Beating the World's Best at Super Smash Bros. Melee with Deep Reinforcement Learning

Firoiu, V., Whitney, W. F., & Tenenbaum, J. B.

arXiv preprint arXiv:1702.06230, 2017.

Introduction

• Goal

Investigate the performance of deep learning AI on SSBM

- Super Smash Bros. Melee (SSBM)
 - Released in 2001
 - Popular fighting game
 - There is still active tournament

SSBM as **RL** environment

- Rules
 - Send the opponent out of screen to win
 - Build up Percentage to send them far

- Challenges
 - Large game state and complex transition
 - Delayed rewards
 - Great deal of diversity (26 characters and multiple stages)

Q-Learning

- Model-free reinforcement learning algorithm
- Learn a mapping from state to future rewards of each action

- Details
 - Neural network instead of Q table
 - Gradient descent based on the loss (objective) function below
 - \circ Choose action with ϵ -greedy and proportion of Q values

$$L = (Q(s_t, a_t) - [r_t + \lambda r_{t+1} + \dots + \lambda^n Q(s_{t+n}, a_{t+n})])^2$$

Policy Gradient Method

• Actor-Critic

Actor selects action and Critic criticizes the actions made by Actor

• Details

- Update policy using the gradient below
- Entropy scale h enables agent to explore effectively

$$egin{aligned} \Delta heta &= lpha (A(s,a)-h)
abla_ heta \log \pi_ heta(s,a) \ A(s,a) &= Q(s,a) - V(s) \end{aligned}$$

Training

- Infinite time mode
- Character: Captain Falcon, stage: Battle Field

• Rewards

- win +1, lose -1,
- (damage dealt damage taken)*constant
- limitations
 - No information about projectile
 - Less input
- Generate experiences in parallel

Result: against in-game Al

• Both AI defeted the strongest in-game AI

- The Actor-Critic AI learned strategy that's similar to human players
- The Q-Learning AI learned tricky policy
 - "Starter agent" (provided by OpenAl as a baseline RL AI) couldn't learn well in the same setup.

Result: Self-play

The agents trained against the in-game AI was not strong enough to defeat experienced players... >>> Self-play

- Train AI against old version of itself
- Became so strong that the AI can beat top players in competetion

But it had some weaknesses,

- Crouching at the edge of the stage caused the AI to suicide by falling off the edge.
- The AI performed much worse when it played against other characters.

Agent diversity and character transfer

- Train another five characters
 - Different network for different characters
 - Self-play against different characters
- > This diversity fixed the odd behaviour.

- Transfer learning
 - Initializing weights of network with other character's trained network makes learning faster.

Opponent	Rank	Kills	Deaths
S2J	16	4	2
Zhu	31	4	1
Gravy	41	8	5
Crush	49	3	2
Mafia	50	4	3
Slox	51	6	4
Redd	59	12	8
Darkrain	61	12	5
Smuckers	64	8	5
Kage	70	4	1

The AI after self-play training surpasses top SSBM players.

	Scratch	Sheik	Marth	Fox	Falco	Peach	Falcon	
Sheik	36	0	4	7	7	3	9	
Marth	40	5	0	11	10	7	10	
Fox	31	8	6	0	2	6	7	Transfor loorning makes loorning
Falco	35	9	6	2	0	7	5	Transfer learning makes learning
Peach	26	2	4	5	5	0	6	much faster.
C. Falcon	53	9	11	13	12	10	0	

Discussion

 Q-Learning performed reasonably well against fixed opponent (i.e. in-game AI). However, it didn't perform well when the opponent's policy changes during training (i.e. self-play and against other characters).

 Al's reaction speed (33ms) can be cheating. But their attempt to add action delay wasn't successful. This remains interesting and challenging problem.

Conclusions

In this paper, they

- Introduce a new environment, SSBM, to RL community.
- Analyze the difficulties when adapting traditional RL algorithm to such environment.
- Demonstrate an agent based on deep learning which even surpasses top human players.

Links

"A Super Smash Bros-playing AI has taught itself how to stomp professional players"

https://qz.com/917221/a-super-smash-bros-playing-ai-has-taught-itself-how-to-sto mp-professional-players

Their AI vs. Mafia (one of the top players)

https://www.youtube.com/watch?v=dXJUlqBsZtE&feature=emb_title&ab_channel= vladfi1

Github

https://github.com/vladfi1/phillip