
Playing football game using AI agents

Koyel Datta Gupta
Department of Computer Science,

Maharaja Surajmal Institute of
Technology, Janakpuri, New Delhi,

India - 110058
koyel.dg@msit.in

Nishthavan Dahiya
Department of Computer Science,

Maharaja Surajmal Institute of
Technology, Janakpuri, New Delhi,

India - 110058
nishthavandahiya7@gmail.com

Pratish Pushparaj
Department of Computer Science,

Maharaja Surajmal Institute of
Technology, Janakpuri, New Delhi,

India - 110058
pratish.pushparaj16@gmail.com

Mayank Dabas
Department of Computer Science,

Maharaja Surajmal Institute of
Technology, Janakpuri, New Delhi,

India - 110058
mayankdabas2401@gmail.com

Abstract—A lot of effort has been put into training AI
agents to play games like chess, connect-4 etc where they
excelled and taught us new ways to approach problems.
Furtheron, recent progress in this field is accelerated by
broadening horizons and taking on complex environments like
GO. Football is also such a complex setting which requires the
agent to learn intricate concepts like passing, shooting,
dribbling etc and develop tactics to maximize chances of
winning. And hence we take on the game of football using AI
agents. We use the google reinforcement learning environment
to train and evaluate our agents. We solve this problem of
playing football by training two different agents namely Deep
Q Networks and Light GBM, where Deep Q Network is a
self-learning algorithm based on reinforcement learning and
Light GBM is a supervised learning algorithm and dataset for
this algorithm is extracted through kaggle.

Keywords—Google research football, Artificial intelligence
(AI), Reinforcement learning (RL), Deep learning (DL),
Machine learning (ML), Deep Q Networks, LightGBM

I. INTRODUCTION

The main goal of training AI agents to play games is to
learn the environment, overcome complicated tasks and
maximize rewards which allows us to test our new ideas and
algorithms in a secure manner. These algorithms further
have real-world applications in self-driving cars, automation
in industries, robotics etc. But, many deterministic and near
deterministic games like Chess, Connect-4 etc may not
allow us to explore the full potential of state-of-art
reinforcement and machine learning algorithms whereas,
games like football provides a very challenging environment
for testing algorithms to their full potential.

Hence, we take the game of football that is played
among two opposite teams each having 11 players and a
spherical ball and the team scoring the most goals wins the
game. Google reinforcement learning football environment
[1] shown in Fig 1 consists of all the rules of conventional
football and provides us with a complex setting to train and
test out agents. At a given time our agent has to operate a
single player in the game either the player with the
possession of the ball while attacking or the player closest to
the ball while defending[2]. There are 19 actions to choose
for the agent ranging from movement actions to passing and
shooting actions through which the agent can beat the

defense and score goals or stop the attack from scoring
goals.

Fig 1. Google Reinforcement learning football environment

In this research, our contribution will be:
● Research and development of two agents for

playing football namely, Deep Q networks and
LightGBM based on reinforcement learning (RL)
and supervised learning respectively.

● Collection of the dataset from kaggle for
LightGBM.

● Both Deep Q Networks and lightGBM are made to
play against each other for Comparative analysis of
their performance.

II. RELATED WORKS

A. A Reinforcement Learning (RL) Environment Developed
by Google Research
This paper discusses an open-source football learning

environment where AI agents can learn and master to play
the game of football [1]. This environment is a sophisticated
3-D simulator of the game and it is very easy to customize
according to need as it is open-source as well. It combines
two functions that can be used for rewarding: SCORING
and CHECKPOINT. SCORING goes hand in hand with a
natural prize where each side gets a +1 prize for scoring and
a prize of -1 when the opposing side scores the goal.
CHECKPOINT adds a SCORING reward for extra
contribution to bringing the ball closer to the goal of the

2022 International Conference on Emerging Techniques in Computational Intelligence (ICETCI)

978-1-6654-7941-7/22/$31.00 ©2022 IEEE 84

20
22

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 E

m
er

gi
ng

 T
ec

hn
iq

ue
s i

n
C

om
pu

ta
tio

na
l I

nt
el

lig
en

ce
 (I

C
ET

C
I)

 |
97

8-
1-

66
54

-7
94

1-
7/

22
/$

31
.0

0
©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
ET

C
I5

51
71

.2
02

2.
99

21
37

4

Authorized licensed use limited to: Aizu University. Downloaded on October 30,2022 at 09:24:30 UTC from IEEE Xplore. Restrictions apply.

opponent in a disciplined manner. Behaviour found in single
agents are various passes, dribbles and moving speed. The
goal for the benchmarks of football is winning the game
against the enemy fed to the engine. The engine mimics
wide-ranging football features, such as fouls, penalties,
offsides, goals, corner kicks etc. These features are expected
to be useful in exploring scientific challenges like self-play,
sparse rewards, and model-based Reinforcement Learning
(RL). The results show that the complexity of the
environment greatly affects the complexity of training and
the goal difference between them. Finally, they concluded
that the Football benchmarks offer interesting research
reference issues and that a great deal of improvement scope
is there, mainly in terms of overall performance on complex
benchmarks.

B. Football using Machine Learning to improve current
strategies of attacking play
This paper tackles the limitation of conventional analysis

of football gameplay by using video footage to derive
tactics. It explores the prospect of machine learning to
analyse football especially attacking play while considering
the challenges faced currently and further deriving future
tactics that may help gain deeper insights [3]. Machine
learning algorithms offers much more better and automatic
quantitative analysis than experimental methods because
algorithms like Supervised learning are able to extract same
& richer experimental data. Further, there are two different
types of input data i.e event and tracking data. Event data
mainly consist of recognition of patterns of teams and their
characteristics & also identification of main performance
measures that increase chance of success. The Tracking data
was more related to ongoing processes like effective passes,
probability of scoring goals without possession of ball etc.
Even after the advantage of the event and tracking data there
were many unpredictable scenarios like collisions between
players, unpredictable movement etc. which posses big
challenges in getting a good accuracy of information. So,
further projects should focus on these challenges and work
on reducing these errors. Finally, it is possible to integrate
machine learning with team coaches which will help them to
understand more interacting variables and provide them
with practical and rich information at fast pace. However,
there are problems that needs to be overcome like presenting
the best and to point information to analyse which can be
done by multi-disciplinary approaches like setting up
research group of computer science and sports scientists
who are competent in the game to extract relevant
information.

III. METHODOLOGY

The given section gives an in-depth account of our
approach of developing agents to play the simulated football
game. The section also provides a detailed description of the
architecture and working of our agents, along with the
description of the environment and dataset used to train the
agent.

A. Environment
We have used Google's developed environment of

football, an open-source reinforcement learning (RL)
environment [1]. The whole game is divided into two halves
of 1500 steps each, and each team is assigned a half
randomly but does not swap their halves after 1500 steps to
keep things simple. For convenience, our agent controls

only one player, either the player with the ball or the closest
player to the ball. Our environment has 115 states or
observations which are returned to our agent. Based on the
current state, our agent needs to choose an optimal action
out of 19 possible actions to improve its current state.

B. Data Set
For Light GBM, which is a supervised learning

algorithm, we have extracted episode replays from Kaggle’s
API [4]. Each episode has 115 states/observations mapped
to its corresponding label denoted ‘y’, representing the
action taken by the model in the given state. Each episode
came out to be of size 21 megabytes, and we have trained
our agent on 100 such episodes making the training data of
2.1 gigabytes.

C. Training and Evaluation Environment
We have used Nvidia 3060 RTX with an intel i5 11th

gen processor and 16GB RAM for training and evaluation
of our agents.

D. Methods
We have developed two different agents to play the

football game based on Deep Q networks and Light GBM.
Deep Q networks are based on reinforcement learning
which is a self-learning algorithm. On the other hand, Light
GBM is an advanced gradient boosting machine learning
framework based on decision trees and is a supervised
learning algorithm. The description of architecture and
working of both models are mentioned below in detail.

1. DEEP Q NETWORKS

Deep Q Networks comes under reinforcement learning
and is an improvement and extension of Q-Learning. In
reinforcement learning, an agent acts in an environment, and
we may or may not know how will the environment react,
which is described by a model based on the action taken by
the agent.[5] The agent remains in any one of the many
states, denoted by ‘s’, and can move from one state to
another denoted by ‘s'’ by taking one of many possible
actions represented by ‘a’. The state the agent ends up in
after taking action depends upon transition probability ‘P’.
Once the agent takes action, it receives a reward ‘R’. The
agent devises a policy defined by 𝜋(s), which acts as a
guideline to choose the optimal action in a state ‘s’ to
maximise the total reward. Each state has a value function
V(s) associated with it to quantify how good that particular
state is. The agent tries to learn value function and an
efficient policy.

The agent interacts with the environment by taking the
sequence of actions over a series of time steps t = 1, 2, 3, …,
T [6]. During this process, our agent explores the
environment to learn an optimal policy which helps our
agent to choose an optimal action to maximize the reward.
The interaction sequence of state, action, and reward at a
certain time step ‘t’ is represented by st, at, and rt,
respectively, and is described by one episode. This sequence
ends at the terminal state ST. With the help of the Bellman
equation, the value functions are decomposed into
immediate reward and discounted future values. The
equation is a follows:

Q(s, a) = r(s, a) + 𝛄 * ΣP(s, a, s')maxa’ Q(s', a') (1)

2022 International Conference on Emerging Techniques in Computational Intelligence (ICETCI)

85Authorized licensed use limited to: Aizu University. Downloaded on October 30,2022 at 09:24:30 UTC from IEEE Xplore. Restrictions apply.

Where,

● Q(s, a): action-value pair

● r(s, a): reward in state ‘s’ after taking action ‘a’

● 𝛄: Discount factor

● P(s, a, s'): transition probability from state ‘s’ to
state ‘s'’ by taking action ‘a’

● maxa’ Q(s', a'): optimal Q function for future
rewards

Discount factor 𝛄 ∊ [0, 1] is used to penalise future rewards.
There are many reasons to employ the discount factor in the
equation. The most important among all is as follows:

● High level of uncertainty of future rewards

● Future rewards are not as beneficial as immediate
rewards

● Acts as a mathematical convenience

● There is no need to worry about the infinite loops
in the state transition graph

Deep Q networks are built and improved upon Q-learning.
Q-learning is based on off-policy temporal differences and
works as follows within one episode:

1. We first initialise time step, t = 0

2. Start from initial state S0

3. At time step ‘t’, the agent chooses an action, say at,
according to optimal Q-value

4. After choosing the action, the agent will receive a
reward Rt + 1 and shifts to state St + 1

5. The agent updates the current Q-value with the
help of temporal difference

6. Finally, the agent increments the current time step
by one, i.e., t = t + 1 and repeats from the third step

Although theoretically speaking, an agent based on Q
learning can memorise all state-action pairs from a table,
also known as a Q table. But practically, it is
computationally expensive when state and action space is
enormous. To deal with this problem, one can use a function
approximator in order to approximate Q-values. But,
Q-learning based agents suffer from divergence and
instability in combination with non-linear Q values function
approximation.

Deep Q-Network is responsible for improving this
shortcoming of the Q learning based agent by introducing
Experience replay and updating target periodically.
Experience replay stores all the episodes into a replay
memory and random samples of experience tuples are
drawn out during the Q-learning updates. By employing
experience replay, we improve the efficiency of the data and
get rid of correlations in the data. Besides that, the agent
also updates the target values periodically.

a) Agent’s Architecture

Our DQN agent consists of three components: model,
replay buffer and an exploration method. These aspects of
our agent are explained in detail below.

b) Model

Google research football environment returns observation
as an array of size 115 passed as an input to a neural
network with three layers. The neural network will output
an estimated value of each possible action, and the agent
will choose a move with the highest estimated value most of
the time. The agent uses two different copies of the model
values to make its learning more stable. The first model is
known as the “Action” model, which is updated after every
training step and is responsible for estimating the value of
actions. The second copy is known as the target model,
which is updated after copying the weights of the value
models. The target model is updated less frequently to keep
the agent’s training stable. The below figure shows the
architecture of the model in detail.

Fig 2. Model Architecture

c) Replay Buffer

The replay buffer is responsible for storing state, action
and rewards. Once the agent is updated, the agent creates a
training set by sampling a batch from the replay buffer. This
replay buffer is of utmost importance as it helps us reduce
correlation in the data and improve the working of the
neural network.

d) Exploration Method

The exploration method is the final component of our
agent, and we have employed epsilon greedy to achieve it.
Our agent chooses a move from all the possible actions if
the value of an action is greater than the value of epsilon.
The value of epsilon was set to a high value initially, but it
slowly moved to a much smaller value over time.

2. LIGHT GBM

Light GBM is a decision tree based gradient boosting
framework used for classification, ranking and varieties of
other machine learning tasks. Unlike different gradient
boosting algorithms, Light GBM splits the decision tree leaf
wise with the best fit. Light GBM can achieve far better
accuracy than any other boosting algorithm because it can
reduce loss more efficiently by splitting the decision tree
leaf wise [7]. Light GBM utilises two techniques known as

2022 International Conference on Emerging Techniques in Computational Intelligence (ICETCI)

86Authorized licensed use limited to: Aizu University. Downloaded on October 30,2022 at 09:24:30 UTC from IEEE Xplore. Restrictions apply.

Gradient-based One Side Sampling (GOSS) and Exclusive
Feature Bundling (EFB) [8]. These two techniques make
Light GBM overcome the limitations posed by
histogram-based algorithms, utilised by traditional Gradient
Boosting Decision Tree (GBDT) frameworks. Together they
make Light GBM more efficient than other GBDT.

Gradient-based One Side Sampling (GOSS) retains more
significant gradient instances as these are more crucial to
information gain and discard instances with smaller
gradients. This keeps the information gain estimation more
accurate than uniform and randomly sampled data. On the
other hand, Exclusive Feature Bundling (EFB) bundles
exclusive features into a single feature, thus improving the
training speed of the framework without impacting the
accuracy negatively.

The agent has trained on a dataset with 115 states. Each
data point is mapped to its corresponding label denoted ‘y’,
which represents the action taken by the model in the given
state. Light GBM creates a decision based on this dataset,
splits it leaf-wise, and chooses a leaf representing an action
with minimum loss. Leaf-wise growth of the tree will
increase the complexity of the model, which risks
overfitting, but we have tackled it by keeping the
max_depth parameter to the default value.

IV. RESULT

A. Training

TABLE I. Training of Deep Q Network

Number of Games 300

Time Taken 4 hours

Sustained CPU Usage (%) 52%

Deep Q Network agent training was done as per table 1.
Further for the individual testing of agent performance it
was played with run_right agent which always chooses right
run operation. They played 10 games together out of which
4 games were won by deep q network agent and 6 games
ended up being drawn. A reward vs episode graph is shown
in fig 3 which was generated as a result of training.

Fig 3. Reward Vs Episodes

TABLE II. Training of LightGBM

Training Data Size 2.1 GigaBytes

Time Taken 30 Minutes

Sustained CPU Usage (%) 58%

Further, LightGBM training is done as per table 2. And it
played 10 games against the same run_right agent for
individual testing out of which all of the 10 games were won
by LightGBM.

B. Deep Q Network Vs LightGBM

Finally, the Deep Q Network agent and lightGBM agent
were made to play against each other for 25 games for
comparative analysis and generalizing results. LightGBM
performed better by winning 18 out of 25 games played
giving it a winning accuracy of 72% whereas Deep Q
network won 2 games having a winning accuracy of 8% and
5 games ended up being drawn between the two agents.

V. CONCLUSION

We aimed to develop AI agents to play football video
games efficiently. For this purpose, we used Google's
developed environment of football, an open-source
reinforcement learning (RL) environment. We created two
agents based on Deep Q Networks (DQN), a self-learning
algorithm, and Light GBM, a framework based on gradient
boosting algorithms. During the comparative analysis of the
two models, we saw Light GBM had a winning accuracy of
72%, and Deep Q Network had 8%. Although Light GBM
dominated the DQN agent, we observed that DQN had a lot
better possession rate than Light GBM. The agent based on
DQN learned and implemented concepts like passing,
dribbling, and defending more effectively than Light GBM
but was struggling to shoot and score the goal. This
behaviour of DQN can be attributed to its lack of more
training due to our limited computation power. It was the
main reason the DQN agent’s winning accuracy is
unimpressive than Light GBM, as Light GBM was trained
on highly refined data. Based on our observation, It can be
concluded that the overall performance of DQN can further
improve by increasing its buffer memory and allowing it to
play more games. Fig 3 Reward vs Episodes also backs up
our conclusion as we can observe a lot of fluctuation in the
graph, which denotes that our agent is still exploring and
learning the environment. Provided sufficient computation
resources, DQN will indeed outperform Light GBM.

REFERENCES

[1] K. Kurach, A. Raichuk, P. Stanczyk: “Google Research Football: A
Novel Reinforcement Learning Environment” [Accessed: Aug. 25, 2021]
[2] K. Kurach, A. Raichuk, P. Stanczyk: “Introducing Google Research
Football: A Novel Reinforcement Learning Environment” [Accessed: Aug.
26, 2021]
[3] M. Herold, F. Goes, S. Nopp, P. Bauer: “Machine learning in men's
professional football: Current applications and future directions for
improving attacking play” [Accessed: Aug. 28, 2021]
[4] Kaggle Competitions: “Google Research Football with Manchester City
F.C.” [Accessed: Aug. 25, 2021]

2022 International Conference on Emerging Techniques in Computational Intelligence (ICETCI)

87Authorized licensed use limited to: Aizu University. Downloaded on October 30,2022 at 09:24:30 UTC from IEEE Xplore. Restrictions apply.

[5] Weng, L : A (Long) Peek into Reinforcement Learning [Accessed: Nov.
25, 2021]
[6] Larsen, N. “Why is a target network required?” [Accessed: September
24, 2021]
[7] Analytics Vidhya : LightGBM vs XGBOOST: Which
algorithm takes the crown [Accessed: Nov. 25, 2021]
[8] Geeksforgeeks: “LightGBM (Light Gradient Boosting Machine)”
[Accessed: November 20, 2021]

2022 International Conference on Emerging Techniques in Computational Intelligence (ICETCI)

88Authorized licensed use limited to: Aizu University. Downloaded on October 30,2022 at 09:24:30 UTC from IEEE Xplore. Restrictions apply.

