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Abstract—Proximal Policy Optimization (PPO) is a stable
on-policy policy gradient (PG) method thanks to its clipped
importance sampling (IS) weight objective of policy improvement.
However, on-policy PG methods usually suffer from poor sample
efficiency. In contrast, off-policy methods have demonstrated
better sample efficiency by making more effective use of all
collected samples during training. In this work, we aim to
develop methods that inherit both the stability of on-policy PG
methods and the data efficiency of off-policy methods. To this
end, we present GeDISC, an off-policy algorithm that improves
sample efficiency by reusing off-policy samples drawn from
prior policies. Besides, we propose double IS weight clipping
to control the high instability caused by off-policy data. We
take the recently proposed generalized clipping mechanism for
off-policy data as the first clipping to bound the policy update
from the current policy and meanwhile we extend the standard
clipping mechanism in PPO as the second clipping to prevent high
variance and bias brought by extremely old samples. Extensive
experiments on continuous and discrete control tasks show that
the proposed new algorithm outperforms PPO and other SOTA
PPO-based off-policy algorithms.

Index Terms—deep reinforcement learning, off-policy methods,
policy gradient, policy optimization

I. INTRODUCTION

In recent years, model-free deep reinforcement learning
(RL) has shown remarkable advancements in simulated en-
vironments [1]. However, the application of these methods
in real-world domains has been hampered by two major
obstacles. First, model-free deep RL methods typically ex-
hibit high variance and thus require a substantial amount of
data collection, which can be hard and costly in real-world
scenarios. Second, high-risk tasks have strong requirements
for the stability offered by RL methods. It is quite difficult to

This work was supported by the National Natural Science Foundation of
China under Contract 61836011.

(a) Enduro (b) Zaxxon (c) Ant (d) Humanoid

Fig. 1: Snapshots of example environments. (a) and (b) are
two video games in Atari [3]. (c) and (d) are two 3D physical
simulation tasks in MuJoCo [4].

satisfy both requirements simultaneously because stability and
sample efficiency tend to conflict with each other.

Model-free RL mainly consists of on- and off-policy meth-
ods. Proximal Policy Optimization (PPO) [2] is a popular
Monte Carlo on-policy PG method that optimizes a policy
improvement lower bound objective with clipped IS weight
using samples collected by the current policy. PPO has demon-
strated stable and strong performance across various tasks. A
major drawback is the inherent high variance that necessitates
collecting a large number of on-policy samples to accurately
estimate the gradient, which results in sample intensive. In
contrast, off-policy TD-style PG methods have better sample
efficiency since these methods maintain a replay buffer to
store all the collected samples and thus can reuse old samples
multiple times to update the current policy. But these methods
have to apply extensive hyperparameter tuning to attain stable
performance because of convergence and instability issues.

There are heuristic efforts [5]–[8] to integrate data efficiency
of off-policy methods into PPO. Dimension-Wise Importance
Sampling Weight Clipping (DISC) [7] clips the IS weight
of each action dimension and reuses old samples to enhance
sample efficiency. Yet, DISC fails to exploit more off-policy
data on low action-dimension tasks due to its method of979-8-3503-2277-4/23/$31.00 ©2023 IEEE
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filtering old samples. Additionally, DISC relies on factorized
IS weights, making it unsuitable for discrete control tasks.
Generalized Proximal Policy Optimization (GePPO) [8] offers
theoretical policy improvement guarantees for the off-policy
setting but struggles to handle more off-policy data because
the high instability caused by much older samples can’t be
mitigated with its original generalized clipping mechanism. It
is challenging to make effective use of the generated off-policy
data to improve sample efficiency and meanwhile deliver
stable and reliable performance throughout training.

To address this challenge, we introduce GeDISC, a
Generalized Sample Efficient PPO-based algorithm with
Double Importance Sampling Weight Clipping. GeDISC
reuses off-policy samples whose IS weights are close to 1 and
filters old samples in a different way from DISC, which allows
GeDISC to exploit more off-policy data. Besides, GeDISC
applies double IS weight clipping for stability. We take the
recently proposed generalized clipping mechanism as the first
clipping to bound the policy update from the current policy
and meanwhile we extend the standard clipping in PPO as
the second clipping to prevent variance and bias brought
by those extremely old samples. We demonstrate the strong
performance of our algorithm through extensive experiments
on both continuous and discrete control tasks (Fig. 1). Our key
contributions are summarized as follows:
• We exploit more off-policy data than DISC by filtering

old samples via average IS weight and thus enjoy a better
exploration (Section III-A).

• We propose a novel double IS weight clipping mechanism
that enables GeDISC to effectively exploit the off-policy
data and meanwhile overcome the instability caused by
old samples (Section III-B).

• We empirically demonstrate that GeDISC strikes a favor-
able balance between sample efficiency and stability on
both MuJoCo and Atari environments (Section IV).

II. RELATED WORK

A. On- and Off-policy PG

TRPO [9] achieves monotonic policy improvement based
on Kullback-Leibler (KL) constraint. PPO [2] removes the KL
constraint and instead clips the IS weight to prevent excessive
policy changes. Popular off-policy PG methods such as DDPG
[10], TD3 [11], and SAC [12] store all collected samples in
a replay buffer and reuse these samples to update the current
policy with TD learning [13]. Some efforts [14]–[16] have
been made to combine on-policy learning with off-policy data
to improve sample efficiency. ACER [15] and P3O [16] both
apply a KL constraint to enhance stability and truncate large
IS weights to mitigate high variance.

B. PPO with off-policy data

PPO. Consider the current policy πk and the future policy πθ,
PPO [2] clips the IS weight ρ = πθ(a|s)

πk(a|s) as

clip
(
πθ(a|s)
πk(a|s)

, 1− ε, 1 + ε

)
, (1)

where clip(x, l, h) means min(max(x, l), h). The clipping
mechanism reduces the possibility of the IS weight outside
of the clipping interval [1− ε, 1+ ε]. At each policy update,
PPO optimizes the clipped surrogate objective as

LPPO(θ) = E
(s,a)∼πk

[
min
(
πθ(a|s)
πk(a|s)

Aπk(s, a),

clip
(
πθ(a|s)
πk(a|s)

, 1− ε, 1 + ε

)
Aπk(s, a)

)]
. (2)

In practice, PPO collects an N-step trajectory following the
current policy πk, then uses GAE [17] to estimate the advan-
tage Aπk(s, a). The objective (2) enables PPO to use stochastic
gradient ascent for multiple epochs of minibatch update. Note
that the IS weight πθ(a|s)

πk(a|s) = 1 before each policy update.
PPO is on-policy and has to suffer from high variance. Ac-

curately estimating the objective (2) necessitates a substantial
number of on-policy samples. It’s crucial to effectively utilize
off-policy data to improve sample efficiency.
DISC. For continuous control tasks, PG methods [2], [9], [12]
typically sample action from independent Gaussian distribu-
tion at each dimension. So the policy can be factorized into the
action dimensions as πθ(at|st) =

∏D−1
d=0 πθ,d(at,d|st), where

at,d is the action of d-th dimension, πθ,d is the policy of d-
th dimension, and D is the total action dimension. The IS
weight ρt can be also factorized as ρt =

∏D−1
d=0 ρt,d, where

ρt,d is the IS weight of d-th dimension. DISC [7] clips ρt,d of
each dimension as clip(ρt,d, 1− ε, 1 + ε) to alleviate gradient
vanishing. To enhance sample efficiency, DISC reuses old
trajectories satisfying 1

ND

∑N−1
t=0

∑D−1
d=0 ρ

′
t,d < 1 + εb, where

N is the trajectory length, ρ′t,d := |ρt,d − 1| + 1, and εb is a
threshold parameter. εb = 0.1 is the default setting.

However, DISC fails to reuse more off-policy data on low
action-dimensional tasks due to its method of filtering old
samples. Additionally, DISC can’t be applied for discrete
control tasks, because the IS weight can’t be factorized on
these tasks.
GePPO. GePPO [8] develops a generalized clipping mech-
anism for off-policy data based on its generalized policy
improvement lower bound, which makes it practical to exploit
both on- and off-policy data in a principled way. Consider the
last M policies πk−i, i = 0, 1, . . . ,M−1, where πk represents
the current policy, the generalized clipping mechanism can be
written as

clip
(

πθ(a|s)
πk−i(a|s)

,
πk(a|s)
πk−i(a|s)

− ε, πk(a|s)
πk−i(a|s)

+ ε

)
. (3)

Compared to the standard clipping mechanism (1) in PPO,
GePPO clips the IS weight around the center of πk(a|s)

πk−i(a|s)
instead of 1. When M = 1, i.e. all samples are generated
by the current policy πk, (3) reduces to (1).

GePPO performs well when samples are generated from the
last four prior policies, but struggles to cope with numerous
off-policy data from older policies because the generalized
clipping mechanism can’t alleviate the huge instability caused
by those off-policy samples.
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(b) GeDISC

Fig. 2: The number of reused trajectories during training,
where dim. is the action dimension. Comparing (a) with (b), it
can be seen that GeDISC exploits more trajectories than DISC
on most tasks.

III. ALGORITHM

A. Reusing Off-policy Samples

We maintain a replay buffer to store M prior trajectories
{Bk−i | i = 0, . . . ,M − 1}, where Bk−i is generated by the
prior policy πk−i and πk is the current policy. If M = 1,
the algorithm is on-policy otherwise it is off-policy. If the
IS weights of the old samples deviate too much from 1,
this suggests that these samples would bring huge bias and
variance. Thus, we would not like to reuse all the trajectories
in the replay buffer. Instead, we only consider these trajectories
whose average IS weights are close to 1. Here, we follow
[5], use ρ′t := |ρt − 1| + 1 where ρt is the IS weight, to
measure how much the IS weight deviates from 1. GeDISC
filters trajectories following

1

N

N−1∑
t=0

ρ′t < 1 + εb, (4)

where N is the length of the trajectory and εb is a threshold
parameter. Here εb= 0.45 is different from that of DISC [7]
as described in Section II-B because we concern the average
ρ′t instead of ρ′t,d introduced in DISC.

Fig. 2 shows the number of reused old trajectories of
DISC and GeDISC on some MuJoCo [4] tasks. Both DISC
and GeDISC work well on the high action-dimensional task
namely HumanoidStandup while GeDISC can exploit more
old samples on all lower action-dimensional tasks. More off-
policy samples for experience replay provide more policy
gradients for policy update and yield better exploration, which
is part of the reason for the strong performance of GeDISC
on these tasks. On the other hand, more old samples also
indicate a more complex and biased problem. It is challenging
to make effective use of off-policy data while overcoming the
instability brought by them. GeDISC addresses this challenge
in Section III-B.

B. Double IS Weight Clipping

In order to exploit off-policy data effectively, we first con-
sider the recently proposed generalized clipping mechanism
(3). πk(a|s)

πk−i(a|s) , the center of the clipping range, typically

deviates from 1 because prior policies can be different from
the current policy. The IS weight πθ(a|s)

πk−i(a|s) begins from the
center, then the generalized clipping bounds the changed IS
weight around the center to ensure that πθ does not deviate
too much from the current policy πk. However, if the center
is far from 1 (as shown in Fig. 3a), extremely large or small
IS weights bring high variance, which leads to instability as
shown in Fig. 3b.

To address the high variance, we clip again with a wider
clipping range after the first generalized clipping to bound
the IS weight into a maximum tolerable interval. Hence, our
double IS weight clipping can be written as

dclip
(

πθ(a|s)
πk−i(a|s)

)
= clip

(
clip
(

πθ(a|s)
πk−i(a|s)

,

πk(a|s)
πk−i(a|s)

− ε1,
πk(a|s)
πk−i(a|s)

+ ε1

)
, 1− ε2, 1 + ε2

)
, (5)

where dclip(·) is the double clipping function with two factors
ε1 and ε2. The inner (first) clipping bounds the policy update
from the current policy no matter how much πk−i deviates
from πk. The outer (second) clipping directly ignores those
samples whose IS weights are far from 1 and prevents the IS
weight from being extremely large or small, which safeguards
against high variance and more bias. Intuitively, ε2 should be
larger than ε1. As shown in Fig. 3b, the second clipping does
work.

To control the variation of IS weight at each gradient step,
we follow DISC [7] to use an explicit penalty on the IS weight:
JIS = Et

[
1
2 (log(ρt))

2
]
. JIS helps for stability at the cost of

extra slight bias. Thus, our objective for GeDISC is given by

L(θ) = E
i∼v

[
E

(s,a)∼πk−i

[
min
(

πθ(a|s)
πk−i(a|s)

Aπk(s, a),

dclip
(

πθ(a|s)
πk−i(a|s)

)
Aπk(s, a)

)]]
− αISJIS , (6)

where v ≤ M is the number of trajectories satisfying (4),
(s, a) ∼ πk−i represents that the sample is generated by πk−i,
dclip(·) denotes the double IS weight clipping as (5) and αIS
is the adaptive penalty coefficient according to

{
If JIS < Jtarg / 2, αIS ← αIS / 1.5

If JIS > Jtarg × 2, αIS ← αIS × 1.5
. (7)

So that we can achieve a small target value of Jtarg at each
policy update. Similar to DISC [7], we compute the penalty
JIS only using the on-policy samples because JIS with respect
to all past policies would severely limit the gradient step.

Fig. 3c shows the clipping fraction of double IS weight
clipping on Ant task. We can see that each clipping works
respectively. Fig. 3d shows the average ρ′ of GeDISC for
εb = 0.3, 0.45, 0.5 on Ant task, where ρ′ is defined in
Section III-A. Combining Fig. 2 and Fig. 3d, it can be
seen that GeDISC could stably control the IS weight though
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Fig. 3: (a) The average maximum and minimum IS weight
during training on serval tasks without the second clipping.
The threshold εb = 0.4. It can be seen that maximum IS
weights are far above 1.0 while minimum IS weights are
far below 1.0. (b) The training curve on InvertedPendulum
task. +∞ means no second clipping, which leads to crashed
learning. (c) The clipping fraction during training on Ant task.
(d) Comparison of the average ρ′t between GeDISC, DISC, and
PPO on Ant task.

GeDISC reuses more old samples. Hence, we can say that
GeDISC effectively makes use of more off-policy samples and
meanwhile overcomes the instability caused by off-policy data.

C. Advantage Estimation

We have to estimate the advantage Aπk(s, a) using old
samples collected from prior policies, which is the main source
of bias that should be concerned about in the GeDISC gradient.
Both DISC [7] and GePPO [8] combine GAE [17] and V-trace
[18], a multi-step estimates correction with truncated impor-
tance sampling, to compute the advantage for low variance at
the cost of some bias. Specifically,

Âπk(st, at) = δVt +

N−1∑
j=1

(γλ)j

(
j∏
i=1

ct+i

)
δVt+j , (8)

where N is the trajectory length, ct= min
(
1, πk(at|st)

πk−i(at|st)

)
is

the truncated IS weight, δVt = r(st, at)+γV
πk(st+1)−V πk(st)

is the TD error [13], and λ is GAE hyperparameter. For
those samples whose IS weights are far from 1, which induce
high variance and very biased advantage estimates, double
IS weight clipping would ignore their gradients and thus
safeguard against both variance and bias as described in
Section III-B.

The final algorithm is summarized in Algorithm 1.

Algorithm 1: GeDISC

Initialize parameters αIS ← 1;
for k = 0, 1, 2, . . . do

Collect an on-policy trajectory Bk following πk;
Store Bk in replay buffer R;
Filter trajectories satisfying (4) from R as R̄;
for each epoch do

for each gradient step do
Sample minibatch from R̄;
maximize the empirical objective (6);

end
end
Update αIS as (7);

end

IV. EXPERIMENTS

In this section, we seek to answer the following questions:
• Can GeDISC improve the sample efficiency of PPO [2]

on both continuous and discrete control tasks?
• Does GeDISC work better than other existing sample

efficient algorithms, such as ACER [15], DISC [7], and
GePPO [8]?

• How important are reusing old samples and double IS
weight clipping to GeDISC?

• How to tune those critical parameters properly?
We compare GeDISC against competitive baselines on the
MuJoCo [4] environments and Arcade Learning Environment
[3] (Atari) benchmarks, both interfaced through OpenAI Gym
[19]. For the plots, The solid lines indicate the mean across
different random seeds and the shaded region represents a
standard deviation. Curves are smoothed uniformly for visual
clarity. Hyperparameter settings are detailed in Appendix A.

A. Results on Continuous Control Tasks

We compare GeDISC against PPO [2], DISC [7], and
GePPO [8] on six challenging continuous control tasks
(Fig. 4). Most are MuJoCo [4] environments, except for
BipedalWalkerHardcore which is powered by Box2d [20]. For
all four algorithms, we use the same policy and value network
as used in PPO, i.e. MLP with two hidden layers (64, 64) and
tanh activations. We set ε1 = 0.4, ε2 = 0.8, and εb = 0.45.
Each trial meets one evaluation every 4096 timesteps, where
each evaluation reports the average reward over five episodes
with no exploration. All algorithms on each environment are
run for five random seeded trials.

Fig. 4 shows that GeDISC outperforms the baseline algo-
rithms on all the continuous control tasks. Besides, we provide
additional baseline results compared with other SOTA model-
free RL algorithms in Appendix B.

B. Results on Discrete Control Tasks

We compare GeDISC against PPO [2] and ACER [15] on
all 49 Atari games with raw pixels. We omit DISC [7] and
GePPO [8] because DISC can’t be applied for discrete control
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Fig. 4: Learning curves on the continuous control tasks.

TABLE I: Number of games “won” by each algorithm.

Metric ACER PPO GeDISC
(1) avg. episode reward over

the entire training 17 5 27

(2) avg. episode reward over
the last 100 episodes 12 12 25

tasks and the hyperparameter setting of GePPO for Atari is
not given. For all three algorithms, we use the same policy
network as that of Mnih et al. [21]. Atari environments are
more sensitive to IS weight, so we set ε1 = 0.1, ε2 = 0.4, and
εb = 0.1. We follow PPO [2] to measure performance in two
metrics: (1) average reward per episode over the entire training
period, and (2) average reward per episode over the last 100
episodes of training. The former focuses on sample efficiency
while the latter prefers the final performance. All algorithms
on each environment are run for three random seeded trials.

Table I shows that GeDISC won most games under both
metrics, where “won” means achieving the highest perfor-
mance by averaging the metric across three trials. Fig. 5 shows
that GeDISC outperforms PPO and ACER with clear margin.
Results for all 49 Atari games are shown in Appendix C.

C. Ablation Study

In this subsection, we further investigate which components
of GeDISC are important and introduce how we tune some
critical hyperparameters intuitively. Fig. 6 shows the results
of the ablation study on Humanoid task.
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Fig. 5: Learning curves on the Atari games.

Double Clipping Factor ε1 and ε2. As described in Section
III-B, double IS weight clipping works for stability: the
first clipping deals with off-policy data to bound the policy
update from the current policy and the second clipping clips
those samples whose IS weights are far from 1. We now
observe the effect of each clipping separately. Fig. 6a shows
the performance of GeDISC only with the first clipping:
ε1 = 0.2, 0.4, 0.8,+∞, where +∞ means no clipping. We
can see that, without the second clipping, high variance and
bias do harm the performance. ε1 should be reasonably small
because large policy update causes instability. Fig. 6b shows
the performance of GeDISC only with the second clipping:
ε2 = 0.2, 0.4, 0.8,+∞. Without the first clipping, excessively
large policy update is detrimental to stability. If ε2 is small,
most of the samples are clipped resulting in poor performance.
So ε2 should be reasonably large to only prevent extreme IS
weights, but should not be larger than 1 because the clipping
interval [1− ε2, 1+ ε2] won’t work for those samples whose
IS weights are far below 1.
Threshold εb. As described in Section III-A, we reuse old
trajectories that satisfy (4). Threshold εb roughly controls the
variance and bias brought by the old samples. Fig. 6d shows
the performance of GeDISC with several values of threshold:
εb = 0, 0.2, 0.4, 0.45, 0.5, where εb = 0 indicates that no old
samples are reused. If εb is too small, GeDISC can not exploit
enough old samples. If εb is too large, GeDISC has to suffer
from huge bias caused by extremely old samples. We observe
that εb around 0.45 can well balance the sample efficiency and
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Fig. 6: Abaltion study results on Humanoid-v2

bias.
IS Weight Penalty JIS . The IS weight penalty JIS is
proposed by DISC [7]. In Section III-B, we apply JIS in
GeDISC to control the variation of IS weight at each gradient
step. In Fig. 6c, αIS = 0 indicates no JIS . We can see that
JIS = 0.001 works well.

D. Parameter tuning

In Section IV-C, we have mentioned how to tune some
critical parameters intuitively. In short, ε1 has a similar role
with PPO’s clipping factor and should be reasonably small.
ε2 should be in (ε1, 1.0]. Threshold εb roughly controls the
average IS weights and thus is related to ε1 and ε2. We
gradually find that GeDISC works well when ε1 and εb
are similar. Besides, some important metrics also help for
parameter tuning, such as the amount of reused trajectories and
the average IS weight ρ′. Finally, we keep ε1 = 0.4, ε2 = 0.8,
εb = 0.45 for all MuJoCo tasks. Due to Atari environments
are more sensitive to large IS weights, we keep ε1 = 0.1,
ε2 = 0.4, εb = 0.1 for all Atari games.

V. CONCLUSION

In this paper, we introduce GeDISC, a generalized sample
efficient PPO-based algorithm that reuses the old samples
whose average IS weights do not deviate too much from 1
and applies double IS weight clipping for stability. The first
clipping bounds the policy update from the current policy
while the second clipping prevents high variance and bias.
Extensive results show that GeDISC can significantly improve
the sample efficiency of PPO and deliver stable and better
performance than other SOTA PPO-based algorithms on both
continuous and discrete control tasks. Future works may focus
on the threshold parameter εb about adjusting its value along
the training process.

APPENDIX A
IMPLEMENTATION DETAILS

For OpenAI GYM continuous control tasks, the hyperpa-
rameters of all algorithms are detailed in Table II. To prevent
convergence to local optimum, the learning rate anneals from
0.0003 to 0.0001 and then remains constant. GePPO [8] uses
adaptive learning rate as described in its original paper.

For Atari environments, the hyperparameters of all algo-
rithms are detailed in Table III. We use the implementation of
OpenAI baselines [22] for the ACER [15] baseline on Atari.

APPENDIX B
ADDITIONAL BASELINE RESULTS ON CONTINUOUS

CONTROL TASKS
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Fig. 7: Learning Curves of GeDISC and Other SOTA model-
free RL Algorithms on continuous control tasks.

In order to demonstrate the strong performance of our
algorithm, we compare GeDISC with several other SOTA
model-free RL algorithms: DDPG [10], TRPO [9], ACER
[15], ACKTR [23], TD3 [11], and SAC [12]. As shown
in Fig. 7, GeDISC delivers the highest performance on
HumanoidStandup, which other SOTA RL algorithms could
not catch up with. Besides, GeDISC also shows comparable
competitive performance on other tasks.

APPENDIX C
EXPERIMENTAL RESULTS ON ALL 49 ATARI GAMES

Learning curves of all 49 Atari games are shown in Fig. 8.
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TABLE II: Hyperparameter setting of PPO, GePPO, DISC, and GeDISC for continuous control tasks.

Hyperparameter GePPO PPO DISC GeDISC
IS weight Clipping factor 0.1 0.2 0.4 ε1 = 0.4, ε2 = 0.8
Trajectory length (N ) 1024 2048 2048 2048
Discount factor (γ) 0.99 0.99 0.99 0.99
GAE (λ) 0.95 0.95 0.95 0.95
Epochs per update 10 10 10 10
Minibatches per epoch 32 32 32 32
Optimizer Adam Adam Adam Adam
Learning rate Adaptive max(0.0001, Anneal(0.0003, 0))
Policy distribution Gaussian distribution
Policy and value network FC(64)-FC(64) with tanh activations
Threshold (εb) - - 0.1 0.45
Replay length (M ) - - 64 64
IS weight penalty Jtarg - - 0.001 0.001
Initial αIS - - 1 1

TABLE III: Hyperparameter setting of ACER, PPO, and GeDISC for Atari environments.

Hyperparameter ACER PPO GeDISC
IS weight Clipping factor 10 0.1 ε1 = 0.1, ε2 = 0.4
Trajectory length (N ) 20 128 128
Discount factor (γ) 0.99 0.99 0.99
GAE (λ) - 0.95 0.95
Entropy regularization 0.01 0.01 0.01
Number of environments 8 8 8
Epochs per update Possion(4) 4 4
Minibatches per epoch - 4 4
Optimizer RMSProp Adam Adam
Learning rate 0.0007 Anneal(0.00025, 0) Anneal(0.00025, 0)
Policy distribution Categorical distribution
Policy network Conv(32, 8× 8, 4)-Conv(64, 4× 4, 2)-Conv(64, 3× 1, 1)-FC(512) with relu activations

Use Trust region: True - Threshold (εb): 0.1
Replay buffer size: 5× 104 - Replay length (M ): 16

Momentum factor: 0.99 - IS weight penalty Jtarg : 0.001
Maximum KL: 1 - Initial αIS : 1
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Fig. 8: Comparison of GeDISC, PPO, and ACER on all 49 Atari games.
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