
s1290102 Hajime Fukai

VOYAGER: An Open-Ended Embodied 
Agent with Large Language Models
Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar et al.

arXiv:2305.16291v1 [cs.AI] 25 May 2023



Overview

• This research introduces “VOYAGER”, LLM-powered lifelong learning 
agent for Minecraft


• Continuously explores the world, acquires diverse skills, and makes 
novel discoveries


• With its skill library, it can memorize how to solve various tasks


• Generalizable; able to apply learned skills in different worlds


• Interpretable; learned skills can be easily understood by humans

Introduction

VOYAGER: An Open-Ended Embodied Agent with Large Language Models



• Minecraft does not impose any specific goals on the player


• It is a sandbox with various structures, items and enemies


• “Open-ended” environment


• Provides suitable environment to measure how well agents can explore 
and make new discoveries, without human intervention


• E.g. mining new ore, crafting new items, building a house, fighting 
against enemies…


• Classical approaches: Reinforcement Learning, Imitation Learning…


• Difficulty in systematic exploration, interpretability and generalization
VOYAGER: An Open-Ended Embodied Agent with Large Language Models

Why Minecraft?
Introduction



• VOYAGER consists of three key components:

VOYAGER: An Open-Ended Embodied Agent with Large Language Models

Components of VOYAGER
Architecture of  the agent



• An Automatic Curriculum presents the agent with the next goal to be 
achieved


• Leverages the vast knowledge contained in GPT-4


• The input prompt to GPT-4 consists of:


• The agent’s current state:


• E.g. inventory, equipment, nearby blocks, health, position…


• Previously completed and failed tasks


• Additional context


• Generated by GPT-3.5, based on game knowledge base
VOYAGER: An Open-Ended Embodied Agent with Large Language Models

Automatic Curriculum
Architecture of  the agent



VOYAGER: An Open-Ended Embodied Agent with Large Language Models

Tasks proposed by the automatic curriculum



• A Skill Library stores and retrieves learned skills


• Each skill is represented with executable JavaScript code


• Controls player character via MineFlyer API


• Skill generation


• The input prompt to GPT-4 consists of:


• Control primitive APIs


• Relevant skills


• Generated code from the last round, environment feedback, execution errors


• Agent’s current state

VOYAGER: An Open-Ended Embodied Agent with Large Language Models

Skill Library
Architecture of  the agent



• A newly generated skill is added to skill library if it passes self-
verification


• Indexed by skill description


• Generated by GPT-3.5

VOYAGER: An Open-Ended Embodied Agent with Large Language Models

Skill Library
Architecture of  the agent

Top: Adding a new skill / Bottom: Skill retrieval



VOYAGER: An Open-Ended Embodied Agent with Large Language Models

Skill Library
Architecture of  the agent

async function craftWoodenPlanks(bot) {

  const logNames = ["oak_log", "birch_log", "spruce_log", "jungle_log" , 
"acacia_log", "dark_oak_log", "mangrove_log"];

  const plankNames = ["oak_planks", "birch_planks", "spruce_planks", "jungle_planks", 
"acacia_planks", "dark_oak_planks", "mangrove_planks"];

  const logInInventory = logNames.find(logName => 
bot.inventory.count(mcData.itemsByName[logName].id) > 0);

  if (!logInInventory) {

    bot.chat("No wooden log in inventory. Mining a wooden log...");

    await mineWoodLog(bot);

  }

  const logIndex = logNames.indexOf(logInInventory);

  const plankName = plankNames[logIndex];

  bot.chat(`Crafting 4 ${ plankName }...`);

  await craftItem(bot, plankName, 1);

  bot.chat(`4 ${plankName} crafted.`);

}


Skill library example 1: craftWoodenPlanks.



• LLMs struggle to produce the correct code in one shot


• E.g. Hallucination


• An Iterative Prompting Mechanism tries to solve this problem


1. Execute the generated program and obtain feedbacks from the 
game and execution errors (if any)


2. Incorporate the feedback into GPT-4’s prompt for code refinement


3. Repeats 1 and 2 until a self-verification module confirms the 
task completion


4. Add the program to the skill library
VOYAGER: An Open-Ended Embodied Agent with Large Language Models

Iterative Prompting Mechanism
Architecture of  the agent



VOYAGER: An Open-Ended Embodied Agent with Large Language Models

Self-verification examples.



• They managed to compare VOYAGER with the following methods. 
These methods were originally designed for NLP tasks:


• ReAct


• ReAct: Synergizing Reasoning and Acting in Language Models


• Reflexion


• Reflexion: Language Agents with Verbal Reinforcement Learning


• AutoGPT


• Significant-Gravitas/AutoGPT: An experimental open-source 
attempt to make GPT-4 fully autonomous.

VOYAGER: An Open-Ended Embodied Agent with Large Language Models

Baselines
Experiments



• The average number of iterations to reach each milestone


• Fractions show how many times the agent could reach the milestone


• VOYAGER consistently progressed through tech tree with fewer 
iterations

VOYAGER: An Open-Ended Embodied Agent with Large Language Models

Results against baselines
Experiments



VOYAGER: An Open-Ended Embodied Agent with Large Language Models



• Shows how far the agents could traverse


• VOYAGER could navigate 2.3x longer distance compared to baselines

VOYAGER: An Open-Ended Embodied Agent with Large Language Models

Results against baselines
Experiments



• They removed each component of VOYAGER to study their impact on 
performance


• As a result, it turned out


• Automatic curriculum is crucial for consistent progress


• VOYAGER fails to discover new items


• VOYAGER without skill library tends to stagnate in later stages


• Self-verification is the most important among all the feedback 
types


• GPT-4 significantly outperforms GPT-3.5 in code generation
VOYAGER: An Open-Ended Embodied Agent with Large Language Models

Ablation Studies
Experiments



VOYAGER: An Open-Ended Embodied Agent with Large Language Models

Left: Ablation studies for the automatic curriculum, skill library, and GPT-4

Right: Ablation studies for the iterative prompting mechanism



• The proposed LLM-empowered agent could explore the world continuously, 
develop novel skills, and make new discoveries without human invention


• Limitations:


• Cost


• GPT-4 API costs 15x more than GPT-3.5


• Inaccuracies


• The iterative prompting mechanism sometimes fails to generate the 
correct skill


• Hallucinations


• The automatic curriculum occasionally proposes unachievable tasks
VOYAGER: An Open-Ended Embodied Agent with Large Language Models

Possibilities and limitations
Conclusions



Thank you for your attention


