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Abstract—Video game testing has become a major investment
of time, labor, and expense in the game industry. Particularly
the balancing of in-game units, characters, and classes can cause
long-lasting issues that persist years after a game’s launch. While
approaches incorporating artificial intelligence have already shown
successes in reducing manual effort and enhancing game develop-
ment processes, most of these draw on heuristic, generalized, or
optimal behavior routines, while actual low-level decisions from
individual players and their resulting playing styles are rarely
considered. In this article, we apply deep player behavior modeling to
turn atomic actions of 213 players from six months of single-player
instances within the MMORPG Aion into generative models that
capture and reproduce particular playing strategies. In a subse-
quent simulation, the resulting generative agents (“replicants”)
were tested against common NPC opponent types of MMORPGs
that iteratively increased in difficulty, respective to the primary
factor that constitutes this enemy type (Melee, Ranged, Rogue,
Buffer, Debuffer, Healer, Tank, or Group). As a result, imbalances
between classes as well as strengths and weaknesses regarding
particular combat challenges could be identified and regulated
automatically.

Index Terms—Artificial intelligence, automatic playtesting,
game balance, massive multiplayer online games, user modeling.

I. INTRODUCTION

THE exploding growth of the games industry has ramped
up player demands for content and mechanics to extents

that even large companies struggle to manage [1]. Beyond orig-
inal content in new games, moreover, the online connectivity
of game platforms and dedicated online games raise demands
for changes, fixes, and innovations in already published titles.
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Notably, 80% of the 50 most popular games on the major
distribution platform Steam require critical updates after
launch [2]. Among the most important issues published game
face is balancing, and prominent competitive online games that
launched years ago still undergo persistent balance patches:
examples include StarCraft II (Blizzard, 2010), Dota 2 (Valve,
2013), and Guild Wars 2 (NCSoft, 2012).

According to the definition of Sirlin [3], a game is “balanced
if a reasonably large number of options available to the player
are viable” (where viability sets the requirement of having many
meaningful choices throughout a game), while “players of equal
skill should have an equal chance at winning.” Together with
frequently desired asymmetrical configuration possibilities of
these options, this inherently leads to combinatorial explosion,
which can become hazardous for the enjoyability of the game
and the satisfaction of its players. Even worse, Hullett et al.
[4] highlight that balancing issues most of the time “only
become apparent after many months of play.” As opposed to
straightforward fixable bugs, glitches, and solvability aspects,
the trouble with balancing issues is that they do not only appear
during the launch of a newly published game. Instead, balancing
is an ongoing, repetitive task that is heavily influenced by the
perceptions of the player community: “after each patch, often
the discussion begins again, factoring in new balancing or
abilities for each class” [5]. In the game industry, balancing
is most often approached through long-term expert analysis,
excessive human playtesting, and persistent debates with the
community [6].

Due to these demands for playtesting before or after a game’s
launch, artificial intelligence (AI) has often been incorporated
in the production and testing process [7]. For instance, AI can
predict users’ high-level behavior [8] (if they will leave the
game, if they will make purchases) or their motivation levels [9]
based on past trends in the userbase. Specifically with regards
to automated playtesting, AI agents have been used to discover
bugs or game crashes [10], constraint violations [11], [12] to
identify dead-end game states [13] or unreachable states [14].
Notably, most of these agents follow ad hoc heuristics and
constraints and do not necessarily match how players act in their
games. The work of Holmgård et al. [15] explored the definition
of multiple procedural personas which could test the game as
archetypal players, although the definition of such personas still
relied on designer input rather than direct human traces.
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This article applies deep player behavior modeling
(DPBM) [16] which trains AI “replicants” in order to auto-
matically test and balance a game. Within DPBM, individual
decision-making from game states is mapped to a preference
distribution of actions via machine learning, approximating
the replication of individual players. In contrast to optimal or
generalized models, the DPBM approach allows for the consid-
eration of many (potentially viable) playing styles that players
may employ instead of reducing it to a global decision-making
module. In previous work, DPBM showed to be successful in
generating agents capable of offering challenges on the same
proficiency level [17] and convinced other players that they
replicated individual behavior believably [18].

To test the efficacy of DPBM, in this work, we use a
dataset of the popular massively multiplayer online role-playing
game (MMORPG) Aion (NCSoft, 2008) consisting of atomic
decision-making that was recorded throughout six months and
213 players in one-versus-one combat situations [17]. From this
dataset, we generated DPBM-driven agents for all players and
evaluated their proficiency against eight different types of enemy
encounters in a 2-D benchmark that manipulated enemy-specific
and general difficulty attributes of the enemy. For the empirical
assessment of the resulting proficiencies, we used a metric that
approximates the quality of performance in terms of effective-
ness and efficiency.

We significantly extend previous work [19] that evaluated the
balance between classes in one-versus-one combat scenarios
against the environment or against other classes. This article
focuses exclusively on player versus environment scenarios and
explores how different players and classes perform against oppo-
nents that scale across multiple dimensions of difficulty. While
previous work [19] observed the effects of increasing plain
offensive (attack) and defensive (maximal hit points) attributes
of the benchmark opponents, this work also interprets the effects
of increasing various other difficulty dimensions (range, attack
speed, self-improving buffs, target-weakening debuffs, healing,
defense, and the number of enemies). The various enemies that
replicants are tested against follow the patterns of the genre’s
main NPC enemy types (Melee, Ranged, Rogue, Buffer, De-
buffer, Healer, Tank, or group of enemies, respectively). Evaluat-
ing the capabilities for automated game balancing and individual
proficiency estimation, we aim to answer the following research
questions.

1) Can imbalances between in-game classes be detected
through batched simulation analysis incorporating gen-
erative player modeling?

2) Does the segmentation across multiple difficulty dimen-
sions aid in exposing the strengths and weaknesses of
particular classes?

3) Can the field of automated game testing harness results
of generative player modeling simulations to compute
balanced configurations across classes?

We hypothesize that agents that are representative of indi-
vidual players’ decision-making are able to detect differences
in performance between classes and resemble the population
closely. Under these conditions, DPBM should provide a viable
technique to map behavioral patterns to proficiency scores and

to inform automated game balancing empirically. Furthermore,
we assume that situational strengths and weaknesses of partic-
ular classes are empirically detectable by contrasting various
dimensions of difficulty. With insights from these evaluations,
we expect to implement a methodology to automatically ad-
just in-game parameters toward interclass balance. This work
contributes to games user research and game development in
academia and industry by introducing a novel technique capa-
ble of enhancing game testing processes with the potential of
reducing the associated effort.

II. RELATED WORK

Automatic simulations of video game play have become
viable and efficient alternatives and improvements to tedious
and nonexhaustive human testing for the purpose of finding
critical errors, solvability investigations, or parameter tuning.
The majority of scientific approaches focus on detecting log-
ical bugs or game crashes, such as Radomski et al. [11] or
Varvaressos et al. [12] who identified violations of manually de-
fined constraints via simulated play. Buhl et al. [20] highlighted
the utility of autonomous testing routines in everyday continuous
integration and continuous delivery pipelines by contrasting
the amount of encountered bugs against previous developments
without them. Zheng et al. [21] designed a game playing agent
utilizing deep reinforcement learning, while Chan et al. [10]
made use of a neuroevolution approach that on top of playing
was able to report on the constellation and sequence of actions
that lead to game malfunctions. Furthermore, Bécares et al. [22]
mapped human tester playthrough records to semantic replay
models using Petri nets, while Iftikhar et al. [23] and Schaefer
et al. [24] introduced frameworks for autonomously testing
generic games of the platformer or puzzle genre, respectively.

Several studies tackle solvability, such as those of Pow-
ley et al. [25] or Volkmar et al. [26] that assisted the level design
of (procedurally generated) games by assuring potential solu-
tions are feasible. Following a mixed-initiative [27] approach,
Butler et al. [28] allowed the designer to specify the diffi-
culty progression via a user interface while a constraint solver
ensured the solvability of generated puzzles. Schatten et al.
[14] simulated large-scale dynamic agent systems to test quest
solvability in MMORPGs. Pfau et al. [13] introduced a generic
adventure solver traversing point-and-click adventure games via
reinforcement learning and reporting crashes, dead-ends, and
performance issues. Van Kreveld et al. [29] and Southey et al.
[30] assessed difficulty or interestingness approximations of
levels or mechanics by machine learning of descriptive in-game
metrics.

Regarding balancing, scientific approaches often build on
simulations that iteratively assess balance criteria and dynami-
cally tune in-game parameters based on the former. Jaffe et al.
[31], García-Sanchez et al. [32], Volz et al. [33], Zook et al.
[34], and De Mesentier Silva et al. [35] applied this paradigm
to board or card games, which was amplified by Mahlmann
et al. [36] by introducing procedurally generated cards on top
of these simulations. In other genres, Beau and Bakkes [37]
utilized Monte-Carlo Tree Search for balancing units of Tower
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Defense games while Keehl and Smith [38] extended this to
generic Unity games, Morosan and Poli [39] tweaked difficulty
specifications in RTS and Arcade games after neuroevolution
agents assessed these and Leigh et al. [40] dynamically balanced
strategies though the coevolution of two competing agents play-
ing a Capture The Flag game. Early work in AI and games
research [41]–[43] introduced the notion of interest in prey-
predator games and used metrics inspired by the challenge and
curiosity factors of Malone [44] to tune the behavior of enemies
in Pac-Man-like games so that the game maintains its interest
levels for an individual player. A similar approach was taken for
racing [45] and physical interactive games [46].

Similarly to the approach outlined in this work,
Holmgård et al. [15] conflated atomic player behavior into
procedural personas to simulate and test different play styles
in a Dungeon Crawler game and Gudmundsson et al. [47]
utilized atomic choices in order to predict the difficulty of
various levels of a Match-3-Puzzle game. Nonetheless, even
if some approaches process some kind of human player input,
incorporating actual information about individual and atomic
player behavior has not been tackled yet. Generative player
modeling [48] connotes the generation of agent behavior
from player-constructed models and has the potential to fuse
automatic simulation methods with behavioral information,
giving the developers the opportunity to receive practically
immediate insights on which player strategies are popular,
dominant and/or may require rework. Further generative player
modeling is able to inform developers on how parameter tuning
will likely alter the outcome of strategies before presenting
it to the community, how implemented dynamic difficulty
approaches can be informed about parameter thresholds, and
how to automatically balance game mechanics after large-scale
permutations of classes, setups, parameters, and behavior in all
stages of development.

III. DEEP PLAYER BEHAVIOR MODELING IN AION

This section describes the selected game, training dataset, and
player modeling methodology taken to create the replicants used
in experiments of this article.

A. Game Environment

The MMORPG Aion (NCSoft, 2008) was chosen as a rep-
resentative game within a genre that considerably suffers from
the aforementioned balancing issues. Aion includes a number of
character classes which encompass a typical set of playstyles.
Melee classes (Gladiator, Templar, Assassin) mainly deal close-
combat damage, in contrast to Magic classes (Sorcerer, Spir-
itmaster, Gunner) or Rangers. Heal classes (Cleric, Bard) deal
less damage but offer additional support, while Chanters excel at
the latter. Even if many in-game situations involve multiplayer
constellations, all classes are able to perform on their own in
principle. Combat is mainly fought out by activating skill actions
that harm the opponent(s) and/or benefit the player character.
Different strategies are possible depending on the skills used,
and their sequence. While these strategies rarely maximize
efficiency, they resemble situational preferences that emerge

TABLE I
ARCHETYPES, CLASSES, UNIQUE SKILLS PER CLASS, AND NUMBER OF

PLAYERS OF EACH CLASS IN THE DATASET

in personal play styles, such as improving one’s offensive or
defensive capabilities or controlling the opponent’s actions.

B. Dataset of Aion Players

In order to train the models with the necessary low-level
state-action mapping, primary player data were collected among
experienced Aion players [49]. Over the course of six months,
213 players were recorded within a daily single-player dungeon
instance in challenging one-versus-one combat situations [17],
totaling to ∼ 280 000 actions. Table I shows the number of
players per class in the dataset. For the best compromise between
ecological validity of the data and modifiability and operational-
ity of the game code, player recordings and later benchmark
simulations took place on a private server of Aion. The data
were collected between July and December 2019. The dataset,
explanations and precomputed examples have been published2

to the Open Science Framework (OSF).

C. Deep Player Behavior Modeling

DPBM realizes individual generative player modeling by as-
sessing atomic player behavior in a state-action architecture and
establishes a mapping among these via machine learning [16].
For generating a replicative agent that is representative of a
single individual, the recorded behavioral data from all relevant
observations was retrieved from the underlying database and fed
into a feed-forward multilayer perceptron (MLP) employing a
softmax activation function, a stochastic gradient descent opti-
mizer with categorical crossentropy loss function and trained via
backpropagation. The input layer consists of 22 nodes describing
the current game state plus a set of nodes representing the pre-
ceding skill. Consisting of the same set of skill nodes, the output
layer characterizes the probability distribution of action choices
with respect to the individual player and the input situation
(cf., Fig. 1). The number of skill nodes varied per class,
(42− 78), as shown in Table I.

The network was initialized randomly, contained four hidden
layers with equal size to the input layer and was trained over 1000
epochs, based on insights from previous work [16]–[18], [50],
[51]; benchmarks prior to the study also indicated diminishing
returns with more parameters (more and wider layers) and
epochs.

2[Online]. Available: https://osf.io/3ktc6/
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Fig. 1. Neural network architecture for DPBM, with game state as input and
skill usage preference as output. All layer sizes varied depending on the skill set
of the player class.

When exposed to the testing environment, the trained model
was applied generatively to retrieve a set of action probabili-
ties given the occurring state description at real-time. After a
weighted choice, the resulting skill was executed, followed by
querying the DPBM for the next situation, effectively approxi-
mating the learned behavior from the original player’s battles.
Based on the player modeling taxonomy of Yannakakis et al.
[7], [52], this implementation realizes a model-free (bottom–up)
player modeling approach mapping gameplay data to actions
via classification. According to the player modeling description
framework of Smith et al. [48], DPBM directly utilizes game
actions (domain) to generate (purpose) individually (scope)
modeled behavior by means of induced (source) training of
machine learning techniques.

This article uses DPBM replicants pretrained from previous
work [17]. Each replicant is trained on the data of a single user.
Overall, testing prediction accuracies of the employed DPBMs
averaged to 61.3% within Top-1, 75.3% within Top-5, and
81.3% within the Top-10 most probable actions (using a 80–20
holdout validation method). Similar testing accuracies have led
to convincing gameplaying agents in prior work, which tested
whether players would notice when real players were replaced in
live online matches by their DPBM substitute [18] and to agents
that produced player statements about “the ability to learn from

TABLE II
PVE ENEMY TYPES AND THEIR DIFFICULTY PARAMETERS

previous battles and the adaptation to the player’s own behavior,
combos, rotations and/or strategies to their enemy”[17].

D. Proficiency Metric

To assess how agents fare in different combat situations, we
construct a proficiency metric which considers four variables
measured at the end of a one-versus-one combat situation.

1) The binary value of having won against the opponent (w).
2) The normalized temporal duration of the fight (t).
3) The agent’s remaining hit point (HP) percentage (hpa).
4) The opponent’s remaining HP percentage (hpo).
All variables lie between 0 and 1, and the final proficiency

scoreφ consists of a weighted sum of these measures normalized
over weights and the sum of observations (n). Equation (1)
shows how the final proficiency score is calculated, with 0 being
a worst-case scenario and 1 being a best-case scenario. Note that
all weights (α, β, γ, δ) are 1 in this article, offering the same
importance to each of the four variables

φ =

n∑

i,j=1

αw + β(1− t) + γhpa + δ(1− hpo)

(α+ β + γ + δ)n2
. (1)

IV. EXPERIMENTAL SETUP

This article focuses on the proficiency of different players and
classes against different scripted encounters with enemies in a
player versus environment (PvE) setting. Using the 213 DPBM-
driven agents as replicants of the players that participated in
the data collection experiment, eight scenarios are designed
with different types of encounters typical of PvE challenges
in Aion. Each replicant fights against different versions of the
same encounter per condition, where two difficulty parameters
are adjusted incrementally. The primary difficulty parameter is
idiosyncratic to this type of enemy (e.g., more difficult ranged
enemies may have more range) while the secondary difficulty pa-
rameter is always the number of hit points (HP) that each enemy
has. Table II shows the eight different conditions, and Table III
explains each parameter and how it scales. Each replicant fights
against 100 versions of the encounter per condition (cf., Fig. 2),
at different values for each difficulty parameter: each parameter
is scaled iteratively for ten total iterations per parameter. Note
that the Many condition only scales the number of enemies five
times instead of ten since the encounters become extremely
difficult when fighting more than five enemies. For the Many
condition, therefore, 50 different parameter combinations are
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TABLE III
DESCRIPTION OF THE DIFFICULTY PARAMETERS, AND HOW THEY SCALE IN

EVERY ITERATION

Fig. 2. In-game screenshot of the PvE benchmark in Aion, with a replicant
fighting in 100 combat encounters against enemies with different difficulty
parameters.

tested rather than 100 since the replicant fought two encounters
for each parameter combination.

This article focuses on the proficiency metric (φ) presented
in Section III-D and explores how it fluctuates depending on the
player, the player’s class, the type of enemy (condition), and the
values of the different difficulty parameters. When calculating
φ for the Many condition, the hit points [hpo in (1)] is the
average remaining HP of all opponents. When comparing φ
scores directly, we apply the Welch’s t-test for ascertaining sig-
nificant differences between population means. When assessing
the dependence between φ scores of different conditions, or φ
scores with difficulty parameters, we instead apply the Kendall’s
rank correlation coefficient (τ ), which measures the ordinal
association between two rankings [53]. Kendall’s τ is 1 if the
agreement between the two rankings is perfect, and −1 if one
ranking is the reverse of the other. In all reported results, the
threshold for significance is set at α = 0.05.

V. RESULTS

This section explores how replicants’ proficiency scores in
800 encounters against PvE enemies fluctuate depending on the

Fig. 3. Resulting φ proficiency of all 213 replicants against the eight different
PvE encounter conditions.

Fig. 4. Heatmap of φ proficiency scores for each different encounter across
primary and secondary difficulty parameter setups, averaged over all replicants.

player, the player’s class, the type of enemy (condition), and the
values of the different difficulty parameters.

A. General Findings

Fig. 3 shows the average proficiency score of all 213 repli-
cants trained in this study against PvE encounters of different
conditions. It is evident that different conditions were more
challenging than others, with the easiest being the Melee en-
counter condition (φ̄ = 0.68) and the hardest being the Tank
condition (φ̄ = 0.41). Due to these differences, Section V-B
applies z-normalization to the proficiency scores per condition
based on the distribution of all φ scores of all replicants in the
same condition.

Fig. 4 shows heatmaps of the average proficiency score of
all 213 players in each difficulty parameter combination per
condition. Unsurprisingly, iteratively scaling any of the two
difficulty parameters lowers the replicants’ proficiency in the
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TABLE IV
KENDALL τ CORRELATION RESULTS BETWEEN PROFICIENCY SCORE AND

DIFFICULTY PARAMETERS, CONSISTENTLY SIGNIFICANT

encounter. However, it is interesting to note that different diffi-
culty parameters affect the proficiency differently. For instance,
while Buffer and Debuffer encounters with low HP are fairly
manageable by replicants, at the highest value of buff or debuff
parameters the proficiency falloff is substantial, even with very
low-HP encounters. One can assume that a Debuffer enemy
weakens their opponent so much that none of the replicants’
abilities deal any damage in this encounter. In contrast, at low
HP the Tank opponent is manageable even with high values in
defense. This means that the replicant’s abilities deal enough
damage (despite resistances) to defeat the low-HP opponent.
This incongruity may be an artifact of the value ranges chosen
for these two conditions, but may also point to a difference in
the way the game engine handles debuffs and damage resistance
which could be helpful for game designers.

To assess the impact of different difficulty parameters on
the replicants’ proficiency, Table IV shows the correlation of
each parameter with the overall φ scores (of all 213 repli-
cants), as well as per class; we discuss the latter in the next
section. As intended, there is a significant negative correlation
between every difficulty parameter and replicants’ proficiency.
Interestingly, the more consistent impact is from the damage and
defense parameters, and the most “erratic” way of controlling
difficulty was the Debuffs parameter. We investigate this further
below.

Finally, it is interesting to evaluate whether the replicants
themselves were consistent in their proficiency across different
conditions. Since each replicant was trained on a specific player,
the hypothesis is that a player would perform better or worse than
other players against all encounters regardless of enemy type. We
should note that the class information is also embedded in this
evaluation, as a good player playing an “inferior” class would
likely perform worse than a good player playing a “superior”
class. To assess this, the average performance of one replicant
across all 100 fights in one condition is ranked and compared
with replicants’ ranking in each other condition. As expected,
the rankings of individual replicants largely match across condi-
tions, with Kendall τ values ranging from 0.17 to 0.74 (with an
average of 0.43 across all 28 comparisons). The most divergent
condition was the Tank: the lowest Kendall τ scores overall are

Fig. 5. Boxplot of normalized φ proficiencies of classes throughout the eight
different encounters.

between Tank and three other conditions: Melee (τ = 0.17),
Debuffer (τ = 0.21), and Healer (τ = 0.24).

B. Differences Between Classes

To approach the actual balance between classes in these PvE
encounters, the proficiency scores of replicas of each class were
compared against replicas of other classes. After the calculation
of one-way ANOVAs over these conditions, significant differ-
ences between classes remained for each encounter (p < 0.05 in
all cases). Based on pairwise Welch’s t-tests between scores of
different classes in the same condition, the number of times one
class performed significantly better or significantly worse than
another class is summarized in Fig. 6. The chart shows that the
Gladiator and Chanter classes generally performed worse than
other classes across conditions, while the Templar, Spiritmaster,
and Assassin performed overall better than most. We discuss
which conditions each class performed better in below.

Fig. 5 shows the proficiencies of each class in different
conditions: note that for each condition the values of each
condition are z-normalized based on trends across all replicants’
performance for that condition. Comparing these normalized
scores within each class via one-way ANOVAs, we identify no
significant differences across conditions for Rangers, Sorcerers,
Clerics, and Gunners, but there are significant differences across
conditions for all other classes. Further Welch’s t-tests identified
the particular deviant cases, resulting in the following insights,
compared to other conditions.

1) Gladiators performed significantly worse against De-
buffers.

2) Templars performed significantly worse against Melee and
Healers, but significantly better against Tanks.

3) Assassins performed significantly worse against Melee
and Tanks, but significantly better against Ranged.

4) Spiritmasters performed significantly worse against
Tanks.

5) Chanters performed significantly better against Rogues
and Tanks.
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Fig. 6. Classes significantly outperforming (or being outperformed by) other classes, accumulated over all eight conditions.

6) Bards performed significantly better against Melee and
Debuffers.

It is clear that certain classes are better equipped at handling
high-defense targets (Templar, Chanter) than others (Spirit-
master, Assassin) as the former come with substantially better
survivability while keeping sufficient sustained damage output.
Interestingly, all melee classes (Gladiator, Templar, Assassin)
perform poorly against Melee enemies compared to classes
dealing ranged magic damage (Spiritmaster, Gunner, and Bard).
Meanwhile, the Cleric, Ranger, Sorcerer, and Gladiator classes
are most consistent in their performance across conditions
(based on low standard deviation between the z normalized
proficiency scores). The Gladiator performs consistently poorly,
while the other classes are fairly average in their performance
(i.e., close to the proficiency score of all replicants in that
condition).

C. Balancing Encounters for Different Classes

The vast corpus of individual replicants’ combat outcomes
against a large and diverse set of encounters allows for the
regulation of such outcomes. Automated balancing can follow
various methodologies, e.g., adjusting passive class attributes or
skill parameters, or tuning the difficulty dimensions of the en-
counters. While the latter is only restricted to solo play where no
other classes or players are able to interfere in the regulation, the
former can influence interclass balance and undesirably impact
player versus player situations. Thus, this work approaches au-
tomated balancing by altering the encounters for each respective
class, which can additionally be transferred to the more specific
level of individual players, if aiming for dynamic difficulty ad-
justment [54]. Using the proficiency scores for every encounter
condition, difficulty dimension, and all replicas (i.e., 170 400
combat situations), a mean proficiency score across the board is
derived which we define as our target proficiency (φt = 0.541).
We identify which difficulty parameter combination per class
and condition (i.e., each cell in the heatmaps of Fig. 4) has the
closest proficiency to the target (as an absolute difference) for
each in-game class. This results in ten ideal enemies of each of

the eight conditions. Fig. 7 shows each ideal enemy and their
distribution with respect to individual player proficiencies via a
kernel density estimate (KDE) plot. The KDE plot can visualize
which areas of the parameter space are better suited for the
majority of replicants of each class.

When comparing proficiency scores between classes follow-
ing these regulation targets, no significant differences remain
(cf., Fig. 8), according to one-way ANOVAs for each condition
(p > 0.05). There are interesting differences between the KDE
plots across classes, but also when considering the average profi-
ciency heatmaps of Fig. 4. As expected, melee classes (Gladiator,
Templar, Assassin) prefer Melee enemies with low damage,
while Bards can handle enemies with high Melee damage or
long range. The KDE plots provide more feedback to designers
regarding the ideal ranges for each class and enemy type, and
can be updated when additional player data becomes available
and additional replicants are trained.

It should be noted that the optimal encounter could be calcu-
lated as above based on any arbitrary target proficiency score,
and the ideal enemy parameter pairing per replicant can be used
to personalize the encounter to each individual player rather
than, e.g., via class-wide adjustments.

VI. DISCUSSION

An important dimension of inquiry in this article was the
imbalance between different character classes. ANOVAs and
subsequent posthoc tests revealed significant differences in pro-
ficiency between player replicants of different classes. Accumu-
lated over all conditions, these might indicate imbalances of the
classes, yet it should be interpreted with respect to the underlying
design guidelines. For instance, the relatively low proficiency
scores of the Chanter class likely stems from their reliance
on other players, as they constitute the game’s main support
class. Still, under the assumption that primarily damage-dealing
classes should be equally viable, certain discrepancies emerge
that point to certain classes (such as Templar, Spiritmaster, or
Assassin) outperforming most of the other classes in many
situations, while others (such as Gladiator and Chanter) are
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Fig. 7. Ideal enemies (markers) that lead to a balanced configuration among
classes. Distributions of individual player performances within 10% of the target
φt are also shown.

mostly outperformed by any other class. On the other hand, some
classes (such as Rangers and Sorcerers) appear rather balanced.
As the overall difficulty outcomes of the various conditions
turned out to be significantly different, only normalizing the
proficiency scores could shed light on the strengths and weak-
nesses within particular classes. Most of the time, proficiencies
stayed similar for the respective class when comparing their
performances across the encounters. This is underlined by the
significant positive correlations between score ranks among
conditions—both for individual replicants as well as for class
ranks—indicating that well-performing replicants/classes also
performed well in other conditions. Yet, several significant
deviations highlighted encounters that are particularly difficult
for certain classes; this might stem from the underlying design
intentions. For instance, Spiritmasters performed poorly against
Tank enemies, since their main damage contribution comes
from damaging debuffs that these enemies are more likely to
resist; Templars struggle mainly when the enemy’s sheer attack
power is overwhelming, but can survive most other conditions
while applying medium damage; or Assassins that excel against
ranged enemies, as they can quickly overcome the distance
between them.

It should be noted that balance does not necessary imply
that every class should be equally proficient in every in-game
situation. When taking all of the possible encounters that a game
offers into account, however, different classes should be equally
viable. No class should be outperformed or outperforming oth-
ers consistently, and weaknesses of particular classes against
certain encounters should be compensated with advantages in
other situations. Imbalances with respect to this assumption
could either be diminished by dynamically adjusting difficulty
parameters of PvE enemies depending on the estimated profi-
ciency of the player class or by directly regulating class-specific
skills/attributes. While the former method is restricted to single-
player situations (as proficiencies of multiple players are not triv-
ially merged and inter-player dynamics are not captured within
this benchmark), the latter could end up distorting the inter-class
balance in player versus player situations. If aiming for balanced
proficiency of all classes against multiple difficulty conditions
and each other, the former approach has shown to compute
optimal difficulty parameter constellations that eventually lead
to balanced performances between classes throughout all condi-
tions. As the utilized notion of target proficiency is flexible, the
internal difficulty can be manually scaled by designers while
still maintaining a balanced state among classes. Moreover, it
is not restricted to regulate balance between entire classes, but
can additionally be used to compute parameter constellations
for clusters of players or individual players, effectively imple-
menting dynamic difficulty adjustment. Based on the empirical
evidence presented, our previously posed research questions can
be answered as follows.

1) Imbalances between in-game classes can be detected by
generative player modeling and iterative simulations.

2) Assessing multiple difficulty dimensions can reveal class-
specific strengths and weaknesses and offer overall in-
sights.
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Fig. 8. Boxplot of φ proficiencies of classes when exposed to their ideal enemy (for all eight different encounter types). Within each condition, no significant
balance difference remains.

3) Using atomic replicants of a whole player population,
parameter constellations can be computed that eventually
lead to a balanced state between classes across several
in-game difficulty dimensions.

VII. LIMITATIONS AND FUTURE WORK

During the implementation of this approach, different con-
straints and assumptions had to be taken into account that even-
tually lead to a number of limitations. Perhaps most importantly,
classes (especially in MMORPGs) are often designed to vary in
versatility within different situations or against different classes.
This includes classes that benefit greatly from party-play versus
classes that are tailored for single-player situations, those that
focus on dealing damage to many enemies instead of single
targets or not primarily focused on dealing damage (being busy
with tanking, healing, or supporting otherwise). Nevertheless,
the presented technique is not constrained to damage dealing,
but overall one-on-one versatility. DPBM can quantify these
differences to inform game developers whether their intended
design aligns with the actual outcomes of a population playing it.
Evidently, this requires data from a player population to employ
the testing procedures, which limits its versatility before the
game’s launch. However, it is applicable for early access titles
or prelaunch scenarios, never-ending balance observations (and
predictions), and for benchmarking novel challenges introduced
with later patches or DLCs, given that abundant player data
can be collected, a sufficient telemetry infrastructure is realiz-
able and the developers have the means to record individual
players over longer periods of time. Apart from individually
learning replicants, optimally playing agents (e.g., by self-
training/reinforcement learning) could be used as a baseline to
test whether DPBM indeed approximates the real population
better. On another note, we normalized equipment and other
relevant configurations throughout all characters in order to filter
out the influence of different attribute stats. A closer (yet very
temporary) approximation of the overall population capability
could be realized with this approach if the equipment range was
taken into consideration. Notably, replicants were only trained
on data stemming from battles against their own class [17],
and thus, did not adjust their strategies against different
encounter types. This likely distorted the results and should be

repeated when enough data of the respective situations are given;
however, it does not diminish the potential of DPBM.

For future work, we primarily seek to refine behavior mod-
eling by introducing more variables, such as global movement
information (encompassing higher level goals) or the estimation
of individual players’ precision and their temporal cognitive
computation demand. Apart from the inclusion of the nine diffi-
culty parameters, the challenge of the opponent encounters can
further be examined by altering the skill sets, decision making
or movement behavior of enemies. The simulations themselves
can likely be sped up by calculating battles without graph-
ical representations. Instead of altering opponent parameters
for balancing, we additionally want to explore the automated
adjustment of in-game classes with respect to player versus
environment, as well as player versus player settings. For this,
an iterative procedure of attunement and resimulation would
be expedient, in that the largest proficiency mismatch between
classes is detected, adjusted in favor of the inferior class and
affected matchups are resimulated, in multiple iterations up to a
predefined threshold.

Finally, the applicability of this approach will be investigated
with respect to significantly more complex multiplayer situ-
ations, such as in adjusting boss battles for a population or
simulating large-scale competitive sieges between replicants,
throughout multiple player experience evaluations. Further-
more, if a mapping from mere behavioral patterns to in-game
proficiency can be constructed—e.g., via machine learning—
this prediction might augment matchmaking, bringing together
players with approximate skill levels more accurately, for both
competitive as well as cooperative play.

VIII. CONCLUSION

This article explored how AI agents which replicate the
action-by-action decision-making of individual players could be
applied to test the impact of enemy types and their parameters
in combat encounters against different players and different
character classes. The article made use of player traces collected
from the MMORPG Aion and drew conclusion regarding the
character classes and enemy types of this game through an
extensive set of combat simulations. The proficiency score which
aggregates several properties of the combat outcome and the 2-D
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exploration of general and enemy-specific parameters allows
for a straightforward visualization of the performance of each
player, each class, or the entire userbase in a way that would
be easily understood by game designers. Moreover, it is very
straightforward to identify one or many optimal encounters for
each enemy type based on the distance to a target proficiency
score. Eventually, this allows regulation either on a per-class
basis or via personalized difficulty adjustment, tailored to indi-
vidual players. All steps, from model computation over bench-
mark simulations up to the final balancing regulation, can be
executed in a fully autonomous way (requiring only playtraces
of the player population), realizing automated game balancing.
The process can also be supervised by designers, providing
parameter spaces, visualizations, and reports on classes’ strength
and weaknesses which can inform the game’s development.
Even though this functionality could only be shown for a single
game so far, we claim that this procedure also holds for other
games and genres, as long as one provides entities to balance
(e.g., classes), meaningful benchmark simulations (e.g., combat
situations) and representative low-level interaction data of a
player population.
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