
SUPERNOVA: Automating Test Selection and
Defect Prevention in AAA Video Games Using

Risk Based Testing and Machine Learning
Alexander Senchenko*

Electronic Arts
Vancouver, Canada
asenchenko@ea.com

Naomi Patterson*
Electronic Arts

Vancouver, Canada
npatterson@ea.com

Hamman Samuel
Electronic Arts

Waterloo, Canada
hsamuel@ea.com

Dan Ispir
Electronic Arts

Bucharest, Romania
dispir@ea.com

Abstract—Testing video games is an increasingly difficult task
as traditional methods fail to scale with growing software systems.
Manual testing is a very labor-intensive process, and therefore
quickly becomes cost prohibitive. Using scripts for automated
testing is affordable, however scripts are ineffective in non-
deterministic environments, and knowing when to run each test is
another problem altogether. Manual testing and writing scripts
make up the current industry standard and methodology for
game testing, but the writing is on the wall for this practice.
The modern game’s complexity, scope, and player expectations
are rapidly increasing where quality control is a big portion of
the production cost and delivery risk. Reducing this risk and
making production happen is a big challenge for the industry
currently. To keep production costs realistic up-to and after
release, we are focusing on preventive quality assurance tactics
alongside testing and data analysis automation. We present
SUPERNOVA (Selection of tests and Universal defect Prevention
in External Repositories for Novel Objective Verification of
software Anomalies), a system responsible for test selection and
defect prevention while also functioning as an automation hub.
By integrating data analysis functionality with machine and
deep learning capability, SUPERNOVA assists quality assurance
testers in finding bugs and developers in reducing defects, which
improves stability during the production cycle and keeps testing
costs under control. The direct impact of this has been observed
to be a reduction in 55% or more testing hours for an undisclosed
sports game title that has shipped, which was using these test
selection optimizations. Furthermore, using risk scores generated
by a semi-supervised machine learning model, we are able to
detect with 71% precision and 77% recall the probability of a
change-list being bug inducing, and provide a detailed breakdown
of this inference to developers. These efforts improve workflow
and reduce testing hours required on game titles in development.

Index Terms—quality assurance, automation, risk-based test-
ing, defect prevention, games testing, machine learning, auto-
mated decision making

I. INTRODUCTION

The purpose of quality assurance (QA) testing is to mini-
mize defects in software products. Over time, as these software
systems went from several thousand lines of code and few
dependencies to millions and many, the cost of QA testing
became exorbitantly more expensive while simultaneously

*These authors contributed equally to this work.

being less effective compared to the past [1]. This is because
the size of software systems, and therefore the number of items
that can be tested, is growing beyond what is reasonable to test
uniformly. A common method to address this has QA testers
select test cases manually based on some form of deductive
reasoning, in an attempt to improve testing coverage and/or
depth. Such mechanisms are subjective and do not produce
sets of test cases that comprehensively assess the software
in question. One possible solution for this is to automate the
selection of test cases by using a probabilistic model to replace
traditional efforts. This has the benefit of providing reasonably
unbiased outcomes based on historical data which can be tuned
over time. Another school of thought for improving software
quality takes a more preventative approach, seeking to stop
defects from entering software systems entirely, before they
become bug inducing.

In this paper we present a solution which incorporates both
of these concepts. On the test case selection front, given a soft-
ware system with tests numbered 0...n, our method chooses
tests such that as n approaches infinity, testing time remains
constant while the efficacy of selection improves over time
[2]. This method also identifies test scripts that have become
irrelevant, stale or non-functional due to ongoing development,
and removes them from the test execution scope. This test
selection occurs in an end-to-end manner, as selections can
be from any aspect of the software in question, allowing for
an all-in-one solution. This results in an automated risk-based
testing (RBT) system that formulates a risk assessment for
automatic selection of both manual and automated QA tests.
For defect prevention, given a commit with lines of code 1...n,
our method extracts features from this code data, the hierarchy
of the software system, and even individual developer details
to make an informed prediction on whether the code is bug
inducing or not. This output is then presented to the developer
with a breakdown of what features had the most impact on
this decision, and they are then able to make an informed
decision on whether to review their code. These systems
are currently accomplished using probabilistic modeling and
machine learning, with deep learning on the horizon as the

1

ar
X

iv
:2

20
3.

05
56

6v
2 

 [
cs

.S
E

] 
 2

8 
Ju

n 
20

23



next step for this project.

This new methodology is particularly relevant for the games
industry, as video games have more uncertainty and potential
points of failure than other software systems. Testing AAA
games is a challenge that currently requires an extensive
amount of manual testing efforts due to the significant scale of
the testing scope. There is a time factor to this as well, because
of the tight release cycles. The above factors explain why
solutions that work for other tech companies do not necessarily
translate into the games industry.

Although the focus of these methods are on testing video
games and online services, they may be applied to any
software application. We show that our approach is highly
effective at reducing total work hours required to plan testing
efforts and sufficiently test a software product. This marks a
significant step in the process of fully automating software
testing.

II. RELATED WORK

There are many automated software testing systems cur-
rently available for consumer use. Katalon [3] is an end-to-
end software testing product that automates test generation
for various development environments. They offer services for
web, desktop, API and mobile environments. Likewise, other
similar products such as Selenium [4], [5] and TestComplete
[6], [7] offer comparable services in different environments.
For many use cases, a solution such as these will be completely
viable. However, for proprietary software environments, using
third party solutions is not an effective way to conduct robust
testing, as they will not be able to interface properly with
internal software systems.

Furthermore, in especially complicated systems such as
game engines, manual test cases that can not be computer
generated or evaluated will need to be run. For example, a
manual test case can describe that a game tester navigate
along the edges of a game level and attempt to break collision
detection through the jump action. Furthermore, manual tests
that seek to investigate visual and not logical anomalies often
won’t trigger any warnings or errors, relying solely on the
game tester’s ability to evaluate this themselves. There can
be up to 40,000 of these manual test cases for a given game
title. None of these test automating products are able to select,
sort or choose predefined tests that report both automatically
and manually input response data based on a mathematical
model’s output. Although there is research in selecting the
data to use in creating a test case [8], this only helps for test
cases capable of being automatically generated. Other research
seeks to link file dependencies with test cases such that they
are only run them when the linked files are modified, rather
than any file within the project [9]–[11]. These regression
test selection approaches are very effective for test cases that
are automatically executed, but are unable to accommodate
manually executed test cases. Therefore there is a large gap

in both research and the third party market for such a piece
of software.

Alternatively, some software tools are used as a preventative
measure for testing, rather than the typical reactive approach.
These include Facebook’s Infer [12], which is a static code
analyzer for several languages, capable of detecting a variety
of errors such as null pointer exceptions. Another prominent
example is Clever-Commit [13], a recent venture from Ubisoft
and adopted by Mozilla, which incorporates machine learning
to prevent bugs from entering production code at the commit
level using code metrics, clone detection, and dependency
analysis. This builds off the fundamental groundwork laid by
what is commonly referred to as the SZZ algorithm, as well as
Commit Guru [14]–[17]. These are all interesting approaches
to bug prevention, and were inspiration for the preventative
efforts we present in this paper. Lastly, the concept of RBT is
not new, and has been previously researched with impressive
results [18], [19]. This prior work also served as inspiration
for the test selection approach we used in SUPERNOVA.

III. METHODOLOGY

A. Overview

SUPERNOVA captures end-to-end automation for data sci-
ence based testing with mathematical models which automate
workflows and drive decision making in QA testing for AAA
games. There are two central components to this effort; an
end-end automation tool for software testing, as well as a
machine or deep learning model management and training
service. SUPERNOVA is designed and internally distributed
with the software as a service (SaaS) model, and is not
used in conjunction with other end-to-end software testing
frameworks. The general architecture of this system can be
seen in Figure 1.

Users interact with the SUPERNOVA user interface to man-
age data source connections, define data collections, design
rules based data configurations, create mathematical functions
through a visual programming interface, determine actionable
outcomes, monitor deployed pipeline performance, pre-process
training data, define deep learning architectures, train machine
or deep learning models, and monitor model training per-
formance. There is an outline of the general workflow for
SUPERNOVA in Figure 2, and we will be presenting it’s
features in that same order.

Starting with data source connections and collections, an
interface for all relevant input source structures is provided to
the user within SUPERNOVA. For example, to retrieve QA
data from a data source such as Jira, there are a number
of expected parameters which are shown to the user. These
include the URL instance, the project key, and JQL for key
based filters such as severity or status of an issue. Other
supported input structures include TestRail, DevTest, Git,
Perforce, EA proprietary tools, SQL, NoSQL, and custom
calls for unknown sources [20]. This streamlines the otherwise

2



Fig. 1: High level overview of SUPERNOVA

tedious process of data collection by providing the building
blocks to accomplish this efficiently.

Following input collection is data configuration, which
allows for chains of fields to be used for indexing into
sourced data structures. We developed our own framework that
can interface with all supported data sources from the data
collection phase and combine them into a unique proprietary
format, which allows for efficient filtering, grouping, and
searching. Users will recursively construct linked nodes that
represent the linked fields within this format, after which all
selected inputs will be ready for modeling and modification.
An example of this would be to take a Jira Epic key from one
data collection to index into another collection and retrieve
data for that Epic not stored in the initial collection.

Once the desired data fields have been selected, they can
be modified by SUPERNOVA’s visual programming interface
to define functions that create metrics to describe useful
behaviours. These represent factors such as number of con-
secutive successful test runs, time since the test was initially
created, frequency of bug discovery, etc. In the case of real
number data fields, a manually tuned weight and activation
function can be applied in order to provide further control.
These heuristics can be as simple as a direct mapping, such
as f(x) = 2x. However, the output from one function can also
be directly sent as input to another. This allows for stacks of
equations where each has the potential to branch depending
on input, as conditional statements are allowed.

Furthermore, return values can be specified, which allow
recursion and other advanced methods when necessary. There-

fore these equations can be described as decision trees, and an
example of this is seen in Figure 3. These trees are modular, as
they use multiple predefined metrics combined together, and
as such nodes or edges can easily be swapped out or changed.

This flexibility allows our data scientists to quickly build
models for a wide variety of tasks that will thereafter function
in an automated state. There are fundamentally three different
methods to construct models. The first allows for simple
mathematical formulae where functions can be created from
desired inputs, using RBT. The risk exposure R of a risk item
a is calculated as follows, and is in the range [0, 100]:

R(a) = P (a) · T (a) · I(a) (1)

where P is the probability, I is the impact, and T is the
time factor of a risk item a, which are defined as:

P (a) =

∑m
j=1 pj · wj∑m

j=1 wj
(2)

I(a) =

∑n
j=1 ij · wj∑n

j=1 wj
(3)

T (a) =

∑k
j=1 tj

k
(4)

pj are values in range [0, 10] for m probability criteria, ij
are values in range [0, 10] for n impact criteria, tj are values
in range [0, 1] for k time criteria, and wj are weight values in

3



Fig. 2: Example of the SUPERNOVA workflow

range [0, 1] for m + n + k criteria. Note that the criteria are
normalized to be within these ranges. Probability criteria are
a set of metrics that represent the likelihood that the failure
assigned to risk occurs. These are made up of technical criteria,
such as code complexity, and inferred automatically. Impact
criteria are a set of metrics that capture the cost or severity
of failure if it occurs in operation. These are made up of
business criteria, such as importance of a system’s continued
functionality, and inferred either automatically or manually.
Time criteria are a set of metrics that adjust probability factors
for risk items, with the idea being that risk items have a
life cycle. These are made up of test criteria, such as testing
history, and manually set to 1.0 but automatically updated over
time. For example, should testing history indicate that bugs are
being frequently found in a game system, the criterion value
stays close to 1.0 for that system. Likewise, if few or no bugs
are found, the value lowers to represent the decay of risk for
that system. Therefore the time criteria can automatically stop
tests that are stale, irrelevant or non-functional, and expose
them to us. The weights for each of these factors are hand
tuned by our data scientists for an individual project’s needs
and goals. The risk exposure is the final part of the tree, and
returns a score which can then be used for sorting of tests and
other applications.

Fig. 3: Example subtree of a parent tree, used in one of EA’s
pipelines. Input A, B, C are weights or scores from one or
more data sources. They are fed through a function producing
an output (priority) depending on a conditional. Afterwards,
this output is used by another function along with another
input (impact) to return a final output, which is returned to
the parent tree.

The second method for model construction is machine
learning, which uses JSON schema that interface directly with
the scikit-learn library, allowing for the selection of any algo-
rithm supported by the library alongside robust hyperparameter
tuning for each. This is presented in the user interface as a
card with dropdowns and text boxes allowing for all selection
to be done without any coding required. A training target is
also set from one or more of the configured inputs, which
the model learns to reproduce on unseen data. Examples of
this include whether a test found a bug, or if a commit is
bug inducing. These selections are then sent to the machine
learning endpoints for training or prediction. This is a key
aspect of SUPERNOVA’s appeal, as many of our QA and
game testers do not know how to program, so providing an
automated way of performing data science is very useful to
EA at scale.

The third method for model construction is deep learning,
which uses another JSON schema that interfaces with the
TensorFlow library. This abstracts the typically complicated
process of creating a deep learning architecture and training
a model with it. This is simplified in SUPERNOVA’s user
interface with a drag and drop, node and edge system that
also has no coding requirements. For architecture design,
each layer in the neural network is a node that has edge(s)

4



entering and exiting it. The edges entering represent inputs,
and the edges exiting represent outputs. Within each node
the type of layer, its activation function, initialization, and
all other hyperparameters are set using a dropdown or text
box. Furthermore, the structure of these nodes does not have
to be linear. There is full support for functional (ie non-
linear) type architectures as well. Once the architecture has
been constructed using the interface, it is named and saved.
Architectures can be easily shared to others if desired. Model
training is then performed using a very similar visual card
interface as from the machine learning method. Although
SUPERNOVA is capable of any type of learning, since it is
an interface into both scikit-learn and TensorFlow, the user
interface is only configured to use supervised learning at this
time, and as such one or more training targets must be selected.
Lastly, TensorBoard is integrated for in depth model training
monitoring, and TensorFlow pre-processing techniques can be
automatically applied to any data sent to SUPERNOVA, such
as the encoding of categorical variables.

Compared to machine learning efforts, deep learning pro-
vides the ability to extract features from matrices automati-
cally, without the need for us to do our own feature extraction
or transform them into lower dimensional space. For example,
this makes it possible to train a model directly on semantic
code data, without needing to create features such as cyclo-
matic complexity, which simply reduce the source code into
a numeric value.

By giving users the option to use a probabilistic model,
a machine learning model, or a deep learning model, these
choices end up creating inclusivity as they represent the cor-
responding skill levels of beginner, intermediate and advanced.
This allows SUPERNOVA to have both depth and breadth in
terms of usefulness to EA’s diverse teams.

The only directive left is to connect everything together,
and this is done in SUPERNOVA with what we call pipelines.
They indicate what configured inputs are being used, which
model(s) are taking those inputs, and what to do with the
output of those models. Possibilities for output actions include
simply sending it as input to another model, exporting the data
to a specified format, generating email reports, posting the data
to an external service, etc. Lastly, the inputs and outputs for
each pipeline and its model(s) can be tracked through a built
in data visualization tool, which is useful for monitoring of
performance over time for longer running automation scripts.

This test selection approach has better fault detection capa-
bility than the entire test suite in practice, for the following
reasons. First, our game’s can have upwards of 100,000 test
cases per title. It is therefore unfeasible for an individual to
effectively select which cases to run without a test selection
algorithm. Furthermore, if we were to run all the tests with the
same distribution, it would become cost and time prohibitive.
Second, the number of test cases, as well as the test cases

themselves, change over the course of a game’s production
cycles. A selection system that is unbiased and can quickly
be updated based on reactions to the game development
workflow is therefore imperative to function effectively in this
environment.

Currently we have real world implementations of both the
probabilistic RBT modeling and the machine learning. Our
deep learning initiatives are still in development, and are
intended to expand on these existing models upon completion.
We use RBT for automating test case selection, and machine
learning for defect prevention on developer commits entering
the source code. We will be explaining these initiatives in that
order.

B. Use Case #1: Automated Test Selection with Risk Based
Testing

The testing scope of video games is growing dramatically
and legacy QA approaches are quickly becoming unman-
ageable and inefficient, even considering a high automation
coverage of the product. QA testers are expected to make
decisions on where to test the software. With RBT, we
can ensure those decisions are data driven ones. When we
challenge our assumptions, we gain insights into potential risk.
By continuously looking back and reviewing our actions, we
learn about new possibilities and change our future approach,
by adding or removing automatic criteria and further tuning
the manual business driven criteria.

In order to identify a set of RBT metrics, we conduct
internal studies on various RBT approaches. Through this anal-
ysis and practical experimentation, our QA teams identify the
metrics which best describe risky test areas. These metrics are
configured via the visual programming interface for creating
mathematical models, with examples of them being found in
Table I. They are then fed into an RBT model, where the
output of that model is processed and applied to update test
case selection, as well as the historical database of risk outputs.
A visual representation of this system can be seen in Figure
4.

C. Use Case #2: Defect Prevention with Machine Learning

Defects during game development are an inevitable cost but
one that can be mitigated by preventing the defect causing
code or content to be committed. Machine learning can be
used to automatically predict potentially risky code commits
based on prior data of known bug inducing commits from bug
tracking systems and commit history. However, it takes a lot of
effort to create a training data set by manually labelling every
commit as risky or non-risky. Hence, semi-supervised machine
learning is appropriate for this task. With semi-supervised
learning, a heuristic can be used to label the data. We used
the SZZ algorithm as the heuristic to label commits as bug
inducing. Once the training data set was established, we used
a machine learning model to build a binary classifier. The
probability of the associated binary classes was then used as

5



Fig. 4: Example of the RBT workflow

the risk score. A diagram showing these relationships can be
seen in Figure 5.

The risk score prediction is based on a semi-supervised ma-
chine learning approach using a tree-based gradient boosting
machine (GBM). The gradient boosting framework uses highly
optimized tree-based learning which leverages weak learners.
Essentially, many iterations of decision tree models are utilized
in a gradual, additive and sequential manner, with the aim of
reducing the overall error between the true versus predicted
class. The process is semi-supervised because the target binary
class, whether a commit is bug inducing, is computed using
heuristics rather than a manual labelling effort. Ultimately, the
larger predicted probability of the target class is assigned as
the risk score.

The heuristic used for this semi-supervised learning ap-
proach is the base SZZ algorithm, which identifies bug-
inducing code commits based on a bug tracking system’s
historical data (e.g. Jira) and the version control system’s
commit properties (e.g. Perforce). First, bug reports in the
issue tracker are linked to bug-fixing commits. For each of
the bug-fixing commits that were identified, the modified lines
in the source code are extracted. Second, each bug-fixing
commit from the first phase is recursively parsed (e.g. perforce
blame) to identify all commits that previously made changes
to the same lines of code. For each candidate commit, SZZ
determines whether the commit can be ruled out as bug-
introducing or not using characteristics like commit date/time,
if it was a partial fix, and if it was responsible for another bug.

However, the accuracy of SZZ isn’t perfect, as it has a
number of shortcomings. Mills et al. discovered that approx-
imately 64% of changes made in bug fixing commits are not
actually bug fixing, but instead are unrelated changes, such as
code additions, refactoring, formatting and comment changes
[21]. SZZ accounts for the additions, but the base algorithm
doesn’t handle the other cases, and thus approximately 34%
of files labelled as bug inducing commits are false positives.
Furthermore, Herzig et al. found that approximately 33% of
bug issue reports are incorrectly categorized, resulting in 39%
of files found to be bug inducing by SZZ being incorrectly

Fig. 5: Example of the defect prevention workflow

labelled. [22]. These results were independently verified by
Herbold et al., and they concluded that ”for every correctly
labeled defective file, there is one incorrectly labeled defective
file and two missed defective files” [23]. Rosa et al. were
among the first to do a comprehensive empirical evaluation
of SZZ and all its variants in a controlled environment [24].
Using a manually verified data set, they avoided the issue of
incorrectly categorized bug reports, and thus found that the
base SZZ had a recall of 69%, precision of 42%, and an
F1 score of 53%. Out of all the SZZ variants tested, R-SZZ
performed the best, with a precision of 57%, recall of 73%,
and an F1 score of 64% [25].

6



Name Type Description

Open
Unaddressed

Defects

Probability Open unaddressed defects per test case.

Addressed
Change

Requests

Probability Change requests can impact the game
in unknown ways (given that these are

requests that are not planned or
accounted for). Knowing how many

issues will be assessed will give us an
indication of risk.

Defect to
Change
Ratio

Probability The ratio of reported defects per
feature change.

Script
Failure Rate

Probability The ratio of the positive and negative
classes for each test case TC. If a TC
has 3 passed, 4 failed and 3 blocked

tasks, then its failure rate will be 70%.

Average
Distribution

Impact The average distribution is an
automatically computed measure from
game telemetry to understand which
game modes were most significant to

our players.

Average
Stickiness

Impact Stickiness is an automatically
computed measure to understand the

retention of a game mode.

QX Final
Target

Impact Expected quality milestone target,
which captures production ready

feature quality.

QX Target
vs Current

Target

Time Semi-automatically weighted metric to
assess the target vs expected quality

milestone. Weights are applied against
returned values.

Testing
Hours in the
Last T Days

Time This is a automatically computed
metric aggregating the total elapsed

time for the past T days per test case
(where the date is reflective off the

tested-on date).

Days Since
last tested

Time Each task will have a tested-on date,
which is subtracted from the current
date to calculate the number of days

since lasted tested.

Dev
Changes in
the last T

days

Probability
× Time

The amount of changes developers
make will influence the risk and where
we test. As changes increase in a given
period, so will the risk associated with
a particular task. We put a window on

it to keep it timely and relevant.

TABLE I: Example criteria for a RBT model. These metrics
capture coverage and/or yield across many different categories,
which allow for robust RBT testing.

The model features used are found in Table II, and fall
into the following categories: file properties, code properties,
commit action properties, and developer properties. For file
properties, the age, count, types, and size were used as
features. The file age is a representative value of age taken
from every file in a commit. The file count is the number
of files in the commit, including non-code vs code files. The
number of file types is the count of every file suffix, while
the file sizes are representative values for file sizes in the

commit. Also, the number of directories is a count of unique
directories touched in the commit. For code properties, the
lines touched and entropy were useful features. The number
of lines touched provides the count of lines that were edited,
added, or deleted, while entropy gives the variability of the
number of modifications made to files. Code complexity and
function counts help infer higher level code data, while imports
track number of dependencies and comment counts measure
source code documentation.

For commit action properties, we use whether a given file
was an addition, deletion, merge, branch, etc. For developer
properties, the number of developers implies the count of de-
velopers that touched the files in a commit, and the developer
age is the total time developer has been on project, starting
from their first commit. In the case of features represented
by vectors, such as individual file sizes, we took a statistical
spread of them by having the minimum, maximum, mean and
medium of that vector as features. User historical information
and the previous values for a feature were also helpful in
providing context for the current commit.

Ultimately, when a developer commits changes to a code-
base, the model predicts the likelihood of said commit causing
an error. If the prediction passes a certain threshold (risk
acceptance level) it alerts the developer, and provides an
explanation of the probability output using SHAP values [26].
The model’s data and metrics will also be available to use for
other QA endeavours.

IV. RESULTS

A. Improvements from Test Selection

SUPERNOVA has provided improvements to EA’s testing
teams across several different studios. Looking at Figure
6, as more test selection with RBT became automated, a
significant drop off in required testing hours was achieved.
From January 2017, before SUPERNOVA was introduced,
to one year later, automation increased every quarter from
29% to 58%, effectively doubling due to SUPERNOVA. In
this time, total hours spent testing also decreased by 55%.
With a quarterly hour decrease of ∼1500 hours, that ends up
being approximately 6000 less hours spent testing per year.
This helps teams to effectively utilize their testing efforts,
allowing for unused hours to be reallocated to further improve
the quality of our games.

In the year leading up to the launch of two high profile
games, sports game 2019 (SG19) and sports game 2020
(SG20), a large difference in QA performance was seen
between the two in Figure 7. Efficiency improvements were
not just found in working hours. This is because SUPERNOVA
was deployed in SG20, but not SG19. The mean daily fix
rate of SG20 was 67% the year leading up to launch. Com-
paratively, the mean daily fix rate of SG19 was only 25%.
This large difference caused the spike for SG19’s fix rate in
the three months leading to launch. The spike was driven by

7



nFiles ∆ nCodeFiles ∆ nFileTypes nCodeFileTypes

nUniqueDir ∆ nWorkDir ∆ nLinesAdded ∆ nLinesEdited ∆

nLinesDeleted ∆ nLinesModified ∆ nLinesAddedNewFiles ∆ nLinesDeletedRemovedFiles ∆

nLinesTotal Ψ entropy nActionAdd ∆ nActionEdit ∆

nActionDelete ∆ nActionMoveAdd ∆ nActionMoveDelete ∆ nActionBranch ∆

nActionIntegrate ∆ nP4TypeText nP4TypeUtf nP4TypeBinary

revision Θ fileSizeTotal fileSize Θ pathDepth Θ

lastModifiedElapsed Θ developersTotal developers Θ ageCodeFile Θ

ageUser nTokens ΘΨ nFunctions Ψ nFunctionParameters Ψ

nComments Ψ nImports Ψ codeComplexity ΘΨ codeComplexityAboveThresholdDiff

TABLE II: These are the features used in our defect prevention model. Entries with Θ are one dimensional arrays, and we
therefore took the minimum, maximum, mean and median of each to capture their statistical spread in tabular numeric form (i.e.
revisionMin, revisionMax, revisionMean, revisionMedian). Entries with ∆ had an additional entry created to capture historical
data for users to infer individual developer patterns (i.e. nFilesUser). Metrics with Ψ had an additional entry created for the
previous state of that metric (i.e. nLinesTotalPrev).

Fig. 6: These graphs indicate that as test selection automation
increased with the adoption of SUPERNOVA, there was a
significant drop-off of hours spent testing, as seen in October
2017 and later. The reason that the hour drop-off did not
occur earlier is because SUPERNOVA was still a prototype
in April and July 2017. Jira tracking was used to determine
the hours spent testing for QA teams. Percent automated was
determined from assigning a flag to individual test cases,
indicating whether or not that test was automated.

crunch time, as the mean fix rate prior to the spike was only
12%. Meanwhile, SG20 had only a minor crunch spike at
5 months prior to launch, since it’s mean fix rate was 45%
prior. Note that there are potentially several hundred individual
game testers for a given title, and that testing experience does

not dictate testing scope. Therefore, there is no observable
correlation between an individual game tester’s experience and
overall savings in testing hours. This means the higher average
fix rate indicates SUPERNOVA significantly reduces crunch
time for EA employees to fix bugs. This is a huge quality
of life improvement for employees, and reduces the negative
impact crunch has on EA studios.

Fig. 7: Comparison of SUPERNOVA environment with a non-
automated approach. SG20 used the automated system, SG19
used manual techniques. Bug count is the cumulative count of
bugs found during testing, fixed bugs is the cumulative count
of fixed bugs during QA, and fixed rate is fixed bugs / bug
count.

8



Test planning efforts dropped from 489 hours in SG19 to 0
hours in SG20, with 0.95 bugs found per introduced change
versus 0.65 the year prior. The maintenance time of using
SUPERNOVA, which has replaced test planning time, was
observed to be 12 hours over the period of the fiscal year
for SG20. Thus the overall reduction was roughly 97.5% in
test planning overall. There has been an observed on-boarding
time of 96 hours with SUPERNOVA for SG20, however this
is a one time cost, and not repeated. Accounting for this, the
overall test planning savings for SG20 are approximately a
75% reduction in the first year of development, with further
reductions occurring over the course of the game’s life cycle,
as that initial on-boarding time gets discounted annually.

Additionally, average bugs found per hour reported by
QA increased from 0.186 to 0.227, and overall testing time
dropped from 48800 hours in SG19 to 9776 hours in SG20.
This is because SUPERNOVA helps to reduce test scope by
roughly 80% due to a change towards more focused testing,
such as 1100 considered being reduced to 207 selected per
testing activity in SG20. The variance of SG20 is also lower
overall than SG19, at 0.0075 against 0.0083. During crunch
time this difference is further exaggerated, with a variance
of 0.0026 against 0.034. This lower variance allows for more
accurate projections when planning bug fixing, on top of the
already substantially higher fix rate. Furthermore, all of this
was accomplished while also finding more bugs to fix. SG19
found 10577 bugs compared to SG20’s 11909. So despite
finding more bugs, SG20 had a significantly higher bug fix rate
than SG19, and notably reduced variance, with SUPERNOVA
being the driving factor of these changes.

B. Improvements from Defect Prevention

SUPERNOVA’s defect prevention model was tested on an
unreleased game title during its development phase. The re-
sults show that the model’s overall macro average performance
has 71% precision, 77% recall, and an F1 score of 74%. The
minority class performance, which is the positive detection of
risky commits, has a 49% precision, 66% recall, and an F1
score of 56%. The majority class performance meanwhile had
94% precision, 88% recall, and an F1 score of 91%. The test
set included 1,215 commits labelled as not bug inducing, and
214 commits labelled as bug inducing, since the data set was
imbalanced at a ratio of approximately 6:1. These commits
flagged as bug inducing represent nearly 20% of the commits
per week which would have otherwise led to additional work
hours being put in to fix bugs.

V. DISCUSSIONS AND FUTURE WORK

In this paper we show that by automating test selection,
significant gains can be made across a variety of metrics, such
as staff hours, cost, efficiency and consistency. SUPERNOVA
is a stepping stone on the path to full testing automation,
but for now it should be viewed as a way to transition
from old testing methods to new. Future work will include
generation of test cases, as well as machine or deep learning

models to replace the current RBT and machine learning
implementations. Figure 8 shows what deep learning would
look like for the test selection process. Essentially, the human
factor for weight determination is eliminated, therefore making
the process fully automated. To do so, there are two supervised
learning options. The first is to simply check which test cases
triggered a bug, and which did not, and use this to update
the model weights. The second is to randomly sample test
cases along with the model output test cases, and check
accuracy of both in relation to bugs triggered. This allows
for flexibility depending on if test selection needs to be done
by the algorithm or not.

Fig. 8: Future test selection machine learning architecture

Any suitable type of machine or deep learning model may
be used to generate and/or refine the test case selection. For
example, the test case selection model may be a decision tree, a
Gaussian tree, a Bernoulli distribution, a random forest, linear
regression, a neural network, a Bayesian network, or any va-
riety of heuristics (e.g. genetic algorithms, swarm algorithms,
etc.). These test case selection models could be trained using
data that include outcomes from test cases selected in previous
rounds of testing (e.g. detection of a bug or not). Finally, an
analytic comparison of the test case selection model can be
made versus the random selection of test cases.

As for the defect prevention initiative, the next steps involve
improving the SZZ algorithm and supplementing the existing
machine learning algorithm with a method that captures se-
mantic code properties. For the former, we are planning on
adopting the R-SZZ variant, as it achieved notably better per-
formance by ignoring formatting, commenting, and importing
changes, while being resilient to refactoring changes. For the
latter, this typically involves extracting the abstract syntax
trees (ASTs) from a commit’s code blocks, and then using
an algorithm to perform semantic analysis on these ASTs.
This has been demonstrated by CLEVER using clone detection
to reduce their model’s false positive rate, by comparing
suspected bug inducing code with known bug inducing code.

An alternative method we are investigating is using deep
learning to extract features from these ASTs, and then com-

9



paring these features with known bug causing features to
infer meaning through embeddings [27]. Embeddings are map-
pings between categorical variables and vectors of continuous
numbers, just like encodings, but differ in the context of
deep learning. Instead of just static vectors, they are learned
representations which are updated as the set of categorical
variables change. They also have the benefit of being lower
dimensional than their source categorical variables. This is
quite useful for tasks involving programming and source code,
as the scale is quite large and variance between programming
languages is significant.

VI. CONCLUSION

The rapidly advancing costs associated with game and
software testing have become prohibitive towards brute force
methods. Many market solutions have sprung up to solve this,
yet none of them are capable of working with test cases
as complex as the ones at EA, or are able to fit into our
existing pipelines. SUPERNOVA allows for QA testers to
substantially reduce the amount of time spent on the planning
of testing programs, and divert this to other more productive
ventures. Furthermore, it seeks to tackle the other end of
the problem as well, by preventing defects from entering the
system altogether. It increases efficiencies and is more reliable
than traditional methods, allowing for better forecasting. EA
is excited to continue moving forward with this innovative
approach in games testing, to keep giving our players the best
experiences.

REFERENCES

[1] J. Munro, C. Boldyreff, and A. Capiluppi, “Architectural Studies of
Games Engines — The Quake Series,” in 2009 International IEEE Con-
sumer Electronics Society’s Games Innovations Conference, pp. 246–
255, 2009.

[2] M. Culibrk, D. Ispir, and A. Senchenko, “Optimized Test Case Se-
lection For Quality Assurance Testing Of Video Games,” 2020. US
20200310948 A1.

[3] Z. Ereiz et al., “Automating Web Application Testing Using Katalon
Studio,” Zbornik Radova Medunarodne Naučne Konferencije o Digital-
noj Ekonomiji DIEC, vol. 2, no. 2, pp. 87–97, 2019.

[4] A. Bruns, A. Kornstadt, and D. Wichmann, “Web Application Tests with
Selenium,” IEEE software, vol. 26, no. 5, pp. 88–91, 2009.

[5] P. Ramya, V. Sindhura, and P. V. Sagar, “Testing Using Selenium
Web Driver,” in 2017 Second International Conference on Electrical,
Computer and Communication Technologies (ICECCT), pp. 1–7, IEEE,
2017.

[6] O. Shakurova, “Automating UI Tests for a Web Application Using Test-
Complete,” 2015. BSc Thesis HAAGA-HELIA Ammattikorkeakoulu.

[7] S. Al-Zain, D. Eleyan, and J. Garfield, “Automated User Interface
Testing for Web Applications and TestComplete,” in Proceedings of the
CUBE International Information Technology Conference, pp. 350–354,
2012.

[8] S. Rapps and E. J. Weyuker, “Selecting Software Test Data using Data
Flow Information,” IEEE Transactions on Software Engineering, no. 4,
pp. 367–375, 1985.

[9] M. Gligoric, L. Eloussi, and D. Marinov, “Practical regression test
selection with dynamic file dependencies,” in Proceedings of the 2015
International Symposium on Software Testing and Analysis, ISSTA
2015, (New York, NY, USA), p. 211–222, Association for Computing
Machinery, 2015.

[10] O. Legunsen, F. Hariri, A. Shi, Y. Lu, L. Zhang, and D. Marinov, “An
extensive study of static regression test selection in modern software
evolution,” FSE 2016, (New York, NY, USA), p. 583–594, Association
for Computing Machinery, 2016.

[11] L. Zhang, “Hybrid regression test selection,” ICSE ’18, (New York, NY,
USA), p. 199–209, Association for Computing Machinery, 2018.

[12] D. Distefano, M. Fähndrich, F. Logozzo, and P. W. O’Hearn, “Scaling
Static Analyses at Facebook,” Communications of the ACM, vol. 62,
no. 8, pp. 62–70, 2019.

[13] M. Nayrolles and A. Hamou-Lhadj, “CLEVER: Combining Code
Metrics with Clone Detection for Just-in-Time Fault Prevention and
Resolution in Large Industrial Projects,” in Proceedings of the 15th Inter-
national Conference on Mining Software Repositories (MSR), pp. 153–
164, 2018.

[14] J. Śliwerski, T. Zimmermann, and A. Zeller, “When Do Changes Induce
Fixes?,” ACM SIGSOFT Software Engineering Notes, vol. 30, no. 4,
pp. 1–5, 2005.

[15] M. Kondo, D. M. German, O. Mizuno, and E.-H. Choi, “The Impact of
Context Metrics on Just-in-Time Defect Prediction,” Empirical Software
Engineering, vol. 25, no. 1, pp. 890–939, 2020.

[16] S. Tabassum, L. L. Minku, D. Feng, G. G. Cabral, and L. Song, “An
Investigation of Cross-Project Learning in Online Just-in-Time Software
Defect Prediction,” in 2020 IEEE/ACM 42nd International Conference
on Software Engineering (ICSE), pp. 554–565, IEEE, 2020.

[17] T.-H. Chen, M. Nagappan, E. Shihab, and A. E. Hassan, “An Empirical
Study of Dormant Bugs,” in Proceedings of the 11th Working Conference
on Mining Software Repositories (MSR), pp. 82–91, 2014.

[18] M. Felderer, C. Haisjackl, V. Pekar, and R. Breu, “An exploratory study
on risk estimation in risk-based testing approaches,” vol. 200, 01 2016.

[19] M. Felderer, C. Haisjackl, R. Breu, and J. Motz, “Integrating manual and
automatic risk assessment for risk-based testing,” vol. 94, pp. 159–180,
01 2012.

[20] N. N. Zolkifli, A. Ngah, and A. Deraman, “Version Control System: A
Review,” Procedia Computer Science, vol. 135, pp. 408–415, 2018.

[21] C. Mills, J. Pantiuchina, E. Parra, G. Bavota, and S. Haiduc, “Are bug
reports enough for text retrieval-based bug localization?,” pp. 381–392,
09 2018.

[22] K. Herzig, S. Just, and A. Zeller, “It’s not a bug, it’s a feature:
How misclassification impacts bug prediction,” in Proceedings of the
2013 International Conference on Software Engineering, ICSE ’13,
p. 392–401, IEEE Press, 2013.

[23] S. Herbold, A. Trautsch, F. Trautsch, and B. Ledel, “Problems with
szz and features: An empirical study of the state of practice of defect
prediction data collection,” Empirical Software Engineering, vol. 27, 03
2022.

[24] G. Rosa, L. Pascarella, S. Scalabrino, R. Tufano, G. Bavota, M. Lanza,
and R. Oliveto, Evaluating SZZ Implementations Through a Developer-
Informed Oracle, p. 436–447. IEEE Press, 2021.

[25] S. Davies, M. Roper, and M. Wood, “Comparing text-based and
dependence-based approaches for determining the origins of bugs,”
Journal of Software: Evolution and Process, vol. 26, 01 2014.

[26] S. M. Lundberg, G. G. Erion, and S.-I. Lee, “Consistent individualized
feature attribution for tree ensembles,” arXiv preprint arXiv:1802.03888,
2018.

[27] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “Code2vec: Learning
distributed representations of code,” Proc. ACM Program. Lang., vol. 3,
jan 2019.

10


	Introduction
	Related Work
	Methodology
	Overview
	Use Case #1: Automated Test Selection with Risk Based Testing
	Use Case #2: Defect Prevention with Machine Learning

	Results
	Improvements from Test Selection
	Improvements from Defect Prevention

	Discussions and Future Work
	Conclusion
	References

