would
note down the score that was achieved and any observations
or opinions they had.

Upon completion, the host would randomly change the
AI agent to one that had not already been chosen and then
prompt the participant to begin again when they were prepared.
This procedure would continue until the participant had been
partnered with each AI agent, at which point they would be
debriefed and the experiment was concluded.

B. Participants

Participants were recruited through announcements dis-
tributed across university channels, including club commu-
nications, and on local game industry forums and groups.
These recruitment messages were uniformly disseminated
across public forums to maintain a non-personalized approach,
thereby minimizing potential biases and ensuring voluntary
participation. Our goal was to acquire approximately 20 par-
ticipants, however recruitment concluded with 16 participants.

The participants we acquired fell under the 20-30 year
old range with 75% of participants between 20-25 and the
remaining 25% between 25-30. Participants had a diverse
range of experiences in playing cooperative games with 12.5%
rating themselves as beginners to cooperative games, 56.25%
as having intermediate experience, and 31.25% as having
advanced experience. As a result, we saw a good variety
of perspectives on cooperative behavior and several different
strategies to succeed in the game.

C. Metrics

When comparing the performance of Cooperative RL mod-
els, researchers have employed various quantitative metrics
to assess their effectiveness such as cumulative reward and
average rewards per episode [12], [14]. Though these ap-
proaches see common usage and can be useful to compare the
performance between RL agents, they overlook factors unique
to cooperative contexts such as perceived cooperation. For
instance, in human-robot interaction scenarios, the perception
of cooperation from users can significantly influence their
satisfaction and engagement with the system, regardless of
individual agent performance metrics [37], [38]. Therefore,
incorporating measures of perceived cooperation, such as
user feedback or subjective evaluations, alongside traditional

performance metrics can provide a more comprehensive un-
derstanding of the effectiveness of RL models in cooperative
settings.

As such, the data we collected during the experiment
included observational notes on player behavior and trends,
scores they achieved with each AI, and a questionnaire that
the participants filled out. The questionnaire was filled by
players after each playthrough with questions varying from
those assessing their intrinsic motivation as applied in previous
experiments evaluating the experiences of playing games [39],
to open questions that assess the levels of confidence and trust
that players have of their team partners [40]. The questionnaire
also asks participants to rate the cooperativity of each agent
they partner with using a 5-point Likert scale, giving us a
qualitative measure in which to compare the perceived level
of cooperation for each agent. The questions for each agent
included:

• How cooperative did you feel your partner was on a scale
of 1-5?

• What factors contributed to you reaching the above
conclusion

General questions that were asked include:
• How experienced are you with playing cooperative video

games?
• What differences stood out between playing with a human

and an AI?
• Any final comments you would like to add?

V. RESULTS AND DISCUSSION

In this section, we provide a summary of the results we
achieved during the experiment. This includes quantitative
comparisons between the scores each AI agent achieved as
well as the cooperative rating that participants gave them.
Qualitative data such as observations of participants and the
responses they provided in the questionnaire will also be
summarised.

A. Quantitative Results

The following section covers the quantitative results that
were collected through participant playthroughs and the rating
participants gave to agents in the questionnaire. We conducted
Bayesian, non-parametric ANOVA tests on the two quanti-
tative measures of agent performance, that being the scores
they were able to achieve with human partners as well as
the cooperativity rating participants gave each agent in the
questionnaire. Though we also experimented with a standard
non-parametric ANOVA test, we found the Bayesian equiva-
lent had similar results but provided additional information as
a result of the Bayes factor. We then performed paired sample
tests using a Bayesian Wilcoxon signed-rank test to gather
more specific data on comparisons between models. We first
begin with the tests on the scores that each model was able
to achieve and then continue to discuss the equivalent for the
cooperative ratings each model received.

From the non-parametric ANOVA test shown in Table II, the
BF (Bayes Factor) when comparing AA to Human-Trained,
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TABLE II: Post Hoc Comparisons - Agent Type

BF10,U error %

AA SelfPlay 0.294 0.013
Random 35.997 7.802× 10−7

Human_Trained 1.545 3.122× 10−6

SelfPlay Random 8673.877 2.548× 10−7

Human_Trained 1.387 3.761× 10−6

Random Human_Trained 12344.200 1.359× 10−7

TABLE III: Descriptives

Agent Type Mean SD SE CoV

AA 47.500 17.701 4.425 0.373
SelfPlay 50.000 12.649 3.162 0.253
Random 28.750 10.247 2.562 0.356
Human_Trained 56.250 15.000 3.750 0.267

TABLE IV: Bayesian Wilcoxon Signed-Rank Test

Measure 1 Measure 2 BF10 W Rhat

AA - SelfPlay 0.527 8.000 1.000
- Random 37.910 55.000 1.002
- Human_Trained 1.898 10.000 1.000

SelfPlay - Random 374.649 105.000 1.018
- Human_Trained 1.421 4.000 1.000

Random - Human_Trained 377.061 0.000 1.012

AA to Self-play, and Self-play to Human-Trained agents
were all equivocal, with a BF10 < 3 representing insufficient
evidence to prove that they are not equal. This suggests that
there are no significant differences in their performance given
the sample size. Following the same measure for significance,
we found that there was sufficient evidence that random-action
agents were significantly different from the other 3 agents.

Looking at the distribution of results in Figure III, we
found there was substantial variability in the score of the AA
agent, which had a standard deviation of 17.7, as well as the
human-trained agent with a standard deviation of 15. This is
in comparison to the random and self-play agents which had
noticeably lower standard deviations. We believe this was a
result of poorer performance with partners with more even
archetypal mixtures which we expand upon in section V-B.

We then conducted a Bayesian Paired Samples T-Test as
seen in Table IV to find additional details between the agents,
which reinforced the findings we previously found with the
ANOVA test. We did not include the comparisons between
self-play and human-trained models with random agents as
they were not the focus of the experiment.

From the non-parametric ANOVA test shown in Table V, we
found that when it came to ratings of cooperativity, the AA and
human-trained models were equivalent with a BF10 < 3. Using
the same measure, the self-play model performed significantly
worse than AA and human-trained models but better than the
random action model which performed overwhelmingly poorly
in comparison to the other models.

Analysing the details of the cooperative rating results in

TABLE V: Post Hoc Comparisons - Agent Type Rating

BF10,U error %

AA SelfPlay 0.414 8.686× 10−7

Random 0.414 3.079× 10−7

Human_Trained 0.414 0.019
SelfPlay Random 0.414 7.208× 10−7

Human_Trained 0.414 2.228× 10−7

Random Human_Trained 0.414 2.155× 10−7

TABLE VI: Descriptives Rating

Agent Type Mean SD SE CoV

AA 3.750 0.856 0.214 0.228
SelfPlay 2.750 0.683 0.171 0.248
Random 1.875 0.719 0.180 0.383
Human_Trained 4.063 0.772 0.193 0.190

TABLE VII: Bayesian Wilcoxon Signed-Rank Test Rating

Measure 1 Measure 2 BF10 W Rhat

AA - SelfPlay 7.729 90.000 1.004
- Random 1450.546 120.000 1.007
- Human_Trained 0.521 20.000 1.000

SelfPlay - Random 16.759 62.000 1.006
- Human_Trained 60.059 0.000 1.002

Random - Human_Trained 173.140 0.000 1.021

Table VI, we found that similarly to the score results, the AA
agent had the highest variance in their ratings, though they
were closer in line with the variance of the other agents this
time.

We then similarly conducted a Bayesian Paired Samples
T-Test as seen in Table VII to find additional details in the
pair-wise comparisons of the cooperative ratings received by
different agents.

In summary, the AA agent performed similarly to self-
play and human-trained models regarding the score they were
able to achieve during the experiment. Additionally, the AA
agent achieved similar results to the human-trained model
in cooperative ratings it received but was significantly better
than self-play and random action models. In both score and
cooperative rating measures, the AA agent had the greatest
variance in its results.

B. Qualitative Results

The AA agent received mostly positive feedback from
participants, with many comments recognizing that the agent
made distinct attempts to cooperate with its partner’s strategy.
A few comments also mentioned that the AA agent would
change its strategy multiple times throughout a playthrough to
best match the strategy of the participant. The general theme
of negative feedback regarding the AA agent was that it would
sometimes suffer from periods of indecision. This often took
the form of performing an action conducive to a strategy
and then proceeding to perform an action towards another
strategy which was frequently counter-productive. Through
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observations, we found that this generally occurred to players
whose archetypal mixture was close to an even distribution of
each archetype, as due to the stochastic ensemble approach
to action selection, the likelihood of multiple actions being
conducive to a single strategy is low.

The Human-trained agent received similarly positive feed-
back in general, with a majority of comments by participants
praising its ability to adapt to their strategy. The main com-
plaints by participants with the Human-trained agent were that
it would often block them from performing actions during
playthroughs. Through observation, this would often occur
when the player and the AI agent need to pass each other to
get to a given object, with the Human-trained agent frequently
taking on a more assertive personality, not backing down on
its current trajectory and forcing the player to change paths
should they wish to avoid a stalemate where both of them
remain stationary.

The Self-play agent generally received negative feedback
from participants regarding its ability to cooperate with them
as partners. One major theme in the responses was that the
Self-play agents tried to do everything themselves, completely
disregarding the player, forcing them to try and adapt. Through
observation, they act quite stubbornly and scripted, which
leads to lower cooperativity ratings but still perform quite well
in regards to the score they achieve as it forces their partner to
adapt to them. This would frustrate many of the participants
who would attempt to assist the AI initially but lose motivation
once they realized that they were being ignored.

The Random-action agent expectedly received poor feed-
back from participants due to not performing many actions
conducive to the success of the team. The main points of
feedback were that the Random-action agent did not know
what to do and just simply walked around cluelessly. A few
responses instead mention that the AI took a passive approach
to cooperation, expecting the participant to initiate. Through
observation, we found that the Random-action agent would
sometimes have high cooperative ratings due to its tendency
to avoid collisions with their partner.

To summarise overarching qualitative trends in the ques-
tionnaire responses and the observations made during the
experiment by experiment hosts:

1) AI obstruction of player actions had a significant ef-
fect on the cooperativity ratings an agent was given
and would greatly frustrate participants. This would
often overshadow otherwise great performance and good
decision-making processes by the AI agent as there were
situations where the human-trained agent or AA models
that performed well in score and cooperation received
poorer ratings in cooperativity if they obstructed player
movement or actions.

2) Participants with more experience playing cooperative
games would pay greater attention to the actions of
their AI partner, while in comparison, those with less
experience would largely focus on their actions. This
would result in occasionally higher than-expected opin-
ions by less experienced players for poor-performing

agents such as the Random-action agent as well as
agents that appear competent such as the Self-play agent.

3) The AA and Human-trained agents were able to signifi-
cantly better adapt to their partner’s strategies compared
to the Random-action and Self-play agents. The Human-
trained agent was typically more robust and smooth in
its adaptations to the player while the AA agent made
more distinct shifts in strategy in comparison at the cost
of more instability.

VI. CONCLUSION

Our use of archetypal analysis as a heuristic for ensemble
frameworks to better adapt to human partners is flexible,
generalizable, and can easily be included in most existing
model designs. Throughout the development, we found that
there were a variety of future directions that could be taken to
improve the model including smoothing the transition between
strategies and the implementation of techniques to identify
important features to observe in the environment rather than
simply choosing what we believed to be the most relevant.
Furthermore, there is potential for there to be more meaningful
adaptations to non-archetypal partners by scaling the weights
of the model directly rather than weighting stochastic action
selection.

Overall, we proposed a novel method that is simple to
include in existing DRL approaches and that has demonstrated
promising results in making AI agents more cooperative with
human partners. This was achieved by taking advantage of
a clustering algorithm called archetypal analysis to better
understand human partners and adapt to their actions. In
doing so, we have established a promising direction for future
research on improving the cooperative capabilities of deep
reinforcement learning models.
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C. Dennison, D. Farhi, Q. Fischer, S. Hashme, C. Hesse, R. Józefowicz,
S. Gray, C. Olsson, J. Pachocki, M. Petrov, H. P. d. O. Pinto, J. Raiman,
T. Salimans, J. Schlatter, J. Schneider, S. Sidor, I. Sutskever, J. Tang,
F. Wolski, and S. Zhang, “Dota 2 with Large Scale Deep Reinforcement
Learning,” arXiv:1912.06680 [cs, stat], Dec. 2019, arXiv: 1912.06680.
[Online]. Available: http://arxiv.org/abs/1912.06680

[4] A. Dafoe, E. Hughes, Y. Bachrach, T. Collins, K. R. McKee, J. Z. Leibo,
K. Larson, and T. Graepel, “Open problems in cooperative AI,” arXiv,
no. August 2019, 2020, _eprint: 2012.08630.

[5] C. Neary, Z. Xu, B. Wu, and U. Topcu, “Reward Machines for
Cooperative Multi-Agent Reinforcement Learning,” 2020, _eprint:
2007.01962. [Online]. Available: http://arxiv.org/abs/2007.01962

[6] H. Zhang and S. Zhang, “Multi-agent reinforcement learning,” Deep
Reinforcement Learning: Fundamentals, Research and Applications,
vol. 73, pp. 335–346, 2020, iSBN: 9789811540950.

Authorized licensed use limited to: Aizu University. Downloaded on November 23,2024 at 08:55:08 UTC from IEEE Xplore.  Restrictions apply. 



[7] N. Jaques, A. Lazaridou, E. Hughes, C. Gulcehre, P. A. Ortega, D. J.
Strouse, J. Z. Leibo, and N. de Freitas, “Social influence as intrinsic
motivation for multi-agent deep reinforcement learning,” 36th Interna-
tional Conference on Machine Learning, ICML 2019, vol. 2019-June,
pp. 5372–5381, 2019, iSBN: 9781510886988 _eprint: 1810.08647.

[8] M. Sierhuis, J. M. Bradshaw, A. Acquisti, R. van Hoof, and R. Jeffers,
“Human-Agent Teamwork and Adjustable Autonomy in Practice,” p. 8.

[9] B. Baker, I. Kanitscheider, T. Markov, Y. Wu, G. Powell, B. McGrew,
and I. Mordatch, “Emergent Tool Use From Multi-Agent Autocurricula,”
arXiv:1909.07528 [cs, stat], Feb. 2020, arXiv: 1909.07528. [Online].
Available: http://arxiv.org/abs/1909.07528

[10] S. Parsons and M. Wooldridge, “Game Theory and Decision
Theory in Multi-Agent Systems,” Autonomous Agents and Multi-Agent
Systems, vol. 5, no. 3, pp. 243–254, Sep. 2002. [Online]. Available:
https://doi.org/10.1023/A:1015575522401

[11] Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet, “A Short Introduc-
tion to Computational Social Choice,” in SOFSEM 2007: Theory and
Practice of Computer Science, ser. Lecture Notes in Computer Science,
J. van Leeuwen, G. F. Italiano, W. van der Hoek, C. Meinel, H. Sack,
and F. Plášil, Eds. Berlin, Heidelberg: Springer, 2007, pp. 51–69.

[12] M. Carroll, R. Shah, M. K. Ho, T. L. Griffiths, S. A. Seshia, P. Abbeel,
and A. Dragan, “On the utility of learning about humans for human-AI
coordination,” arXiv, no. NeurIPS, 2019, _eprint: 1910.05789.

[13] S. Feng and J. Boyd-Graber, “What can AI do for me?” pp. 229–239,
2019, iSBN: 9781450362726.

[14] D. J. Strouse, K. R. McKee, M. Botvinick, E. Hughes, and
R. Everett, “Collaborating with Humans without Human Data,”
arXiv:2110.08176 [cs], Oct. 2021, arXiv: 2110.08176. [Online].
Available: http://arxiv.org/abs/2110.08176

[15] C. Bauckhage, A. Drachen, and R. Sifa, “Clustering Game Behavior
Data,” IEEE Transactions on Computational Intelligence and AI in
Games, vol. 7, no. 3, pp. 266–278, Sep. 2015. [Online]. Available:
https://ieeexplore.ieee.org/document/6975073/

[16] M. Swiechowski and D. Slezak, “Grail: A Framework for Adaptive and
Believable AI in Video Games,” Proceedings - 2018 IEEE/WIC/ACM
International Conference on Web Intelligence, WI 2018, pp. 762–765,
2019, iSBN: 9781538673256 Publisher: IEEE.

[17] C. Rosenthal and C. B. Congdon, “Personality profiles for generating be-
lievable bot behaviors,” 2012 IEEE Conference on Computational Intelli-
gence and Games, CIG 2012, pp. 124–131, 2012, iSBN: 9781467311922
Publisher: IEEE.

[18] A. Cutler and L. Breiman, “Archetypal analysis,” Technometrics, vol. 36,
no. 4, pp. 338–347, 1994.

[19] C. Thurau and A. Drachen, “Introducing Archetypal Analysis for Player
Classification in Games Categories and Subject Descriptors,” Proceed-
ings of the EPEX 11 Workshop, 2011, iSBN: 9781450308045.

[20] R. M. Bagby and T. A. Widiger, “Five Factor Model personality disorder
scales: An introduction to a special section on assessment of maladaptive
variants of the five factor model,” Psychological Assessment, vol. 30,
no. 1, pp. 1–9, Jan. 2018.

[21] M. C. Ashton and K. Lee, “The HEXACO Model of Personality
Structure and the Importance of the H Factor,” Social and
Personality Psychology Compass, vol. 2, no. 5, pp. 1952–1962,
2008, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1751-
9004.2008.00134.x. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1751-
9004.2008.00134.x

[22] R. W. Andrews, J. M. Lilly, D. Srivastava, and K. M. Feigh, “The
role of shared mental models in human-AI teams: a theoretical
review,” Theoretical Issues in Ergonomics Science, vol. 24, no. 2,
pp. 129–175, Mar. 2023, publisher: Taylor & Francis _eprint:
https://doi.org/10.1080/1463922X.2022.2061080. [Online]. Available:
https://doi.org/10.1080/1463922X.2022.2061080

[23] F. Gervits, A. Roque, G. Briggs, M. Scheutz, and M. Marge, “How
Should Agents Ask Questions For Situated Learning? An Annotated
Dialogue Corpus,” in Proceedings of the 22nd Annual Meeting of the
Special Interest Group on Discourse and Dialogue. Singapore and
Online: Association for Computational Linguistics, 2021, pp. 353–359.
[Online]. Available: https://aclanthology.org/2021.sigdial-1.37

[24] N. Hanna and D. Richards, “The Impact of Multimodal
Communication on a Shared Mental Model, Trust, and Commitment
in Human–Intelligent Virtual Agent Teams,” Multimodal Technologies
and Interaction, vol. 2, no. 3, p. 48, Aug. 2018. [Online]. Available:
http://www.mdpi.com/2414-4088/2/3/48

[25] Y. Zhang, “Role-based shared mental models,” in 2008
International Symposium on Collaborative Technologies and
Systems, May 2008, pp. 424–431. [Online]. Available:
https://ieeexplore.ieee.org/document/4543960

[26] C. L. R. McGhan, A. Nasir, and E. M. Atkins, “Human
Intent Prediction Using Markov Decision Processes,” Journal
of Aerospace Information Systems, vol. 12, no. 5, pp. 393–
397, 2015, publisher: American Institute of Aeronautics and
Astronautics _eprint: https://doi.org/10.2514/1.I010090. [Online].
Available: https://doi.org/10.2514/1.I010090

[27] C. Nehaniv, K. Dautenhahn, J. Kubacki, M. Haegele, C. Parlitz, and
R. Alami, “A methodological approach relating the classification of
gesture to identification of human intent in the context of human-robot
interaction,” in ROMAN 2005. IEEE International Workshop on Robot
and Human Interactive Communication, 2005., Aug. 2005, pp. 371–377,
iSSN: 1944-9437.

[28] S. Holtzen, Y. Zhao, T. Gao, J. B. Tenenbaum, and S.-C. Zhu, “Inferring
human intent from video by sampling hierarchical plans,” in 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Oct. 2016, pp. 1489–1496, iSSN: 2153-0866.

[29] D. P. Losey, C. G. McDonald, E. Battaglia, and M. K. O’Malley, “A
Review of Intent Detection, Arbitration, and Communication Aspects
of Shared Control for Physical Human–Robot Interaction,” Applied
Mechanics Reviews, vol. 70, no. 1, Feb. 2018. [Online]. Available:
https://doi.org/10.1115/1.4039145

[30] M. S. Erden and T. Tomiyama, “Human-Intent Detection and Physically
Interactive Control of a Robot Without Force Sensors,” IEEE Transac-
tions on Robotics, vol. 26, no. 2, pp. 370–382, Apr. 2010, conference
Name: IEEE Transactions on Robotics.

[31] A. R. Pritchett, S. Y. Kim, and K. M. Feigh, “Measuring Human-
Automation Function Allocation,” Journal of Cognitive Engineering
and Decision Making, vol. 8, no. 1, pp. 52–77, Mar. 2014. [Online].
Available: http://journals.sagepub.com/doi/10.1177/1555343413490166

[32] N. R. Bailey, M. W. Scerbo, F. G. Freeman, P. J. Mikulka, and L. A.
Scott, “A Brain-Based Adaptive Automation System and Situation
Awareness: The Role of Complacency Potential,” Proceedings of the
Human Factors and Ergonomics Society Annual Meeting, vol. 47,
no. 9, pp. 1048–1052, Oct. 2003, publisher: SAGE Publications Inc.
[Online]. Available: https://doi.org/10.1177/154193120304700901

[33] T. Lavie and J. Meyer, “Benefits and costs of adaptive user
interfaces,” International Journal of Human-Computer Studies,
vol. 68, no. 8, pp. 508–524, Aug. 2010. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1071581910000145

[34] T. Brunélis, P. Le Blaye, P. Bonnet, and N. Maille, “Distant mission
management and dynamic allocation of functions,” Human Operating
Unmanned Systems (HUMOUS), Sep. 2008.

[35] T. Bidjerano and D. Y. Dai, “The relationship between
the big-five model of personality and self-regulated learning
strategies,” Learning and Individual Differences, vol. 17,
no. 1, pp. 69–81, Jan. 2007. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S104160800700026X

[36] M. J. A. Eugster, “Performance Profiles based on Archetypal
Athletes,” International Journal of Performance Analysis in Sport,
vol. 12, no. 1, pp. 166–187, Apr. 2012. [Online]. Available:
https://www.tandfonline.com/doi/full/10.1080/24748668.2012.11868592

[37] A.-S. Ulfert, E. Georganta, C. Centeio Jorge, S. Mehrotra, and
M. Tielman, “Shaping a multidisciplinary understanding of team trust
in human-AI teams: a theoretical framework,” European Journal of Work
and Organizational Psychology, vol. 0, no. 0, pp. 1–14, 2023, publisher:
Routledge _eprint: https://doi.org/10.1080/1359432X.2023.2200172.
[Online]. Available: https://doi.org/10.1080/1359432X.2023.2200172

[38] K. I. Gero, Z. Ashktorab, C. Dugan, Q. Pan, J. Johnson, W. Geyer,
M. Ruiz, S. Miller, D. R. Millen, M. Campbell, S. Kumaravel, and
W. Zhang, “Mental Models of AI Agents in a Cooperative Game
Setting,” Conference on Human Factors in Computing Systems - Pro-
ceedings, pp. 1–12, 2020, iSBN: 9781450367080.

[39] R. M. Ryan, C. S. Rigby, and A. Przybylski, “The Motivational Pull
of Video Games: A Self-Determination Theory Approach,” Motivation
and Emotion, vol. 30, no. 4, pp. 344–360, Dec. 2006. [Online].
Available: https://doi.org/10.1007/s11031-006-9051-8

[40] Z. Ashktorab, Q. V. Liao, C. Dugan, J. Johnson, Q. Pan, W. Zhang,
S. Kumaravel, and M. Campbell, “Human-AI Collaboration in a Coop-
erative Game Setting,” Proceedings of the ACM on Human-Computer
Interaction, vol. 4, no. CSCW2, pp. 1–20, 2020.

Authorized licensed use limited to: Aizu University. Downloaded on November 23,2024 at 08:55:08 UTC from IEEE Xplore.  Restrictions apply. 


