Check for
updates

QuestVille: Procedural Quest Generation Using NLP Models

Suzan Al-Nassar
s.al-nassar.2@umail.leidenuniv.nl
LIACS, Leiden University
Leiden, The Netherlands

Mike Preuss
m.preuss@liacs.Jeidenuniv.nl
LIACS, Leiden University
Leiden, The Netherlands

ABSTRACT

Developers face a time-consuming task when creating quests in
video games. To ease this burden, Procedural Content Generation
(PCG) techniques can be used to automatically generate quests.
While PCG has been applied to various areas of game development,
it can be difficult to create meaningful narratives for quests. This
paper presents a new method for generating engaging quests by
combining PCG with Natural Language Processing (NLP) using the
models BERT and GPT-2 in a case study game called QuestVille. The
paper details the implementation of these models and the challenges
encountered. The results suggest that the use of BERT and GPT-2
has potential for creating compelling narrative content. Advance-
ments in Al research may improve on the limitations discussed.

CCS CONCEPTS

«+ Applied computing — Computer games; - Software and its
engineering — Interactive games.

KEYWORDS

procedural content generation, procedural quests, game Al

ACM Reference Format:

Suzan Al-Nassar, Anthonie Schaap, Michael van der Zwart, Mike Preuss,
and Marcello A. Gomez-Maureira. 2023. QuestVille: Procedural Quest Gen-
eration Using NLP Models. In Foundations of Digital Games 2023 (FDG 2023),
April 12-14, 2023, Lisbon, Portugal. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3582437.3587188

1 INTRODUCTION

Video games frequently feature “quests”, small stories provided at
moments in the game that are meant to engage players for com-
pleting tasks. In this context, we understand quests as a set of tasks
that need to be completed to achieve a desired outcome. Creating
these quests can be very time-consuming. This is where Procedural
Content Generation (PCG) can serve as a tool to support game
developers. PCG has a wide range of applications in video games,
and we can use it for the automatic generation of engaging quests.

This work is licensed under a Creative Commons Attribution International
4.0 License.

FDG 2023, April 12-14, 2023, Lisbon, Portugal

© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9855-8/23/04.
https://doi.org/10.1145/3582437.3587188

Anthonie Schaap
a.lj.schaap@umail leidenuniv.nl
LIACS, Leiden University
Leiden, The Netherlands

Michael van der Zwart
m.j.van.der.zwart@umail leidenuniv.nl
LIACS, Leiden University
Leiden, The Netherlands

Marcello A. Gémez-Maureira
m.a.gomezmaureira@utwente.nl
HM], University of Twente
Enschede, The Netherlands

Figure 1: Screenshot showing the map view of QuestVille

For this purpose, we experiment with the use of NLP models and
investigate the combination of two models for quest generation.
We developed QuestVille as an implementation case-study game in
which a player interacts with with Non-Player Characters (NPCs)
that provide quests when approached.

NLP models can generate text that involves functional game
parameters (e.g. tasks and relationships) and create a context-aware
narrative for players. The core of this research is that we want to
improve on simple procedural tasks that are not yet engaging for
the user. When feeding these to our NLP model, we generate small
narratives that are hypothesized to be more engaging by way of
providing engaging story details to simple task statements. For the
generation of quests, we use a combination of two different NLP
models. Bidirectional Encoder Representations from Transformers
(BERT) predicts how likely a word is to appear in a certain context.
We use BERT in PCG for quests by sampling from a list of words
based on the assigned score. This then serves as prompt for another
model we use: Generated Pre-trained Transformer 2 (GPT-2), which
has been trained on a large corpus of English text data. GPT-2 was
specifically developed for generating texts from a prompt.

In the following section we discuss the background and related
work for this study, including descriptions of NLP models used. We
then describe our implementation for quest generation, which is
also the resulting outcome of this paper. This is followed by a dis-
cussion of the implementation. In the final conclusion of our work


https://orcid.org/0009-0002-0730-7526
https://orcid.org/0009-0007-4961-749X
https://orcid.org/0009-0004-9764-7181
https://orcid.org/0000-0003-4681-1346
https://orcid.org/0000-0002-4522-6228
https://doi.org/10.1145/3582437.3587188
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3582437.3587188
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3582437.3587188&domain=pdf&date_stamp=2023-04-12

FDG 2023, April 12-14, 2023, Lisbon, Portugal

we reflect on potentials and limitations of our approach, ending
with suggestions for future work.

2 BACKGROUND

Natural Language Processing (NLP) is a field that combines com-
puter science, linguistics, and artificial intelligence to study how
computers can understand and interact with human language. It
draws from various disciplines to bridge the gap between human
language and computer understanding. While NLP involves written
and spoken text, we focus on written text only. More specifically,
the task of Natural Language Generation (NLG) is what is needed
for procedural quest generation in this case. Recent advances in the
field of NLP have made well-performing tools for NLG and other
NLP tasks accessible to the public. In this project, the NLP models
of BERT [4] and GPT-2 are used for procedural quest generation.

Bidirectional Encoder Representations from Transformers (BERT)
is a model developed by Google that can be used for various NLP
tasks. When it was first introduced, BERT outperformed other state-
of-the-art models. One of the key features of BERT is its ability to
be fine-tuned on any dataset, depending on the application. BERT
was trained by masking certain words in a sentence and then trying
to predict how to replace the masks by analyzing the sentence in
both left-to-right and right-to-left directions simultaneously. This
approach makes BERT extremely effective because it has a deeper
understanding of the context in which words appear.

Generative Pre-trained Transformer 2 (GPT-2) is a transformer
model trained on a large English corpus dataset, suitable for tasks
such as translation, summarization, and text generation. By predict-
ing the next word in a sentence, the model learns a representation of
the English language. Unlike earlier NLP models that were trained
through supervision, GPT models are mainly trained unsupervised,
with some supervised fine-tuning at the end, which allows for larger
data sets and a more robust model.

3 RELATED WORK

Some work has been done on using language models for generating
game content, such as the work by Freiknecht et al. [5]. They use
GPT-2 to generate a branching story based on predefined characters
and game intro. They found that by using control sets and limiting
the number of characters in the game, they were able to generate
the most coherent stories. We think this work shows promise, but
we want to focus specifically on generating stories around quests,
not an entire game. Their use of control sets is interesting, as to
keep the story on the right track and we use a similar strategy of a
controlled start to guide the model.

DeLucia et al. [3] showed that transferring techniques from
response generation to narrative generation works well because
of the similarity of both tasks. Kalbiyev [6] found that some of
the biggest challenges when using a fine-tuned version of GPT-
2 to generate dialogue for games were grammatical correctness,
semantic meaningfulness, appropriateness of the response, and the
suitability of the response in the given setting. They concluded that
human-generated responses still outperform Al-generated ones.

Most literature on using NLP models for narrative generation
suggests that results could be improved a lot when bigger, more
sophisticated models are released to the public such as GPT-3.

Al-nassar et al.

Figure 2: Screenshot showing a house interior

In an analysis by van Stegeren et al. [9] of a narrative generation
competition, they concluded that using high-level predefined narra-
tive leads to increased coherence. They also found that if the gener-
ator generates events that underlie the surface text, simulation-like
approaches to narrative generation seem to perform well.

Different approaches to narrative generation that do not use any
NLP models include, for example, using planning algorithms [1],
or using a genetic algorithm [2]. Mark Riedl has done research on
creating a storytelling game that is realistic in the terms that it
becomes difficult to distinguish an Al agent from a human. In [8],
he describes the use of multiple Al agents working with each other
to create a complete and realistic story. There are many ways quests
can be generated, but for the present research, we focus on the use
of NLP models.

4 METHODS

Our hypothesis is that a quest will be more engaging to a user when
it is based on the context of the setting and has a clear motivation
for why it needs to be completed. Compare the following two quest
tasks that are essentially the same:

o Destroy this magical ring

o You must destroy this magical ring, that will corrupt you, by
casting it into the volcano in enemy territory. Servants of the
evil villain will hunt you along the way, you must not let the
ring fall into their hands. You are the only hero capable of
doing this!

We argue that the second quest is more engaging than the first
because it contains additional motivation and stakes as to why
this ‘magical ring’ has to be destroyed. Our approach to procedu-
rally generate quests using NLP models can be separated into the
following five steps:

(1) NPC name selection
Each NPC in the game has a randomly selected name from a
pre-defined list of real-world names. This way we can ensure
some variety when it comes to NPC names.

(2) Quest prompt selection
We define a list of initially small, general quest prompts that
will be used as inputs to the next steps. For example: "Could
you fetch the [MASK] from {0}, I need it to "



QuestVille: Procedural Quest Generation Using NLP Models

Where the [MASK] is used for the BERT step and {0} is the name

of the randomly selected NPC that will be involved in the quest.
The remainder of the sentence is generated by the GPT-2 model.

(3) NPC relation prefixing
In the game, relations between NPCs are defined, such as "Alice
hates Bob". These relations are prefixed to the quest prompt
before being fed into the models of the next two steps. This is to
ensure the generated text draws from this relation to generate
a more context-aware quest.

(4) BERT step

In this step, the [MASK] is filled in by the BERT model. This
step is explained in greater detail below.

(5) GPT-2 step
During this step, the output of the BERT model is fed into the
GPT model, which adds additional text to the prompt. This step
is also explained in greater detail below. The final result is then

displayed to the user, with the NPC relation prefixes removed.

BERT can predict how likely a word is based on the other words
around it. Thus, a certain context can be defined with a masked
word that needs to be predicted. A sample sentence is defined, with
one word masked, which is fed into the BERT model and a top 5
of best-scored words is returned. We use this to randomly sample
words with scores used as indicator of the probability. Thus, we
can pre-define sentences and run them through the BERT model to
dynamically obtain varying engaging sentences to use in quests.

I need to bring the [MASK] to Bob because
it is very important to him.

GPT-2 can generate text from a prompt. We can predefine parts
of sentences, and run them through the GPT-2 model. An example is
shown in Figure 3, with in bold how the initial sentence is completed
by the GPT-2 model.

I need to bring the letter to Bob because
that's the only piece that was out there
with this kind of information.

Figure 3: GPT-2 example

There is a trade-off between how specific the input sentence to
the GPT-2 model is and how fitting the resulting output of the model
is in the given context. Since a goal of procedurally generating
quests could be to save time and effort for any writers, the input
sentences should be as small as possible. But the less information is
present in the input, the harder it is for the GPT-2 model to generate
context-aware output.

For the actual quest generation, we use a combination of both
the BERT and the GPT-2 model in sequence. At first, we define (part
of) a sentence and mask a word in it. The result is fed into the BERT
model, which provides a predicted top 5 list of most likely words
to appear in the place of the mask. We randomly sample the list
with the scores as probabilities to fill the gap. Next, GPT-2 takes the
BERT result as input to the model, and the resulting output is used
as the final quest. Thus, combining both models in this way can
lead to an increase in variety since the prompt can have different

FDG 2023, April 12-14, 2023, Lisbon, Portugal

variations. The cutoff of the top 5 BERT scores is chosen rather
arbitrarily, a larger or smaller top n is also possible.

To be able to generate quests inside a video game using NLP
models, we created a game in Unity called QuestVille (Figures 1
and 2). A player is able to walk through a map and can enter houses
to meet NPCs. When the player approaches the NPC, a quest is
provided on the screen. The game has three different houses and 5
different NPCs, that know each other’s name and give the player
a task, which is bringing a specific item to one of the other NPCs
with an explanation added to the quest.

The resulting quest is then evaluated by us. We check if the
generated quests make sense but also if it is in the right context. For
example, if a woman is the receiver of the quest, are the pronouns
then correctly assigned, and is the name correctly assigned? We
also check if the generated text contains a motivation for the initial
quest prompt.

5 RESULTS & DISCUSSION

When creating quests with GPT-2, we should take into account
what input we provide to the model and the length of said input.
The output of the model might be too incoherent when the input
is too vague or general and does not steer the model toward a
direction. However, we want to obtain the most engaging quests
while providing as little input as possible, which would save time.
An example of the least effort is shown in Figure 4, with just a short
input sentence of three words. Notice that no actual meaningful
output is generated by the model, as it is not clear for what reason
exactly Isabella needs help. It provides no additional context or
motivations, making the quest just as basic as before we put it into
the model. Thus, we can use some additional input to steer our
model in a certain direction.

Please help Isabella in her
time of need.

Figure 4: GPT-2 quest with no steering

Results with more steering in comparison to Figure 4 are shown
in Figures 5 and 6. We observe that a small amount of steering can
already result in a more meaningful output, as the result of Figure 5
contains an actual action and motivation, and a desired result can
be achieved. It is more clear to the user what actions the game
expects from them, and why a certain goal needs to be achieved.
With even more additional steering, as can be seen in Figure 6, we
obtain a quest that contains additional context-aware motivations
and tasks.

Please help Isabella find her way back
home as quickly as possible.

Figure 5: GPT-2 quest with little steering

Please help Isabella find ingredients
to make this amazing, gorgeous pie.

Figure 6: GPT-2 quest with more steering



FDG 2023, April 12-14, 2023, Lisbon, Portugal

However, we need to prevent the input from being too specific,
as we also desire the model to be diverse, such that it does not
generate likely quests all the time. An example of a too-specific
input is shown in Figure 7. Note that only the ingredients needed for
the pie are varying between the quests, but the quest itself comes
down to the same task.

Help Isabella find ingredients for a pie with
strawberries, apricos and a touch of mustard.

Help Isabella find ingredients for a pie with
a side of red pepper pie and some black cheese.

Figure 7: GPT-2 diversity

The principle of steering the model in a direction also applies to
the relations that different NPC characters can have in the game. By
prefixing the model input with information about these relations,
the output can be steered towards a result that makes sense based
on the relation between two NPCs. For example in Figure 8, the
same prompt of "Bring Alice the keys so John can " is fed into
the model twice, but the second time it is prefixed by "Alice hates
John". As can be seen, the part that is generated by the model has a
way more negative attitude when prefixed by this "hate" relation
between the two NPCs.

Bring Alice the keys so John can go back in
time. In fact, Alice is just after the key
from her sister.

Alice hates John. Bring Alice the keys so
John can take them. John will get upset
and will attack her first.

Figure 8: GPT-2 relation prefix example

When playing the game, the main limitations we can observe
from the generated quests are the following:

o The end result is not always a coherent sentence that makes
sense in the given context.

o The output can sometimes be inappropriate for a younger
audience.

e Because of an enforced limit on the number of generated
characters, sometimes sentences will abruptly end. We try
to cut off sentences at the last dot but this is not that simple
in practice (dots do not always signal the end of a sentence).

Some positive points we observe are:

e There are instances in which a very high quality, coherent
sentence with a proper motivation to the quest is produced.

o Adding relation prefixes to the prompt very often leads to
the resulting sentence being steered towards this relation.

e BERT seems to find very suitable words to fill the masked
word in a lot of cases.

Some of the issues such as incoherent sentences being generated
could be solved if, very plainly, the model was just better. Since we
started our work, newer models have been released which we will
touch upon in future work.

Al-nassar et al.

6 CONCLUSION

Our approach to procedurally generating quests using BERT and
GPT-2 was discussed and shown to have potential, but also involved
considerable limitations. In many instances, useful results were
produced but useless or inappropriate sentences got generated as
well. We found that prefixing prompts to the models with relations
between NPCs to steer the model in a certain direction worked very
well. From this, we conclude that NLP approaches are not yet good
enough for use in commercial video game development, but show
a lot of promise. Further advances in the field of NLP should make
such approaches even more viable.

Future research could improve the quality of a generated quest by
validating whether it actually has a specific goal included that needs
to be accomplished. A possible approach for this could be a hybrid
model that combines rule-based and machine-learning algorithms.
The rule first identifies segments of the quest corresponding with
actions and goals. Consequently, the machine learning algorithm
learns to output a probability on whether the input is actually
classified as a quest or not. The machine learning algorithm could
be applied to numerical representations of the input data generated
by term frequency-inverse document frequency and Word2Vec.
This approach would improve the engagement of our quests.

Furthermore, we want to incorporate a new technique that has
been recently released. OpenAl latest chatbot, ChatGPT [7], allows
users to interact in a natural way, resulting in often comprehensive
and complete answers by the system. It is also possible to create
a story with ChatGPT by telling the bot to act like a person in
need of something. This bot is trained on a very large dataset with
information until 2021, therefore it is able to talk on a wide spectrum
of subjects and act closely as a human would. We believe that this
tool could also be used to generate better quests than GPT-2 can.

REFERENCES

[1] Vincent Breault, Sébastien Ouellet, and Jim Davies. 2021. Let CONAN tell you a
story: Procedural quest generation. Entertainment Computing 38 (2021), 100422.
https://doi.org/10.1016/j.entcom.2021.100422

[2] Edirlei Soares de Lima, Bruno Feijo, and Antonio L. Furtado. 2022. Procedural
generation of branching quests for games. Entertainment Computing 43 (2022),
100491. https://doi.org/10.1016/j.entcom.2022.100491

[3] Alexandra DeLucia, Aaron Mueller, Xiang Lisa Li, and Jodo Sedoc. 2020. Decoding
Methods for Neural Narrative Generation. https://doi.org/10.48550/ARXIV.2010.
07375

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[5] Jonas Freiknecht and Wolfgang Effelsberg. 2020. Procedural Generation of Interac-
tive Stories Using Language Models. In International Conference on the Foundations
of Digital Games (Bugibba, Malta) (FDG "20). Association for Computing Machinery,
New York, NY, USA, Article 97, 8 pages. https://doi.org/10.1145/3402942.3409599

[6] A.Kalbiyev. 2022. Affective dialogue generation for video games. http://essay.
utwente.nl/89325/

[7] OpenAL 2023. ChatGPT. https://chat.openai.com/chat

[8] Mark Riedl and R. Young. 2004. An Intent-Driven Planner for Multi-Agent Story
Generation. (07 2004). https://doi.org/10.1109/AAMAS.2004.63

[9] Judith van Stegeren and Mariét Theune. 2019. Narrative Generation in the Wild:
Methods from NaNoGenMo. In Proceedings of the Second Workshop on Storytelling.
Association for Computational Linguistics, Florence, Italy, 65-74. https://doi.org/
10.18653/v1/W19-3407


https://doi.org/10.1016/j.entcom.2021.100422
https://doi.org/10.1016/j.entcom.2022.100491
https://doi.org/10.48550/ARXIV.2010.07375
https://doi.org/10.48550/ARXIV.2010.07375
https://doi.org/10.1145/3402942.3409599
http://essay.utwente.nl/89325/
http://essay.utwente.nl/89325/
https://chat.openai.com/chat
https://doi.org/10.1109/AAMAS.2004.63
https://doi.org/10.18653/v1/W19-3407
https://doi.org/10.18653/v1/W19-3407

	Abstract
	1 Introduction
	2 Background
	3 Related Work
	4 Methods
	5 Results & Discussion
	6 Conclusion
	References

