
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

7-2018

Autonomous agents in snake game via deep reinforcement Autonomous agents in snake game via deep reinforcement

learning learning

Zhepei WEI

Di WANG

Ming ZHANG

Ah-hwee TAN
Singapore Management University, ahtan@smu.edu.sg

Chunyan MIAO

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Software Engineering Commons

Citation Citation
1

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6073&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6073&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6073&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Zhepei WEI, Di WANG, Ming ZHANG, Ah-hwee TAN, Chunyan MIAO, and You ZHOU

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/6073

https://ink.library.smu.edu.sg/sis_research/6073

Autonomous Agents in Snake Game via
Deep Reinforcement Learning

Zhepei Wei†, Di Wang§, Ming Zhang†, Ah-Hwee Tan§¶, Chunyan Miao§¶, You Zhou†∗
†College of Computer Science and Technology

Jilin University, Changchun, China
§Joint NTU-UBC Research Centre of Excellence in Active Living for the Elderly

¶ School of Computer Science and Engineering
Nanyang Technological University, Singapore

∗Corresponding Author
zhepei.wei@gmail.com, wangdi@ntu.edu.sg, zhangming0722@gmail.com, {asahtan, ascymiao}@ntu.edu.sg, zyou@jlu.edu.cn

Abstract—Since DeepMind pioneered a deep reinforcement
learning (DRL) model to play the Atari games, DRL has become
a commonly adopted method to enable the agents to learn
complex control policies in various video games. However, similar
approaches may still need to be improved when applied to
more challenging scenarios, where reward signals are sparse
and delayed. In this paper, we develop a refined DRL model
to enable our autonomous agent to play the classical Snake
Game, whose constraint gets stricter as the game progresses.
Specifically, we employ a convolutional neural network (CNN)
trained with a variant of Q-learning. Moreover, we propose
a carefully designed reward mechanism to properly train the
network, adopt a training gap strategy to temporarily bypass
training after the location of the target changes, and introduce a
dual experience replay method to categorize different experiences
for better training efficacy. The experimental results show that
our agent outperforms the baseline model and surpasses human-
level performance in terms of playing the Snake Game.

Index Terms: Deep reinforcement learning, Snake Game,
autonomous agent, experience replay

I. INTRODUCTION

Reinforcement learning has been applied to play simple
games decades ago, one of the probably most well-known
models is TD-gammon [1], which plays the backgammon
game and surpasses human-level performance. However, this
method shows little generalization to other games and did
not attract wide attention. As a recent breakthrough in deep
learning, DeepMind creatively combined deep learning with
reinforcement learning and came up with the prominent deep
Q-learning network (DQN) model [2]. DQN outperforms all
the prior approaches on six games and surpasses human-
level performance on three games. This breakthrough lit up
researchers’ passion and many similar researches (e.g., [3, 4])
soon emerge.

However, DQN may not be straightforwardly applied to all
scenarios because its naive reward mechanism only produces
sparse and delayed rewards that may lead to ineffective learn-
ing of correct policies [5]. In this paper, we devise a carefully
designed reward mechanism to estimate the immediate rewards
based on the environmental changes directly collected from the
game as effective learning signals for our autonomous agents.

Moreover, in most reinforcement learning problems, a
method named experience replay is often adopted to decrease
the correlation of sampled experiences when training the
network [6]. Lin [6] proved the experience replay smooths
the training distribution over a large amount of experiences.
However, this method samples previous experiences randomly
without considering their quality. To solve this problem,
Schaul et al. [7] proposed an improved approach named
“prioritized experience replay”. Inspired by [7], in this paper,
we propose an approach named dual experience replay to
further distinguish the valuable and ordinary experiences by
storing them into two independent memory pools. As such,
the training of the agent is better guided.

In this paper, our agent learns how to play the Snake Game
based on the screen snapshots. Specifically, we rely on a deep
Q-learning network (DQN) to choose the best action based on
both the observations from the environment and prior learned
knowledge. We use a series of four screenshots of the Snake
Game as the network input. Therefore, the network is able to
capture the game information including direction and position,
and then output the estimated Q-value of each action. Training
an agent to successfully learn to play this Snake Game is quite
challenging because the restriction of the Snake Game gets
stricter as the snake grows in length. Moreover, once an apple
is eaten by the snake, a new one is immediately spawned at a
random location. To better handle this changing target issue,
we introduce a training gap strategy to temporarily bypass
training and to provide enough time for the snake to perform
necessary maneuvers. The experimental results show that our
agent outperforms the baseline DQN model and surpasses
human-level performance in terms of both game scores and
survival time.

II. GAME ENVIRONMENT AND TECHNICAL FOUNDATION

In this section, we introduce the Snake Game environment
and the technical foundations of a typical deep reinforcement
learning model.

A. Game Environment

Snake Game is a classical digitized game, in which the
player controls the snake to maximize the score by eating
apples spawned at random places. One and only one apple
appears in the game screen at any time. Moreover, because
the snake will grow one grid in length by eating an apple,
avoiding collision is key to its survival. In this work, we
implemented the Snake Game in Python as the testbed of
autonomous agents. We adopted the settings of the Snake
Game as recommended by [8]. Specifically, the size of the
game map is set to 240×240 in pixel and divided into 12×12
equally large grids. The initial length of the snake is 3, initial
direction is to the right, and the snake as well as the apple
are randomly deployed when a game starts. The game score
is initialized to 0 and will increase one as the snake reaches
a target. Moreover, the collision of snake will lead to the end
of a game and the game score will be reset to 0 at the start of
the new game. Due to the re-spawn of a new apple when
the previous one is eaten, the target of the snake changes
during a game trial upon reaching a previously determined
target. Hence, being able to localize new targets in an adaptive
manner is crucial to the agents playing the Snake Game. The
number of control signals in the Snake Game is four, namely
UP, DOWN, LEFT and RIGHT. At each time step, the snake
moves one grid forward along its current direction, unless
the control signal received is an orthogonal direction. Snake
Game is a complex and challenging reinforcement learning
environment that has seldomly been studied in the literature. In
this paper, we propose a refined DQN model with mainly three
technical improvements and apply it to enable an autonomous
agent to play the Snake Game.

B. Technical Foundation

Deep Q-Network (DQN) is firstly presented by Mnih et al.
[2] to play Atari 2600 video games in the Arcade Learning
Environment (ALE) [9]. DQN demonstrates its ability to
successfully learn complex control policies directly from raw
pixel inputs. Technically speaking, DQN is a convolutional
neural network (CNN) trained by a variation of the classical
Q-learning algorithm [10], using the stochastic gradient de-
scent method to tune the weights. DQN advances traditional
reinforcement learning techniques as it employs CNN to
approximate the Q-function, which provides a mechanism
to estimate Q-values of possible actions directly from the
most recently observed states (pixels). To keep the iterative
evaluations stable, DQN uses mini-batches of experiences
to train the neural network. Specifically, each experience is
manifested as a four-tuple (s, a, r, s′), where s is the state of
the observed environment, a is the action that agent performs
in state s. After agent executes action a in state s, it receives
the reward r from the environment and goes into the next state
s′. Along game play, agent stores the experience in memory for
subsequent sampling and training of CNN. This is known as
experience replay [6]. In addition, DQN uses former network
parameters to evaluate the Q-values of the next state, which
provides a stable training target for CNN [11].

(a) RGB Image (b) HSV Model (c) Final Input

Fig. 1. Three snapshots at different phases during input preprocessing.

In our work, state s is preprocessed and denoted as φ(s).
The agent selects actions using an ε-greedy strategy [12], in
which the best action determined based on the approximated
Q-value function is executed with probability 1 − ε, or else,
a random action is executed with probability ε. Moreover,
we propose a variant of the memory replay strategy, aiming
to distinguish the importance of different experiences. The
technical details of our refined DQN model are provided in
the following section.

III. PROPOSED DQN TO PLAY THE SNAKE GAME

In this section, we provide the technical details of our
refined DQN model in the respective subsections.

A. Sensory Input Preprocessing and Model Architecture

To reduce the dimensionality of the raw sensory input in
pixel, we resize the original RGB snapshots (size of 240 ×
240 × 3) to 64 × 64 × 3 images. To avoid interferences by
the game background, we first convert the RGB image into
HSV color model as a temporary intermediate status and then
turn it back to RGB as the final input. In HSV color model,
we are able to eliminate the unnecessary grids in the game
background by applying bitmask and outputting the result to
RGB. Thus, as shown in Fig. 1, the final input is more suitable
as the input for the agent to learn from.

In practice, we use the most recent four preprocessed frames
as the network input. The reason is because a single frame
input lacks necessary information and will fail to recognize
the moving direction of the snake. Therefore, by stacking four
preprocessed frames, the input of CNN is a three-dimensional
array of size 64 × 64 × 12. Furthermore, there are three
convolutional layers and one fully-connected layer between
the input and the output layers of our network. The first
convolutional layer (Conv1) comprises 32 7 × 7 filters with
stride 4. Moreover, Conv2 comprises 64 5×5 filters with stride
2 and Conv3 comprises 128 3× 3 filters with stride 2. All the
three convolutional layers employ the same activation function
ReLU. The last hidden layer is a fully-connected layer (Fc1)
and comprises 512 rectifier units. Lastly, the output layer is
a fully-connected linear layer that outputs the corresponding
predicted Q-value of each action. As the number of possible
actions in the Snake Game is 4, the output layer comprises
4 corresponding units. The detailed network architecture is
summarized in Table I.

TABLE I
NETWORK ARCHITECTURE

Layer Filter Stride Number Activation Output
Input 64*64*12

Conv1 7*7 4 32 ReLU 16*16*32
Conv2 5*5 2 64 ReLU 8*8*64
Conv3 3*3 2 128 ReLU 4*4*128

Fc1 512 ReLU 512
Output 4 Linear 4

B. Dual Experience Replay

Because the input to the network is continuous in time,
the subsequent states may be highly correlated, which may
lead the algorithm to an unwanted local optimum or even
divergence [13]. To solve this issue, experience replay [6] has
been introduced to break the correlation. However, this method
fails to distinguish the importance of different experiences as it
samples randomly from the memory pool without considering
their quality. In this paper, we introduce two independent
experience sets MP1 and MP2, in which any experience is
stored according to its quality in terms of reward. We define
valuable experiences as those with higher reward, i.e., ≥ 0.5,
and store them in MP1. Although has lower reward values,
the other experiences stored in MP2 are still necessary in the
training process, because they provide the agent opportunities
of further exploration. The selection between the two memory
pools is regulated by a proportion parameter η, which controls
the experience sampling from MP1 and MP2 in a similar
manner as the ε-greedy strategy, i.e., setting different sampling
proportion η and 1−η for MP1 and MP2 respectively. In this
paper, we heuristically initialize η to 0.8, which determines
that our agent will mostly learn from the valuable experiences
stored in MP1 in the initial game stage. The value of η
gradually decreases as the training progresses and finally fixes
at 0.5, which means the agent treats valuable and ordinary
experiences equally. This strategy is designed to help the agent
learn from the valuable knowledge in the initial phase to
firstly reach a certain level of performance and then fine tune
the action selection strategies by exploring more (relatively
speaking) from the ordinary knowledge. However, due to
the constraint in terms of physical memory, the size of the
experience pool cannot be set to an overly large number. In this
paper, we set N to 1,000,000. Furthermore, MP1 and MP2

are set to the same size of N/2, i.e., 500,000. The detailed
dual experience replay strategy is summarized in Algorithm 1.

C. Reward Mechanism

To prevent having overly large estimated rewards, reward
clipping techniques are adopted by many reinforcement learn-
ing models (e.g., [15–17]). In our work, the reward is clipped
within the [-1,1] interval. Specifically, our agent receives the
highest reward of 1 when it eats an apple and receives the
lowest reward of -1 when it crashes into the wall (boundary
of the game map) or itself. In the original DQN, the agent
receives reward of 0 when neither of the above two cases has

Algorithm 1 Deep Q-learning with Dual Experience Replay
Require: replay memory MP1 and MP2, capacity of mem-

ory pool N , state st, action at, reward rt, experience et at
timestep t and approximated action-value function Q
Initialize replay memory MP1 and MP2 to capacity N/2
Initialize Q with random weights
for all training steps do

Initialize state s1 for the new episode
Preprocess φ1 = φ(s1)
repeat

With probability ε select a random action at
otherwise select at = argmaxa∈AQ(φ(st), a)
Decay exploration probability ε
Execute at in game then observe rt and st+1

Preprocess φt+1 = φ(st+1)
if |rt| ≥ 0.5 then

Store et = (φt, at, rt, φt+1) in MP1

else
Store et = (φt, at, rt, φt+1) in MP2

Sample minibatch of ek from MP1 and MP2

with proportion η and (1− η), respectively
Decrease sampling proportion η
if episode terminated at φk+1

Target value Q∗k = rk
else
Q∗k = rk + γmaxa∈AQ(φk+1, a)

Define loss function loss = (Q∗k −Q(φk, ak))2

Update neural network parameters by performing
optimization algorithm Adam [14] on loss

until episode terminates
end for

happened. Furthermore, we propose a carefully designed re-
ward mechanism to generate an immediate reward at each time
step, which is regulated by the following three components:
distance reward, training gap and timeout strategy, which are
introduced as follows:

1) Distance reward: This reward is initialized to 0 and
adjusted by our defined distance reward function (DRF) (see
(1)). Specifically, as the agent approaches or moves away from
the target, it is awarded or penalized based on its length and
its distance from the target, which can be described as follows:
reward = reward + ∆r, where ∆r is determined by DRF.
By intuition, the reward should be inversely proportional to
the distance to the target. In other words, the closer the agent
is to the target, the higher reward should be given to the agent.
In practice, we let one step towards the target produces a
fundamental unit of positive ∆r and a step away from the
target produces a fundamental unit of negative ∆r.

In Addition, ∆r is also affected by the snake’s length. Due
to the nature of the Snake Game, as the agent’s length grows
longer, it gets easier to crash into itself. Therefore, to keep the
agent survive longer, more tolerance should be given when it
is in the maneuver process, which is necessary to avoid self-

crashing. As such, as the agent’s length gets longer, it should
receive less penalty when moving away from the target.

Technically, we detect the agent’s moving direction by
computing the change of distance between the target and the
head of the snake. At time step t, we denote the snake’s length
as Lt and denote the distance between the target and the head
of the snake as Dt. According to the snake’s moving direction,
which is determined by at, it is easy to get the subsequent
location of the head of the snake. As such, we denote the
distance in the subsequent time step as Dt+1. Based on Dt and
Dt+1, the DRF is able to provide positive or negative feedback
accordingly, which is mathematically defined as follows:

∆r(Lt, Dt, Dt+1) = logLt

Lt +Dt

Lt +Dt+1
. (1)

Equation (1) takes the form of the logarithmic scoring rule,
which is used in decision theory to maximize the expected
reward [18]. In our work, we derive (1) to compute the reward
in terms of distance. Due to the employment of log, our DRF
derives positive value when snake approaches the target (i.e.,
Dt > Dt+1) and derives negative value otherwise.

Note that in (1), cases when Dt or Dt+1 equals to 0 are not
taken into consideration. Because when the distance equals to
zero, it means the snake eats an apple (reaches the target) and
the reward should be set to 1 instead of being derived by DRF.
Similarly, DRF is bypassed when at leads to a termination
state, wherein the reward should be set to -1.

2) Training gap: In Snake Game, certain experiences are
not suitable to be learned by the agent, which are referred as
the training gap by us. Training gap is conceptually similar
to the refractory period (RP) in physiology, which refers to
a period immediately following the stimulation of a neuron
during which the same neuron is temporarily suspended from
activation. Following similar mechanism, we implement the
training gap by preventing the agent from learning for M time
steps after it ate an apple. These M number of experiences are
not stored in the memory pools. This training gap is designed
to exclude the improper training signals received when the
snake just ate an apple and the location of the subsequently
spawned new target suddenly appear in a random location. In
other words, the training gap provides a warm up stage for
the agent to get ready and move towards the new target, i.e.,
within these M steps, the agent only makes decisions towards
the new target without updating its learned knowledge. To
make this strategy more adaptive, we relate the value of M to
the length of the snake as follows:

M(Lt) =

{
6, Lt ≤ k,

dp× Lt + qe, Lt>k,
(2)

where the values of p, q and k satisfy the following constraint:
6−q
p ≡ k, so that M(Lt) is continuous at (k,M(k)). When
Lt ≤ k, the training gap is heuristically set to 6, which is a
half of the game window’s width. When Lt>k, the training
gap is assumed to be linearly proportional to the length of the
snake. In this paper, we heuristically set p, q and k to 0.4, 2
and 10, respectively.

3) Timeout strategy: If the snake failed to eat any apple
over the past P steps, it receives a negative reward as punish-
ment, which is defined as follows:

∆r(Lt) = −0.5/Lt. (3)

In this strategy, P is a positive integer, heuristically set
according to the length of the snake as d0.7 ∗ Lte + 10.
Similar to DRF (see (1)), this timeout penalty decreases as the
snake grows and aims to help the snake avoid hanging around
meaninglessly with no intention to reach the target. When
a timeout punishment is triggered, all the past experiences
obtained in the previous P steps are adjusted with the same
penalty as defined in (3). Moreover, these experiences are
moved to the ordinary memory pool MP1.

4) Overall reward assignment: The overall assignment
of immediate rewards aggregates the afore-introduced three
strategies. Specifically, if the game is not in the training
gap period (see (2)), the agent receives rewards based on
its distance to the target (see (1)). Moreover, if the timeout
punishment is triggered, the recently stored P number of
experiences are adjusted (see (3)) and moved to the ordinary
memory pool. Moreover, whenever the assigned reward falls
out of the [-1, 1] interval, it is clipped at the boundary value
of either -1 or 1 correspondingly.

IV. EXPERIMENTAL RESULTS

As a summary of the experimental setups, we use the Adam
algorithm [14] with mini-batch of size 64 to optimize the
network. For input preprocessing, the most recent 4 frames are
stacked. The reward is produced by the reward mechanisms
described in Section III-C and the discount factor γ (see
Algorithm 1) is set to 0.99. The action selection of an agent is
regulated by the ε-greedy policy with ε linearly decays from
0.5 to 0 over the first 50,000 games. The maximum capacity of
the memory pools is set to 1,000,000. We train our agent using
an Ubuntu server equipped with one TITAN Xp GPU. In total,
the agent played 134,000 games, which lasted approximately
7 million steps. To evaluate the performance of our agent, in
this paper, we use two evaluation metric, i.e., the game score
obtained by the agent and its survival time.

In practice, we start training our refined DQN model until
the game has run for a certain number of time steps. This pure
exploration phase without training is known as the observation
period, in which the agent only takes random actions to collect
a preliminary set of experiences. When the amount of the
collected experiences reaches certain threshold, we start to
train the refined DQN according to the dual experience replay
policy (see Section III-B). In this work, we set the observation
period to 50,000 steps. Hence, during the first several games,
both the game scores and the survival time are expected to be
low because the agent only chooses random actions. After the
observation period, the performance of the agent is expected
to improve significantly. Note that mostly the end of a game
is caused by snake’s collision with the wall instead of with its
body. As shown in Fig. 2, our refined DQN has a significant
performance improvement after the cold start.

0 2 4 6 8 10 12 14

10
4

0

0.5

1

1.5

2

2.5

3

(a) Performance evaluation in terms
of game score

0 2 4 6 8 10 12 14

10
4

10

20

30

40

50

60

70

80

90

(b) Performance evaluation in terms
of survival time

Fig. 2. Visualization of performance comparison. To improve clarity, we only
use the averaged values of each 1,000 games.

Moreover, for benchmarking purpose, we also conduct
experiments using a baseline model, which follows the same
strategy used in the DeepMind’s groundbreaking work [2]
(with the same network structure as shown in Table I). This
baseline model is trained in the same manner as our refined
DQN model, but without our carefully designed reward mech-
anism, training gap, and dual experience replay strategy. Fig. 2
clearly demonstrates that our model outperforms the baseline
model in terms of both the game score and the survival
time. This finding empirically shows the effectiveness of our
improvements over the baseline model, i.e., the reward assign-
ment based on distance, the training gap, the timeout punish-
ment, and the dual experience replay strategies. Nevertheless,
as shown in Fig. 2, the highest values of the averaged game
score and the averaged number of steps survived are seemingly
small, i.e., around 2.5 and 80, respectively. However, please
note that these numbers are computed as the average of 1,000
games, within which several outlier cases may drastically
lower the averaged performance. Furthermore, in the latter part
of this experiment section, we compare the performance of our
refined DQN model with human performance, trying to further
evaluate the capability of our proposed model. As shown in
Fig. 2, the performance of our refined DQN model in terms of
game score increases slowly over the first 50,000 games along
with the decay of ε. Moreover, the performance in terms of the
number of steps survived even gets decreasing (see Fig. 2(b)).
These findings are due to the exploration-exploitation trade-
off. As in the exploration phase, wherein ε linearly decays
from 0.5 to 0, the agent is actually getting familiar with
the game environment by accumulating knowledge learned
from random exploration. After the exploration phase, the
performance of the agent starts to improve by making all
the decisions based on the learned knowledge. As shown in
Fig. 2(a), the averaged game score generally keeps improving.
Similarly, as shown in Fig. 2(b), the averaged number of
steps survived also shows improvements in general. There is
a noticeable peak in terms of the number of steps survived
around 50,000th to 77,000th games. This unexpected peak may
be due to the completion of ε decay that the performance of
the agent starts to improve as it relies purely on the learned
knowledge for decision making. However, we suspect that the

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25 30 35 40 45 50

(a) Performance in terms of game
score

0

1000

2000

3000

4000

5000

6000

0 5 10 15 20 25 30 35 40 45 50

(b) Performance in terms of the num-
ber of steps survived

Fig. 3. The performance of our agent (after being training for 134,000 games)
in additional 50 games, wherein ε = 0 and training is turned off.

TABLE II
PERFORMANCE COMPARISON AMONG DIFFERENT MODELS

Performance Score Survival Steps
Human Average 1.98 216.46
Baseline Average 0.26 31.64

Refined DQN Average 9.04 1477.40
Human Best 15 1389

Baseline Best 2 1015
Refined DQN Best 17 5039

game play policies learned during the exploration phase may
not be optimal or near optimal that after a while (around
27,000 games after ε decays to 0), the performance of the
agent drops significantly (also shown as a slight drop in terms
of game scores in Fig. 2(a)). However, it is encouraging to
see that even after the exploration phase, our agent is able to
learn more appropriate knowledge and achieves monotonically
increasing performance after the performance drop. It seems
the period of ε decay, i.e., 50,000 games, is not sufficient
for the agent to obtain a converged knowledge set. However,
due to the limited computing resource we have, we are not
able to re-run all the experiments due to the time constraint.
Nonetheless, the monotonically increasing performance after
77,000th game empirically shows that our agent is able to learn
correctly in the Snake Game. Moreover, in the last paragraph
of this section, we show that although pre-converged, our agent
can already surpass average human players.

To further justify the performance of our agent, we let the
trained agent play additional 50 games with ε = 0 and show
the results in Fig. 3. In terms of game score, our agent obtains a
minimum score of 3, a maximum score of 17, and the averaged
score of around 9. The averaged score of 9 is significantly
higher than 2.5 shown in Fig. 2(a). Similarly, the averaged
number of steps survived is approximately 1,500, which is
again significantly higher than that of 80 shown in Fig. 2(b).

To further compare our refined DQN model with human
performance, we invite ten undergraduate students to play the
Snake Game for 50 games. Before they play 50 games for
performance comparisons, each human player played at least
10 games to get familiar with this particular Snake Game
implementation. The performance comparisons in terms of
game scores and the number of steps survived are shown

in Table II (both the baseline model and our refined DQN
model are sampled from the additional 50 games after training
with ε = 0). As shown in Table II, our refined DQN model
obtains the best performance on both the averaged and the
best categories. As such, we show that the performance of our
agent surpasses human-level performance.

V. CONCLUSION

In this paper, we delineate how we refine a widely adopted
DQN model and apply it to enable an autonomous agent to
learn how to play the Snake Game from scratch. Specifically,
we propose a carefully designed reward mechanism to solve
the sparse and delayed reward issue, employ the training
gap strategy to exclude improper training experiences, and
implement a dual experience replay method to further improve
the training efficacy. Experimental results show that our refined
DQN model outperforms the baseline model. It is more
encouragingly to find out that the performance of our agent
surpasses human-level performance.

Going forward, we shall harvest more computing resources
to find out the convergence requirement in this Snake Game
and conduct more benchmarking experiments. Moreover, we
shall apply our refined DQN model to other similar application
scenarios with continuous reallocated targets (such as the re-
spawned apples) and gradually increasing constraints (such as
the growing length of the snake).

ACKNOWLEDGMENT

The authors would like to thank Hao Wang and Ruoyi Wang
for their contributions in data collection and invaluable sugges-
tions. This research is supported in part by the the National
Science Fund Project of China No. 61772227 and Science
& Technology Development Foundation of Jilin Province
under the grant No. 20160101259JC, 20180201045GX. This
research is also supported in part by the National Research
Foundation, Prime Minister’s Office, Singapore under its IDM
Futures Funding Initiative.

REFERENCES

[1] G. Tesauro, “Temporal difference learning and TD-
gammon,” Communications of the ACM, vol. 38, no. 3,
pp. 58–68, 1995.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves,
I. Antonoglou, D. Wierstra, and M. Riedmiller, “Playing
atari with deep reinforcement learning,” ArXiv e-prints,
2013.

[3] E. A. O. Diallo, A. Sugiyama, and T. Sugawara, “Learn-
ing to coordinate with deep reinforcement learning in
doubles pong game,” in Proceedings of IEEE Interna-
tional Conference on Machine Learning and Applications
(ICMLA), 2017, pp. 14–19.

[4] S. Yoon and K. J. Kim, “Deep Q networks for visual
fighting game AI,” in Proceedings of IEEE Conference
on Computational Intelligence and Games (CIG), 2017,
pp. 306–308.

[5] M. Andrychowicz, D. Crow, A. Ray, J. Schneider,
R. Fong, P. Welinder, B. McGrew, J. Tobin, P. Abbeel,
and W. Zaremba, “Hindsight experience replay,” in Pro-
ceedings of Annual Conference on Neural Information
Processing Systems, 2017, pp. 5055–5065.

[6] L.-J. Lin, “Reinforcement learning for robots using neu-
ral networks,” Ph.D. dissertation, Pittsburgh, PA, USA,
1992, UMI Order No. GAX93-22750.

[7] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Pri-
oritized experience replay,” Computing Research Repos-
itory, vol. abs/1511.05952, 2015.

[8] A. Punyawee, C. Panumate, and H. Iida, “Finding com-
fortable settings of Snake Game using game refinement
measurement,” Advances in Computer Science and Ubiq-
uitous Computing, pp. 66–73, 2017.

[9] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling,
“The arcade learning environment: An evaluation plat-
form for general agents,” Journal of Artificial Intelligence
Research, vol. 47, pp. 253–279, 2013.

[10] P. D. Christopher J. C. H. Watkins, “Q-learning,” Ma-
chine Learning, vol. 8, no. 3-4, pp. 279–292, 1992.

[11] M. Roderick, J. MacGlashan, and S. Tellex, “Implement-
ing the deep q-network,” ArXiv e-prints, 2017.

[12] R. S. Sutton and A. G. Barto, “Reinforcement learning:
An introduction,” IEEE Transactions on Neural Net-
works, vol. 9, no. 5, pp. 1054–1054, 1998.

[13] J. N. Tsitsiklis and B. V. Roy, “An analysis of temporal-
difference learning with function approximation,” IEEE
Transactions on Automatic Control, vol. 42, no. 5, pp.
674–690, 1997.

[14] D. P. Kingma and J. Ba, “Adam: A method for stochas-
tic optimization,” Computing Research Repository, vol.
abs/1412.6980, 2014.

[15] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Ve-
ness, M. G. Bellemare, A. Graves, M. A. Riedmiller,
A. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,
A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wier-
stra, S. Legg, and D. Hassabis, “Human-level control
through deep reinforcement learning,” Nature, vol. 518,
no. 7540, pp. 529–533, 2015.

[16] D. Wang and A.-H. Tan, “Creating autonomous adap-
tive agents in a real-time first-person shooter computer
game,” IEEE Transactions on Computational Intelligence
and AI in Games, vol. 7, no. 2, pp. 123–138, 2015.

[17] H. Y. Ong, K. Chavez, and A. Hong, “Distributed deep
Q-learning,” ArXiv e-prints, 2015.

[18] T. Gneiting and A. E. Raftery, “Strictly proper scoring
rules, prediction, and estimation,” Journal of the Amer-
ican Statistical Association, vol. 102, no. 477, pp. 359–
378, 2007.

	Autonomous agents in snake game via deep reinforcement learning
	Citation
	Author

	tmp.1632920781.pdf.vPp0g

