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Introduction 

Player modeling is an important issue in the design of game AI, and the importance of 
considering the player's situation in this context is emphasized.

Temporal Maturity -The player learn strategies as they play the game and become more 
proficient and advanced over time. 

The purpose of this study: 
・Propose a mechanism for predicting the temporal maturity of players and switching their game 
strategies. 

The goal of this study: 
・Propose a mechanism to predict a player's temporal maturity and to switch strategies 
dynamically.
・Design an architecture to dynamically switch game strategies based on the prediction results.



Introduction 
The subject of this study was a turn-based RPG.

The rules of the game were defined as follows.

・The HP(Hit-Point) of Player and CPU is 100pt at start.

・saelect action each other alternately and HP of both changes accordingly.

・They take turns selecting actions until their HP get 0.
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Introduction 
Temporal proficiency is the change in proficiency over time.

Use LSTM(Long Short-Term Memory) to predict temporal mastery.

*LSTM can learn and predict (regression, classification) time-series data, and 
examples include sentiment analysis, speech recognition, and language modeling.



outlook
The following technical issues will be addressed in this study.

1. design of game engine architecture with integrated proficiency prediction 
mechanism 

2. detailed design of the proficiency prediction mechanism 

3. validation



Design of learning mechanism

Position of this system in the game engineering architecture
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Design of learning mechanism
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Design of learning mechanism

Player proficiency can be thought of as manifested in changes in the way they 
play and in their wins and losses.

Data used to predict temporal proficiency
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LSTM Design
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Validation

　Elapsed turns and win rates
Players that have high learning level

　Elapsed turns and win rates
players that have low learning level/
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experimental results
[high learning level player]

・The number of turns required to settle the case oscillates at a high value.

・Player's win rate decreased.

-> The learner is able to change the strategy of the game in order to increase the 
difficulty level accordingly.

[low learning level player]

・The number of turns required to settle a low percentage oscillates.

・Players kept winning.

-> The learner can predict that the player's proficiency will not increase and can 
change the strategy of the game to decrease the difficulty.



Conclusion
The purpose of this study is to propose a mechanism that predicts the player's 
proficiency and switches actions, and to confirm its effectiveness. and to confirm 
the effectiveness of this mechanism. And Experimental evaluations showed that 
these idea are generally valid. 

The learning machine is simple design because it has few dimensionality of input 
vectors and no weight. 
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