Discovering Unique Game Variants

Aaron Isaksen Dan Gopstein Julian Togelius Andy Nealen
aisaksen@nyu.edu dgopstein @nyu.edu julian.togelius@nyu.edu nealen@nyu.edu
NYU Game Innovation Lab

Abstract

We present a method for computationally discovering
diverse playable game variants, using a fine-tuned ex-
ploration of game space to explore a game’s design. Us-
ing a parameterized implementation of the popular mo-
bile game Flappy Bird, we vary its parameters to create
unique and interesting game variants. An evolutionary
algorithm is used to find game variants in the playable
space which are as far apart from each other as possible,
helping find the most unique versions; we also use a clus-
tering algorithm to find representative variants. Manual
playtesting confirms that the discovered game variants
are playable and significantly different to the original
game in challenge, game feel, and theme.

Introduction

The process of exploratory computational creativity (Bo-
den 2004; Wiggins 2006) includes searching the concep-
tual space of possible creations to find viable and interest-
ing games. As we are interested in computationally creating
games, we will call this game space.

A game is composed of many parts, including visuals, au-
dio, narrative, systems of rules, level architecture, gameplay,
and interactions between those facets (Liapis, Yannakakis,
and Togelius 2014). In this paper, we will focus on the pa-
rameters which tune gameplay and systems. While rules en-
code how the system works, parameters are tunable vari-
ables which modify values in the system. For example, in
Flappy Bird (Nguyen 2013), shown in Figure 1, the bird
speed and pipe width are parameters, while the method of
movement (e.g. if the player flies or walks) is a rule. We
explore a subset of game space defined by only changing
game parameters, but not changing or evolving game rules
or mechanics (Nelson et al. 2015; Browne and Maire 2010;
Cook and Colton 2011).

By changing parameters alone, we can find surprising and
interesting game variants, such as our computationally dis-
covered Frisbee Bird (Isaksen, Gopstein, and Nealen 2015),
shown in Figure 2. This variant was unexpectedly created
when searching Flappy Bird game space for variants of a spe-
cific difficulty. In this variant, the player is wide and flat, and
smoothly sails through the air like a flying disc. We had not
expected that a game of this type was in the same game space

_—

Figure 1: In Flappy Bird, the player must avoid crashing into
the pipes. The game is defined by parameters shown here by
arrows. By varying these parameters, we can explore differ-
ent variants in game space to find the most unique variants,
or those most inspiring to other game designers.

A S
—

Figure 2: Frisbee Bird was computationally discovered while
searching for Flappy Bird variants. Its unique location in
game space leads to a different game feel and appearance.

2 Lanky Bird Chunky Bird
~<<
@
=
D,
oQ
=
Tiny Bird Squishy Bird
Player width :

Figure 3: A two-dimensional game space of Flappy Bird
variants with different player width and player height. The
only difference is the size and aspect ratio of the player, yet
we can already distinguish these as unique games.

as Flappy Bird, which encouraged us to develop an algorithm
to discover more unique and surprising game variants.

We have several reasons for a fine-grained exploration of
game parameter space to create and evaluate new game vari-
ants. From the perspective of game design studies, it offers
us a way of understanding games more deeply, in particu-
lar what kind of variants of a game could be encoded with
the same ruleset. From the perspective of work on automatic
game design, it helps us understand how to automate the iter-
ative process of tuning a game, required for improving game
feel (Swink 2009). As game designers, we are excited about
the potential for a computational design assistant which can
help us quickly evaluate the effects of various design deci-
sions, and to inspire us to try new, creative ideas. However,
to trust these computational results, we must ensure that they
are human-like in their creation and evaluation.

We will examine variants of Flappy Bird, one of the most
downloaded mobile games of all time. In Flappy Bird, the
player must avoid crashing into the pipes by tapping the
screen to flap, while gravity is constantly pulling the player
downwards. Isaksen, et al. (2015) previously analyzed each
game parameter of Flappy Bird, including player size, pipe
gap, pipe randomness, pipe width, gravity, jump velocity, bird
speed, and pipe separation, showing how this game space
can be explored by algorithms that use survival analysis and
Monte Carlo simulation to find games of varying difficulty.

In Figure 3, we show different variants created by explor-
ing only the two dimensional game space defined by player
width and player height. Each of these games has a different
difficulty, and we would expect Tiny Bird to be the easiest
version because the bird has more room to maneuver between
the pipes. There are upper bounds to the parameters in this
example game space: no player can score a point if the bird
is so tall it can’t fit through the pipe gap. It’s notable that
by only changing the player size parameters, we can already
ascribe a different theme and name to each of them.

Evaluating Games Procedurally

We now present our method for finding the most unique vari-
ants in game space. The first step is to separate the games
which are playable from those which are unplayable: in an
unplayable game, every player will die at or before a specific
event in the game, no matter how good the players are. These
unplayable games can have artistic merit, for example those
intentionally unbeatable games which are trying to convey a
message about futility of a political situation via procedural
rhetoric (Bogost 2007). However in this paper, we are gener-
ally interested in scored action games in which an excellent
player, with enough practice and patience, will rise to the
top of the leaderboard. This is clearly not the entire space
of interesting games, but it is a large and popular one, and
provides us with a simpler domain to explore.

It is important to consider the target player when evaluat-
ing game space to find playable and unplayable games. The
skill, experience, and learning ability of the player has a ma-
jor impact on their performance. Our algorithm uses a tun-
able parameter for skill, which we keep fixed throughout the
experiments, but for consistency and simplicity, ignores past
experience and learning effects. We also need to constrain the
time that it takes to play an average game. Although some pa-
rameter settings create playable games, they would take too
long to play and are therefore not interesting to the player
(e.g. a game which takes a year to score a single point).

For every point in game space we wish to test, we generate
a unique game and simulate playing it, having an Al repeat-
edly play thousands of times to estimate the difficulty d and
the average time it takes to play ¢. In our previous work we
explain how to simulate different player skills by introducing
randomness into the reaction time of the Al. In summary, we
play the game variants using an Al player model that makes
errors based on emulating motor skill: the Al searches ahead
to find the time 7 it wishes to flap, and then adds a normal
distribution with mean 0 and standard deviation ¢ = 30ms
which represents motor skill precision. By decreasing or in-
creasing o, we can simulate better or worse skill. We measure
difficulty by analyzing the resulting score distribution after
simulating each variant 20,000 times.

Bounding the Search Space

The search domain can be arbitrarily large, but as we are
focused on games that are playable for humans, we begin
by creating reasonable, but artificial, bounds on the param-
eter space to explore. Although unbounded creativity could
lead to new games, the extra effort required to search the
larger space could mean that many computational resources
are wasted on searching fruitlessly. Thus, we aim to bound
our search to maximize the chance that the computer will
find playable games, while minimizing the chance that the
computer will miss playable games within the domain.
Many of our parameters have natural upper and lower
bounds: for example the gap between the top and bottom
pipe must be positive because a negative pipe gap means
the pipes would overlap, and it must be less than the world
height because a pipe gap extending beyond the game bounds
is also nonsensical. Some only have a natural lower bound:

horizontal pipe separation must be > 0 so that the pipes do
not overlap, but there is no upper bound how far apart the
pipes can be. This technically does not have an upper bound,
as one could make them millions of pixels apart so that it
takes hours to travel between pipes. However, by ensuring an
average or maximum play time for a playable game, we can
eliminate these extreme variants. Horizontal speed has an ef-
fective upper limit, determined by both the geometry of the
level and the skill of the target player, but this can only be dis-
covered through simulation or play testing. Finally, some pa-
rameters have no required bounds: for example gravity could
be positive or negative and a sensible game would arise, but
jump velocity must be in the opposite direction from gravity
for the game to be playable.

We begin by seeding reasonable bounds and then generat-
ing samples using a stratified sampling scheme that covers
the search space without clumping that may occur with uni-
form, random sampling. With a sufficiently large number of
samples, a uniform sampling can be used instead to avoid the
extra computation of stratified sampling.

Using the methods described in the previous section, we
can simulate each point and calculate its difficulty and aver-
age play time. We mark as playable all the games that have
a difficulty where between 1% and 60% of players are ex-
pected to crash on the first pipe, and the average human play
time is between 1 sec and 30 sec. We eliminate games with
a difficulty < 1% as they are too easy and would likely be
boring for a player. The play time is calculated as if the game
were played by a human, not as the time it takes for the com-
puter to simulate a game (< 1ms).

We now calculate the hypervolume bounding box that
tightly contains the playable games. For each dimension, we
compare the effective upper and lower bounds that lead to
playable games to the original search range. If the effective
bounds are near the guessed bounds, we could, if desired, ex-
pand the search area and try again because it is possible we
have missed sampling some playable games.

Instead of setting bounds, we could create a probability
density to estimate the likelihood of discovering a playable
game within a parameter space. This is similar to how ge-
netic algorithms work to improve their search domain over
successive generations. Novelty Search can also be used to
guess the next best location to search (Liapis, Yannakakis,
and Togelius 2013).

Playing Unexpected Games

As the difficulty and playability of the game is determined
by the Al it will only find games that it is equipped to play.
However, there may be games interesting to players of human
intelligence which are ignored by the AI’s deficiencies. The
method of search can influence which points in conceptual
space are discovered (Wiggins 2006).

When designing the Al to play the original game, we made
assumptions that ended up being violated when exploring
new parts of the game space. Specifically, we assumed that
gravity would always point down, and jump would always
point up, so the Al heuristic focused on jumping when going
below a certain target height. Thus, the original Al found
inverted gravity games impossible to play, eliminating entire

Figure 4: Divey Duck, a variant with negative gravity and
negative jump, simulates an underwater duck that naturally
floats. However, the original Al couldn’t handle negative

gravity. Without a change to support both types of gravity,
this whole class of games would be labeled unplayable.

classes of playable games which we might find interesting.
By changing the AI heuristics to be smart enough to handle
both types of gravity, we were then able to find games like
Divey Duck, shown in Figure 4.

There are two insights to be gained here: (1) the Al used to
simulate play determines the types of games that are discov-
ered, and (2) using more sophisticated Als can be important
even when a simpler Al works fine for the original game.
Regarding better Als, an A* or Monte Carlo Tree Search al-
gorithm would likely be sufficient for solving Flappy Bird
like games. Alternatively, an Al that can learn over repeated
plays of a video game could learn how to effectively play
inverted gravity (Mnih et al. 2015).

Finding Unique Games

Now that we have a point cloud of thousands of playable
games variants, we would like to find a small number of
unique games, so we do not have to play all of them for
inspiration and further tuning. There are two approaches we
tried to narrow down this number.

Finding Representative Games with Clustering

Our first approach is to perform a k-clustering on the
playable game point cloud, which will find groups of sim-
ilar games, where each medoid is the representative of one
cluster. We call these representative games because they are
points that represent an entire cluster of games.

First, one must determine what value of k to use. This
could be determined a priori, and then defines how many
representative games will be returned. Alternately, one can
use a method that determines the ideal k by trying repeated
clusterings and stopping when finding the k that gives the
optimum average silhouette width (Rousseeuw 1987). In
practice, we use the pamk function in R (Hennig 2014;
R Core Team 2015) to find an optimal value of k. One also
typically sets a maximum value of k, which is especially im-
portant for clustering high dimensional spaces.

Second, since our parameters have different units, it is im-
portant to normalize the parameter space so that different
variables can be compared. For example, if gravity ranges
between 1 and 4000, while pipe gap varies between 10 and

o
2 L
+ + 4
+++ +
© + t +
S 7 + # oy t R
e ¥ iy, ety
@ + t 1 Tia M A
z e | +
g o T e 4 ++_}1-J§.++ +
3 + TR ;#'-F?— + Tt
& + R =
£z ot e .
= + i 4t ++ "
. + .t* -;7-+ e
4
o e +++++i$ +
o 'E§1—++ +
p 2
+
o H
o 7 +
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
gravity
o
+
- ++ #
+ + 4t +
© + * i
o 7] + ++. +++¢ +
+
M +
+ A + +
- ¥
5 © n ++++ + +p +
g ++ ;.*'++.+ + +
g . e S + F . +
A + .
s HE o+ fﬂ— T+ s -
+ + 4 ii + N +
+ #
g i ks J:. Jr+ ¢++ ++.++ ‘-:. +++
+ + +
B AR R +
+ i T + iy + + + ® +
= ot T T ot
T T T T T T
0.0 0.2 0.4 08 0.8 1.0

pipegenRandomness

Figure 5: Searching 2D game space to find k representative
games using clustering. Blue dots are medoids calculated for
k = 5. Red triangles are medoids calculated when using a
dynamic clustering which finds an optimal value of k.

30, the clustering on un-normalized space would incorrectly
suggest that changes in gravity are far more important than
changes in pipe gap. By normalizing each parameter be-
tween O and 1, we can compare different parameters using
a Euclidean distance metric. We normalize after finding the
playable games, such that for each parameter 0 is the mini-
mum playable value and 1 is the maximum playable value.

As we can see in Figure 5, the clustering method avoids
games on the frontiers of playable games, because the
medoids are at the center of each cluster. Although the clus-
tering works in n-dimensional space, for visualization we
have taken 204 playable games and projected them onto two
different 2D planes, one for gravity vs jump velocity, and
one for pipe location randomness vs player speed. The blue
dots indicate cluster medoids when choosing a fixed value
of kK = 5, while the red triangles indicate medoids selected
when searching for an optimal k.

Finding the Most Unique Games

Clustering finds interior points, but we also want to find
games which are further apart, showing us what is possible
on the frontiers of game space. The games on the frontier

o
= »
+ + 4
+ + +
] + t +++
e + o+ 4
= +i_ #* + iy
A T
@ ¢+ t F g B +{ +8
z 2 4 +H Fat o+ 4 +
g ° + + +4f“'+
2 - o T +
Z + MRS
2 # 4 SR ST
s T4 ot t o+ +
= e ++ T HL
R S L
4
o g LT
= T, F ¥
N
I+
S { A
T T T T T T
0.0 0.2 0.4 06 0.8 1.0
gravity
o
: +
- ot
+ + A
= A +++ +++¢
o + +
i+ *
+ + o+ +
© -ﬁt+ + +
=R ++Jr P + e
g o+ 4-_¢—+++++ T +
2 L + +]
- +
° ++¢r + _{%— ++ A it +
+ + 4 11 + N "
I N T A
S " + + o+ 4+
iy B Al R +
VR AR SR
2 ++ ++ + ¥ o + 4 + e
T T T T T T
0.0 0.2 0.4 08 0.8 1.0

pipegenRandomness

Figure 6: Using genetic optimization, we find games that
are far apart from each other in 2D game space. Blue dots
indicate the set for £ = 8 and red triangles are for £ = 5.

are not guaranteed to be the most unique, but they push the
parameters to their extremes. We experimented with looking
at games on the convex hull, but preferred methods that can
find games in both the interior and exterior of the cloud.

To find games as far apart from each other as possible,
we find a subset of k& games that maximizes the minimum
Euclidean distance (in normalized parameter space) between
any pair of points in the set. We use a genetic search to evolve
the k elements to be included in the set.

This method does a much better job at finding games on
the exterior, since we expect to select points at the fringe
of the point cloud (which is furthest from the center of the
cloud). By running for more generations, the examples will
get closer to optimally unique.

Results and Discussion

We now present several novel Flappy Bird variants discov-
ered by our methods. Varying all nine game parameters, we
asked both algorithms to create 4 unique games. The "Most
Unique” method generated four highly different games. We
have named them Needle Gnat, Lazy Blimp, Droppy Brick,
and Pogo Pigeon and show examples of them in Figure 7.
These appear to us to approximate the creativity a human de-

Needle Gnat

Lazy Blimp

| N o I v
Ny TN ERAR | \ | | y
| i I 1 | | Lol ' N
= [| L |

Droppy Brick

|A I |A|".A |‘|\. v

Pogo Pigeon

Figure 7: The four game variants discovered using the Most Unique evolution method with & = 4. This method searches for the
k games which maximizes the minimum distance between any two points in the set. The games are generated by the algorithm;
the names are provided by the authors. (a) Needle Gnat: tiny player trying to thread a tight horizontal space. (b) Lazy Blimp:
slow moving blimp-like player with minimal gravity and jump. (c) Droppy Brick: frequent rise and fall with high gravity. (d)
Pogo Pigeon: very tall, thin bird that frequently hops to avoid crashing into the ground.

..,-h...l llhlll‘l__l

WL RN RN

R B e R
T G T

Figure 8: Representative games found by clustering, which
as expected do not appear to exhibit the variety of the Most
Unique games shown in Figure 7.

signer might have used if tasked with designing four unique
variants. The Representative Clustering method generated
four versions which do appear closer to each other as ex-
pected, as shown in Figure 8. Due to their similarity we have
not felt the need to give them names, which is a notable met-
ric that could use further investigation.

We have presented two methods for discovering unique
game variants. This space is based on game design param-
eters, using Euclidean distance for measuring distance be-
tween two games. However, game parameters do not neces-
sarily have linear responses, so measuring in Euclidean space
can be misleading. That is, games with pipe gap of 10 and
15 (50% difference) are more different for a player’s experi-
ence than for a pair of games with pipe gap 30 and 45, with
a larger absolute change and the same relative change.

A perceptual metric is desirable, so that we can compare
two games from the player’s perspective, and then find the
k most unique games in perceptual space, instead of game
parameter space. This perceptual metric also tells us when
games are perceptually similar, greatly reducing the search
resolution required. Given the complementarity of some of
these parameters—for example, we could scale all of the dis-
tance metrics by the same amount—it also seems possible
that there could be games which are ostensibly far apart in
parameter space, but actually appear very similar in percep-
tual space. This would probably become more likely the
larger the parameter space. One could also develop metrics
for game similarity based on simulation, where games elicit-
ing similar playing behavior (or learned behavior) from the
Al are judged to be similar.

Our methods presented here are focused on uniqueness,
which is one aspect that makes games interesting to players
and designers, but “interesting”” has a much broader meaning
and significantly more complex to measure. Future work on
developing metrics that can quantitatively measure expected

human interest are highly desirable for creative exploration
and will require a deeper understanding of player behavior.

We look forward to more creative output both from algo-
rithms generating new game variants, but even more so from
teams of humans and computers working together to create
better games and inspiring future game designers.

Acknowledgments

Thank you to Ron Carmel, Frank Lantz, and Rob Meyer for
suggestions of unplayable games, to the NYU Game Inno-
vation Lab, and to Dong Nguyen for creating the original
Flappy Bird and for inspiring our research.

References

Boden, M. A. 2004. The creative mind: Myths and mecha-
nisms. Psychology Press.

Bogost, I. 2007. Persuasive games: The expressive power of
videogames. Mit Press.

Browne, C., and Maire, F. 2010. Evolutionary game design.
Computational Intelligence and Al in Games, IEEE Transac-
tions on 2(1):1-16.

Cook, M., and Colton, S. 2011. Multi-faceted evolution of
simple arcade games. In CIG, 289-296.

Hennig, C. 2014. fpc: Flexible procedures for clustering. R
package version 2.1-9.

Isaksen, A.; Gopstein, D.; and Nealen, A. 2015. Exploring
game space using survival analysis. In Foundations of Digital
Games.

Liapis, A.; Yannakakis, G. N.; and Togelius, J. 2013. En-
hancements to constrained novelty search: Two-population
novelty search for generating game content. In Genetic and
evolutionary computation, 343-350. ACM.

Liapis, A.; Yannakakis, G. N.; and Togelius, J. 2014. Com-
putational game creativity. In Proceedings of the Fifth Inter-
national Conference on Computational Creativity, 285-292.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland,
A. K.; Ostrovski, G.; et al. 2015. Human-level control
through deep reinforcement learning. Nature 518(7540):529—
533.

Nelson, M. J.; Togelius, J.; Browne, C. B.; and Cook, M.
2015. Rules and mechanics. In Procedural Content Genera-
tion in Games. Springer.

Nguyen, D. 2013. Flappy bird. Apple App Store.

R Core Team. 2015. R: A Language and Environment for Sta-
tistical Computing. R Foundation for Statistical Computing,
Vienna, Austria.

Rousseeuw, P. J. 1987. Silhouettes: a graphical aid to the
interpretation and validation of cluster analysis. Journal of
computational and applied mathematics 20:53-65.

Swink, S. 2009. Game Feel. Morgan Kaufmann.

Wiggins, G. A. 2006. A preliminary framework for

description, analysis and comparison of creative systems.
Knowledge-Based Systems 19(7):449—-458.

