Revisiting Some Common Practices in Cooperative Multi-Agent Reinforcement Learning

Wei Fu, Chao Yu, Zelai Xu, Jiaqi Yang, Yi Wu Proceedings of the 39th International Conference on Machine Learning, PMLR, 2022.

Goal

Revisiting common design principles in **Cooperative Multi-Agent ML**

- Value Decomposition (VD)
- parameter sharing

Propose method to resolve limitation of common methods

Background: Value-Decomposition (VD)

$$Q_{\text{tot}}(s, \mathbf{a}) = f_{\text{mix}}\left(Q_1\left(o^1, a^1\right), \dots, Q_n\left(o^n, a^n\right); s\right),$$

Can't solve multi-modal problem

Policy Gradient

- parameter sharing \rightarrow can't solve
- Individual policy → single optimal mode & may challenge optimization
- ID-conditioned policy \rightarrow single optimal mode

Policy for Multi-modal

Executing Individual PG with every agent order can achieve this, but need large computation

Covering all modes with single policy??

PG-AR (Auto-Regressive)

Individual:
$$\pi(\mathbf{a} \mid \mathbf{o}) \approx \prod_{i=1}^{n} \pi_{\theta_i} \left(a^i \mid o^i \right)$$

PG-AR: $\pi_{\theta}(\mathbf{a} \mid \mathbf{o}) \approx \prod_{i=1}^{n} \pi_{\theta^{x_i}} \left(a^{x_i} \mid o^{x_i}, a^{x_1}, \dots, a^{x_{i-1}} \right)$

 $\frac{\text{PG-AR}}{\ln \text{XOR game:}} \pi \left(a^1, a^2 \right) = \pi \left(a^1 \right) \pi \left(a^2 \mid a^1 \right)$

Permutation game

Individual policy: 4-agent permutation game

0.00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 1.00 00 0.00

Individual

Payoff

PG-AR (Auto-Regressive)

Multi-modal policy

Auto-Regressive

Payoff

Training Paradigms

- Multi-step optimization minimize calculation

- Randomized execution order prevent overfitting

PG-AR on Popular Testbeds

StarCraft

- Alternate attacking with other agents

Google Research Foot-ball

- keeps short passing the ball to other

It took a lot to optimize, but learned new behavior

Conclusion

In multi-modal scenarios, Value-decomposition and parameter sharing can lead unsatisfying behavior.

Policy gradient can learn multi-modal behavior by using auto-regressive.

Thank you for your attention.