
Interpretable Utility-
based Models Applied to 
the FightingICE Platform 

Tianyu Chen, Florian Richoux, Javier M Torres, 
Katsumi Inoue

https://hal.science/hal-03276322

Presented at IEEE Conference on Games, August 2021



Introduction
• Utility functions are one of the classic ways to model 

NPC behaviour


• But they can be a pain to make and tune


• This paper lays out a way to learn utility functions for 
NPC from data collected from human-played games 
using an Interpretable Convolution Network


• These utility functions will mimic the behaviour displayed 
in human-played games



Some Definitions
Utility Functions


• For each possible NPC action there is 
one function that can take some 
portion of the game state and returns a 
value


• The NPC will take the action which 
returns the highest value


• Complex behaviour usually cannot be 
summed up by one or two independent 
actions but is instead expressed by 
complex action interlocks and relations


• Making designing utility functions by 
hand very tedious 

Interpretable Convolution 
Network (ICN)


• Neural network with a fixed 
architecture, with a specific 
purpose for each layer


• Nodes apply a elementary 
operation from a set of  elementary 
operations defined for the layer


• The weight between nodes is binary


• These traits make the network 
interpretable, this will be discussed 
with an example later



So why do they use a ICN?


We could use a normal neural network to make utility functions but we 
wouldn’t be able to extract them from the network. To use a utility 
functions we would have to run the neural network in a feed forward 
manner.


But because ICN is interpretable we can extract the function through 
the network’s meaning. Not only is it more performant, we can modify 
and tweak the function manually.



Method
 Like most machine learning the method involves:


1. Design the network, for some problem


2. Train it, using data on the problem solution


In this paper, the case of generating an NPC enemy AI in 
FightingICE is used as a proof of method.



Design



Utility Function 
Decomposition 



ICN Architecture



Layer by Layer
• Transformation layer has neurons (in this case 30) which take the game 

state vector and performs some elementary option on it


• This can be linear, exponential, logarithmic or logistic


• For example the exponential of the difference in hp


• Combination layer has 4 neurons that will aggregate the results of the 
transformation nodes connected to it via the nodes function


• In this case the sum, the mean, the maximum and the minimum


• Constant layer has 5 neurons that multiply the results of the combination 
layer by some real coefficient


• In this case: 0.25, 0.5, 1, 2, 5



Properties

• Connections between nodes are binary, each operation is either chosen or not chosen


• The blue nodes are mutually exclusive


• These two properties make the network interpretable


• With real-valued weights as for regular neural networks, we would end up with utility functions 
expressed by a combination of all (non-mutually exclusive) elementary operations with different real 
coefficients


• This setup is very extendable for different purposes



Training



Input Data
• To prove that this network can mimic target behaviour 

they produce 3 datasets of human play: aggressive, 
defensive and hybrid


• These included about 20 games for a total of only 30 
minutes of play



Genetic Algorithm

• Supervised learning from the dataset of human play


• It is labelled as FightingICE will give the game state and 
the action taken


• The elementary operations aren’t all differentiable so we 
have to use the genetic algorithm


• Since each function is dependant on each other, loss is 
defined by the action rank



Evaluation of Method

• Tested through a 100 5-
fold cross validation for 
each dataset


• One model took about 7 
minutes to learn on a Intel 
MacBook


• Random guess accuracy 
would be 25%



Limitations

• Dataset was noisy as since the same game situation, or 
very similar ones, can be labeled with different actions 


• Relatively simple behaviour



• Data augmentation or taking a larger scope of data 
composing game states but then penalising models 
extracting too many data from these game states: forcing 
learned utility function to only consider the most significant 
values leading to utility functions more focused to essential 
data could help with the dataset noise


• Splitting transformation layer into two layers for data 
extraction and then transforming would make the ICN clearer


• This method could be used in combination with other types 
of traditional decision modelling to simulate even more 
complex behaviour in a controlled and customised manner

Improvements and 
Applications



Novelty of Method
• Using ICN for making function is not new, ICNs were originally proposed 

to model and learn error function in Constraint Programming


• They only need to learn one ICN at a time, but learning utility functions 
require learning several functions with the same inputs which is novel


• Learning utility functions via reinforcement learning is not new, it was 
used to learn cooperative NPC AI


• But being interpretable is novel as in previous research the network was 
a black box and would have to be retrained if the game changed


• The main originality of the method is to produce interpretable utility 
functions that can be easily understood, modified at will and 
implemented within the game logic



Conclusion

Thank you for listening!


