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ABSTRACT

Reinforcement learning provides effective results with agents learning from their observations,
received rewards, and internal interactions between agents. This study proposes a new open-source
MARL framework, called COGMENT, to efficiently leverage human and agent interactions as a
source of learning. We demonstrate these innovations by using a designed real-time environment with
unmanned aerial vehicles driven by RL agents, collaborating with a human. The results of this study
show that the proposed collaborative paradigm and the open-source framework leads to significant
reductions in both human effort and exploration costs.

1 Introduction

An alternate approach in multi-agent systems entails the involvement of humans in the training process of RL agents
known as human-in-the-loop (HITL). While studies have investigated human feedback impact and recommended its use
to improve the sample efficiency of the single RL agent, as in imitation learning [23] [24] [25], behavioural cloning
(BC) [26], generative adversarial imitation learning (GAIL) [28], we could not find any relevant study on human-AI
teaming in multi-agent systems. A few studies have investigated the human-AI team concept in single agent systems, in
which achieving high team performance depends on more than just the accuracy of the AI system. Since the human and
the AI may have a different level of expertise, the highest team performance is often reached when they both know how
and when to complement one another [29].

The success of RL and multi-agent system (MAS) methods and algorithms in previous years highlights an essential need
for scalable simulation platforms and RL frameworks. While different research groups have proposed RL frameworks
which can manage the communication between the agents and the environment (OpenAI Gym [30], MuJoCo [31],
Arcade Learning Environment [32], RLLib [33], Horizon [34], and Dopamine [35]), the lack of a united human-MARL
framework, usable for any type of environment design, and able to facilitate communication between humans and the
multi-agent system, prevents researchers from investigating and involving human expertise in multi-agent systems.
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The proposed solution is divided into two main components: leverage "human-MARL teaming framework", named
COGMENT, to handle the collaboration between human and multiple RL-based agents in different environments.

The remainder of the paper is organized as follows: Section 2 presents an overview of other related works. Section 3
describes the background methods of this study. Section 4 deals with the proposed methods and the contributions of
this paper. Section 5 concludes this paper by summarizing the results achieved and provides suggestions for future
work to improve the proposed methods.

2 Related Works

This section provides an overview of the key approaches this paper builds upon, namely, human-AI collaboration,
multi-agent reinforcement learning, and reinforcement learning frameworks.

2.1 MARL

Generally, in MARL algorithms, the training mechanism is assigned to each agent separately. This is referred to
as decentralized or distributed learning. For example, independent Q learning can be employed to train each agent
individually. A decentralized learning architecture can reduce the difficulty of the learning process and the complexity
of the calculations [41]. [42] has considered the same concept in order to expand the framework of deep Q learning by
dynamically adjusting the reward mode based on different goals and proposing a model in which multiple agents could
cooperate and compete with each other.

In the face of a class of reasoning missions that require multiple agents to communicate with each other, the DQN
model cannot usually learn effective strategies. [13] has proposed a distributed deep loop Q network (DDRQN), which
solves the problem of multi-agent communication and cooperation that can be observed in the state portion. Often,
value-based RL algorithms are challenged by inherently non-stationary environments, while policy gradient methods
suffer from a variance that increases as the number of agents grows. In recent years, some new RL approaches have
been proposed, including attention mechanism and Actor-Critic frameworks.

[14] proposed an actor-critic method called COMA policy gradients, where a centralized critic was used to estimate
the Q-function, and decentralized actors used to optimize the agent policies. To address the challenges of multi-agent
credit assignment, it uses a counterfactual baseline that marginalizes out a single agent’s action, while keeping the other
agents’ actions fixed.

3 Background

A Deep Q-learning is a class of off-policy Temporal difference (TD), consists of a multi-layer Deep Q-learning neural
network (DQN ) which states of an environment and action value may be its input and output, respectively. Q-learning
Q(s, θ) updates (θ), the parameters of NN by observing next state s

′
after taking action ua ∈ U in state s and receive

an immediate reward r. Minimising the TD error is considered to update the parameters of (θ), by:

∆(θ) =

m∑
i=1

[((r + γmaxu′Q(s
′
, u

′
; θ

′
))−Q(s, u; θ))2] (1)

where m and θ
′

present the sampling batch and parameters of target network, respectively. This equation shows that a
greedy policy is calculated by maxu′Q(s

′
, u

′
; θ

′
))−Q(s, u; θ). The max operator uses the same values to both select

and evaluate an action, and it may lead to overoptimistic value estimates [21].

To reduce the overestimation in DQN that can lead to inefficient learning policy, [21] introduced double Q-learning
(DDQ− learning). DDQN can solve the problem by decomposing the max operation of maxu′Q(s

′
, u

′
into action

selection and action evaluation, separately. Although not fully decoupled, the target network in the DQN architecture
provides a natural candidate for the second value function, without having to introduce additional networks:

∆(θ)DDQN =

m∑
i=1

[((r + γQ(s
′
, argmaxQ(s

′
, u

′
; θ); θ

′
))−Q(s, u; θ))2] (2)

Also, the networks have essentially been trained on different samples from the memory bank of states and actions (the
target network is “trained” on older samples than the primary network). Because of this, any bias due to environmental
randomness should be smoothed out.
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Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm is a general-purpose multi-agent deep rein-
forcement learning algorithm based on policy gradient method [15]. MADDPG does not assume a differentiable model
of the environment dynamics or any particular structure on the communication method between agents. It can adopts
the centralized training with decentralized execution to extend the Actor-Critic methods where the Critic is augmented
with extra information about the policies of other agents, while the Actor only has access to local information. After
training is completed, only the local actors are used at execution phase, acting in a decentralized manner.

Consider a mission scenario with N agents with policies parameterized by θ = (θ1, ..., θn), and let µ = (µ1, ..., µn) be
the set of all agent policies. Then the gradient of the expected return J(θi) = E[Ri] for agent i can be written as:

∇θiJ(µi) = Ex,a∼D[∇θiµi∇aiQ
µ
i (X, a1, ..., aN )|ai=µi(oi)] (3)

where, Qµi (X, a1, ..., aN ) is a centralized action-value function that takes an input the actions of all agents, a1, ..., aN
in addition to some state information X , and outputs the Q-value for agent i. In the simplest case, X could consist
of the observations of all agents. The experience replay buffer D contains the tuples (X,X

′
, a1, ..., aN , r1, ..., rN )

recording experiences of all agents. The parameters of policy network are updated using the policy gradient from
Equation (3) as the loss by an optimizer.

4 Methods

4.1 COGMENT

This study addresses the design, development, and demonstration of human-MARL teaming using a unique framework,
called COGMENT (See Figure 1). The current version of COGMENT, developed by the AI Redefined team, was
released as an open source framework to accelerate human-MARL teaming. COGMENT’s contribution can be
segregated in four main parts: agents, user clients, and the orchestrator. Each part will be explained in the rest of this
section.

Actors: In the COGMENT framework, actors can be defined as either human or agent. They send actions, feedback,
and/or recommendations to other actors; in the case of human users, through the shared environment by utilizing
front-end clients (like a web client or a mobile app). COGMENT uses general-purpose Remote Procedure Calls
(gRPC) to handle the communications between the different parts of the system. gRPC is a modern open source high
performance RPC framework that can run in any environment. It can efficiently connect services to and across the
“Orchestrator” — the application at the core of COGMENT — with pluggable support for load balancing, tracing,
health checking and authentication. It is also applicable in the last mile of distributed computing to connect devices,
mobile applications and browsers (usually the clients used by the users) to backend services. Cogment comes with
SDKs (including APIs) to connect agents in python, and clients in either python or javascript to the environments.

Agent and client: Heuristic and/or RL agents can communicate with clients (used by humans), other agents, and
the environment through gRPC. Each agent can reside in its own separate docker-container. Using different docker-
containers allows the deployment of agents on different machines in a distributed way, as well as individual modular
configurations like the use of additional packages if they are needed by a specific type of agent. including agents with
heterogeneous capabilities. Since gRPC does not natively support javascript (JS), Envoy is used to connect to web-based
front-end clients. The SDK also provides a way to store training data in a database ("log exporter"). COGMENT can
support distributed users at a very large scale.

Orchestrator: The Orchestrator is the nexus of the whole system, as it manages all the communications, handles the
combining of rewards from multiple sources, and generates offline datasets if needed. The orchestrator offers multiple
options to address the shortcomings of the current RL framework, as well as active or passive training, multi or single
agent systems. While the focus of this study is human-MARL teaming, COGMENT enables cooperative, assistive,
and competitive interactions between humans and RL agents. COGMENT neither limits nor segregates the categories
of interactions and allows them to be mixed up in a single use case. A monitoring server (which connects to the
environment, the agents as well as many other components) can be used to evaluate the agent’s performance.

COGMENT also offers a command line interface called “cogment-cli”, which provides a bootstrapping mechanism for
setting up new projects easily.

4.2 Proposed Hybrid MARL

This study propose a new MARL algorithm to take the benefit of both tightly-coupled and loosely-coupled MARL
techniques. Inspired by MADDPG [15], this study proposes D3-MADDPG, by modifying the network of MADDPG,
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Figure 1: Cogment framework

Figure 2: Proposed Hybrid MARL

and replacing the Q-learning with Double Dueling Deep Q learning (D3Q− learning). We aim to explicitly reduce
the overestimation of Q-learning by a simple change in the target vale. Specifically, Also, the monotonic relationship in
QMIX is guaranteed:

∀a ∈ A∂QMIX(τ, u)

∂Qa
≥ 0 (4)

where, Qa denotes a utility function, and QMIX(τ, u) is the mixing value, and presents ability to learn a joint
action-value within linear complexity regarding the number of agents n. And,

Aπ(s, a) = QπMIX(s, a)− V (s) (5)

where, QπMIX and V (s), respectively, are:

QπMIX(s, a) = QπMIX(s, a)− V (s) (6)

Recall that the Q value represents the value of choosing a specific action at a given state, and the V value represents the
value of the given state regardless of the action taken. Then, intuitively, the Advantage value shows how advantageous
selecting an action is relative to the others at the given state.
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5 Conclusion

Although the current version of COGMENT simplifies the conduction of large scale experiments in HILT and/or multi-
agent setups, through the current exercise, we aim to further the optimization of COGMENT’s communication channels,
data storage/processing pipelines, and learning methodologies, in addition to providing a pool of continuous/discrete
time simulated environments and pre-trained models of varying complexity to the research community.
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