Playing FPS Games with Deep
Reinforcement Learning

Guillaume Lample,* Devendra Singh Chaplot*
https://ojs.aaai.org/index.php/AAAl/article/view/10827

Introduction

* Almost all game Al is for 2D environments, but introduced Al in this
paper is for 3D environment.

* Especially they talk about Al for FPS game.
* Their model can play as well as human in deathmatch scenario.

Difficulties

* 3D game Al is much more challenging than most 2D games, such as
navigating through a map, collecting items, recognizing and fighting
enemies etc.

* So they divides Al into two parts: navigation and action.

* Navigation is exploring the map to collect items and find enemies.
e Action is fighting enemies when they are observed.

* 3D games rarely return complete observations.

* However, the current screen is sufficient to infer the course of action.

Deep Recurrent Q-Networks (DRQN)

Layer 4
Size 512 Game features
- (Size k for k features)

Conv 1 Conv 2

32 filters 64 filters

Shape 8 x 8 Shape 4 x 4 Action scores
Stride 4 Stride 2 (Size n for n actions)

Layer 3'
Size 4608

Layer 1 Layer 2 Layer 3
3 feature maps 32 feature maps 64 feature maps
Shape 60 x 108 Shape 14 x 26 Shape 6 x 12

Deep Recurrent Q-Networks (DRQN)

* The input image is given to two convolutional layers.
* The output of the convolutional layers is split into two streams.

* The first bottom flattens the output and feeds it to a LSTM, as in the
DRQN model.

* The second one top projects it to an extra hidden layer.

* During the training, the game and Q-learning objectives are trained
jointly.

Results

* Although this model achieved good performance in relatively simple
scenarios.

* But giving a penalty for using ammo did not help: with a small penalty.

Divide and conquer

Updated states

« >

Q(hs, as) Q(hg, ag) Q(h7, a7) Q(hg, ag)

Observation history

Divide and conquer

* There are advantages of splitting the task into two phases and
training a different network for each phase.

* First, this makes the architecture modular and allows different models
to be trained and tested independently for each phase.

* More importantly, using two networks also mitigates "camper”
behaviour. (stay in one area of the map and wait for enemies)

Reward shaping

* Rewards based solely on score are likely to slow learning.
* Therefore, we will set an intermediate reward.

* Negative reward for losing health.

* Negative reward for losing ammunition.

* Positive rewards for item acquisition.

Kill / Death ratio

Plot of K/D score

— with dropout — with game features
4}| — wjo dropout 4}| — w/o game features

0 20 0) 50 &0

Kill / Death ratio

Faining time (hrs) TFaining time (hrs)

Left: with and without dropout
Middle: with and without game features
Right: with different of updates in the LSTM

70

Kill / Death ratio

1 update
5 updates
10 updates

Taining time (hrs)

Results

Limited Deathmatch

Full Deathmatch

Known Map Train maps Test maps

. . Without With Without With Without With

Evaluation Metric S o A
navigation navigation navigation navigation navigation navigation

Number of objects 14 46 52.9 92.2 62.3 94.7
Number of kills 167 138 43.0 66.8 32.0 43.0
Number of deaths 36 25 15.2 14.6 10.0 6.0
Number of suicides 15 10 1.7 3.1 0.3 1.3
Kill to Death Ratio 4.64 5.52 2.83 4.58 3.12 6.94

Results and Analyze

* K/D scores are much better when using training with map navigation

» Setting weapons weaker increases the benefit of picking up items,
this was a good decision

Conclusion

* These method introduced in this paper lead to dramatic
improvements over the standard DRQN model when applied to
complicated tasks like a deathmatch.

* The proposed model is able to outperform built-in bots as well as
human players and demonstrated the generalizability of our model to
unknown maps.

