Dungeons & Replicants lI:
Automated Game Balancing
Across Multiple Difficulty
Dimensions via Deep Player
Behavior Modeling

Pfau, Johannes; Liapis, Antonios; Yannakakis, Georgios N; Malaka, Rainer
IEEE Transactions on Computational Intelligence in Al and Games

Goal

Providing a more effective and efficient method
for game balancing.

- Deep Player Behavior Modeling

- dataset of player behavior in Aion(MMORPG).

Dungeons & Replicants |l

- The approach introduced in this paper.

- A method for automated game balancing across multiple
difficulty dimensions using Deep Player Behavior Modeling.

- training Al "replicants" to reproduce the playing strategies of
individual players

Deep Player Behavior Modeling

- It allows for individualized player behavior mapping.

- It trains Al "replicants" to automatically test and balance a
game.

- It allows for the generation of agent behavior from
player-constructed models, providing developers with insights
on popular player strategies, parameter tuning, and the likely
outcome of strategies

player state

target state

kill

previouss

playerHPpercentage ()
playerMPpercentage ()

|}

playerlsRooted ("}

playerlsSilenced ./

playerlsBound ()

playerlsStunned .“v

\

playerisAetherhold ()

W

playerBuffCount (")
playerDebuffCount (")
playerlsShielded .
targetHPpercentage
targetMPpercentage
targetFocusesPlayer

distance

targetlsStunned O

targetisAetherhold Q

“ palIeA azis

... Size varied ...

Neural Network
architecture for DPBM

anjeA piemal ||1ys

skill reward value

Game environment

- The MMORPG Aion (NCSoft, 2008)
- Collected primary player data from experienced Aion players
- Classes (melee, ranged, rogue, buffer, debuffer, healer, tank, etc.)
- PVE settings

Proficiency Metric

zn: aw + B(1 —t) + ’yhpa—l—é(l—hpo)
pos | (4 B+ v+ d)n?

v. The binary value of having won against the opponent.
t: The normalized temporal duration of the fight.

hp,: The agent’s remaining hit point (HP) percentage.

hp,: The opponent’s remaining HP percentage.

Experiment

- 213 DPBM-driven agents as replicants of the plavers

DESCRIPTION OF THE DIFFICULTY PARAMETERS, AND HOW THEY SCALE IN

- 8 scenarios

TABLE II

PVE ENEMY TYPES AND THEIR DIFFICULTY PARAMETERS

TABLE III

EVERY ITERATION

Difficulty parameters

PvE enemy | Primary | Secondary
Melee Damage

Ranged Range

Rogue Attack speed

Buffer Buffs g
Debuffer Debuffs R (REIE
Healer Heal amount

Tank Defense

Many Numbers

Param. | Explanation | Scaling

Hit Starting and maximum hit points (HP) | 25% increase

Points of each enemy

Damage | Damage applied per attack 25% increase

Range Maximum distance for attack, and | 25% increase
spawn offset

Attack Frequency of attacks 25% increase

speed

Buffs Cumulative strengthening spells applied | Additional buff
to self

Debuffs Cumulative weakening spells applied to | Additional
opponent debuff

Heal HP healed at regular interval, up to the | 25% increase

amount maximum HP

Defense Reduction of physical and magical | 25% increase
damage done by opponent

Numbers | Number of (identical) enemies in the | +1 enemy per 2

encounter

iterations

Experiment

Fig. 2. In-game screenshot of the PVE benchmark in Aion, with a replicant
fighting in 100 combat encounters against enemies with different difficulty
parameters.

Result General finding

1

09

0,8
0,7

0,6

0,5

proficiency

04

0,3

0,2

0,1
0 °
enemy type

Fig. 3. Resulting ¢ proficiency of all 213 replicants against the eight different
PvE encounter conditions.

Result Differences between classes

outperformed » outperforming

Some particular deviant cases GLADIATOR
- Gladiators performed significantly TENF
. ASSASSIN

worse against Debuffers. |
RANGER
- Templars performed significantly SORCERER
worse against Melee and Healers, SPIRITMASTER
but significantly better against CLERIC
Tanks. | | ~ CHANTER
- Spiritmasters performed GUMNER
significantly worse against Tanks. -

-50 -40 -30 -20 -10 0 10 20 30 40

Fig. 5. Boxplot of normalized ¢ proficiencies of classes throughout the eight
different encounters.

Result

Q1. Can imbalances between in-game classes be detected (through batched
simulation analysis with generative player modeling)?

A1. It can be detected by generative player modeling and iterative simulations.

Q2. Does the segmentation across multiple difficulty dimensions help reveal the
strengths and weaknesses of particular classes?

A2. Assessing multiple difficulty dimensions reveals class-specific strengths and
weaknesses and provides overall insight.

Q3. Can the field of automated game testing harness results of generative player
modeling simulations to compute balanced configurations across classes?

A3. Atomic replicants across the player population can be used to compute
combination of parameter that lead to a balanced state.

Conclusion

Automatic game balancing can be achieved by having a play trace of a group of
players.

This procedure can be applied to other games and genres as long as you provide
- entities to balance (such as classes),

- meaningful benchmark simulations(e.g., combat situations),

- low-level interaction data that is representative of the player population.

Thank you for listening

