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Abstract

Knowledge of spatial movement patterns in soccer occurring on a regular basis can give a

soccer coach, analyst or reporter insights in the playing style or tactics of a group of players

or team. Furthermore, it can support a coach to better prepare for a soccer match by analys-

ing (trained) movement patterns of both his own as well as opponent players. We explore

the use of the Qualitative Trajectory Calculus (QTC), a spatiotemporal qualitative calculus

describing the relative movement between objects, for spatial movement pattern recognition

of players movements in soccer. The proposed method allows for the recognition of spatial

movement patterns that occur on different parts of the field and/or at different spatial scales.

Furthermore, the Levenshtein distance metric supports the recognition of similar move-

ments that occur at different speeds and enables the comparison of movements that have

different temporal lengths. We first present the basics of the calculus, and subsequently

illustrate its applicability with a real soccer case. To that end, we present a situation where a

user chooses the movements of two players during 20 seconds of a real soccer match of a

2016–2017 professional soccer competition as a reference fragment. Following a pattern

matching procedure, we describe all other fragments with QTC and calculate their distance

with the QTC representation of the reference fragment. The top-k most similar fragments of

the same match are presented and validated by means of a duo-trio test. The analyses

show the potential of QTC for spatial movement pattern recognition in soccer.

1. Introduction

In soccer and coaching sciences, the analysis of movement patterns of players has primarily

focused on the impact of factors such as field size, number of players [1] on the field and even

weather conditions or coach encouragement on the performed movement patterns [2,3]. At a

more personal level, the mental impact of the performed movement patterns was studied

intensively [4]. More recently, methods have been introduced that combine spatial and contex-

tual information to study performance in soccer [5]. However interesting, these studies fail to

detect actual performed spatial movement patterns of players, which are useful for a coach to

describe the playing style or tactics of a group of players or of a team. Playing styles in soccer
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can be described as the general behaviour of a group of players or of a whole team, which is

aimed at achieving the defensive and offensive objectives in a match [6]. The impact of differ-

ent playing styles on team performance can be studied [7, 8] by analysing one or multiple met-

rics [9] that can be derived from positional data such as, amongst others, ball possession [10,

11], passing directions and distributions [12] or the locations of events such as interceptions,

ball losses and set pieces [13]. However, performed playing styles in soccer are influenced by a

variety of factors, with even contextual factors such as match status or match venue to be of

proven importance [14]. Besides the study on playing styles, neural networks and machine

learning techniques have been applied on soccer to detect patterns of tactics based on posi-

tional data [15,16]. Detection of reoccurring movement patterns could contribute to the char-

acterization of playing styles and tactics in soccer by describing the movement behaviour of

players on the field. In soccer clubs, spatial movement pattern detection is generally done by

video inspection and notational analysis [4] of both the own team as well as the opponent. The

main aspect of this detection consists of visually finding and annotating similar movement pat-

terns that occur during one or more games, which is a very time-consuming and subjective

effort that often has a limited quality due to low observational accuracies of coaches or analysts

[17]. Methods for movement pattern detection through the analysis of match events in soccer

have been developed in earlier works [18, 19]. However, to the best of our knowledge and as

argued by Feuerhake [20], an optimal movement pattern recognition method aimed at the

automatic recognition of reoccurring spatial movement patterns of soccer players is currently

not available.

When analysing the movements of soccer players during a soccer match, it is of interest to

detect spatial movement patterns of one or more players. This means finding different time

intervals, in one or multiple games, during which one or more players performed similar

movements on the field. This is possible with or without predefining a spatial movement pat-

tern of interest. When no such pattern is used as reference, the analysis can be seen as an exam-

ple of data mining [20, 21]. It implies that similarities between all possible movements that

occur during one or multiple soccer matches are calculated. Possible results include one or

multiple groups of movements that have similarities higher than a certain threshold. Although

data mining approaches have been used to detect movement patterns in soccer [22, 23, 24],

they do not guarantee that the detected movement patterns are meaningful for soccer coaches,

analysts or reporters [25, 26]. When a predefined spatial movement pattern is used as a refer-

ence, the problem is referred to as pattern matching. Because the dataset is analysed using a

reference spatial movement pattern, it is referred to as spatial movement pattern recognition

rather than detection. Applied to soccer, pattern matching implies that similarities between

the reference movement and all other movements that occur during one or multiple soccer

matches are calculated. Consequently, a player movement pattern is recognised when a time

interval with a distance lower than a given threshold is found.

In this paper, we investigate the use of the Qualitative Trajectory Calculus (QTC) [27] for

the recognition of spatial movement patterns of one or multiple players. Following a pattern

matching principle [27], we propose a new method that is aimed at supporting a soccer coach,

analyst or reporter to select a specific game fragment as reference and search the database for

similar movement patterns for the same or other players. The goal is to allow the user to decide

what the pattern of interest is, ensuring that the results have an added value from the sports

perspective [26]. We demonstrate this by means of a basic soccer case study. In Section 2, we

present a literature overview containing the state of the art in spatial movement pattern recog-

nition both in soccer as well as in other team ball sports. In Section 3, we introduce the pro-

posed method with some basic examples and present the approach and dataset used for the

case study. Section 4 presents the results and validation of the case study. Section 5 contains a
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discussion of the results of this case study and of the proposed method in general. We conclude

this paper by presenting options for future research in this field.

2. Player spatial movement pattern recognition in sports

Research of performance analysis in sports has seen a huge growth in recent years, as sports

data are becoming more widely available due to technological developments, decreasing prices

of tracking technologies and sports federations adopting policies for application in official

matches [28,29]. Match analysis in soccer originally relied on video images and consisted of

quantitative assessments (e.g. pass frequencies) and qualitative assessments such as expert eval-

uations [26]. With the current state of the art tracking technology it is possible to log the (x,y,

t)-coordinates of soccer players by means of cameras that are mounted around the field [30].

As described by Memmert and Raabe [26], such data allows for physiological and technical

assessments (match analysis level 3.0) and dynamical tactical assessments (match analysis level

4.0) of soccer matches. With the trajectories of the players available during the match, the

question arises how to analyse the spatial movement patterns performed by the players (match

analysis level 4.0), in order to enhance the players’ and team’s performance and, ultimately,

win more games. Since spatial movement pattern detection and recognition in various sports

uses the same type of data, we first briefly present the state of the art in team ball sports in gen-

eral before presenting a more focused review of the established methods in soccer.

2.1 Team ball sports

In basketball, spatial movement patterns of (multiple) players have been analysed based on the

trajectories of players. Space-time movement patterns of both playing dyads as well as whole

teams (using a stretch index based on the geometric centre of each team), were studied by

Bourbousson et al. [31, 32]. Focusing on one aspect of the game, Leite et al. [33] studied the

effects of defensive pressure on the performed spatial movement patterns. Sha et al. [27] intro-

duced the principle of chalkboarding in sports analytics, where a user can draw the requested

pattern (called ‘a play’) and the system returns the time intervals during which the players per-

formed similar movements. Sha et al. use the Euclidean distance between the positions of cor-

responding players at each timestamp of different plays to calculate the distance between the

different plays. As such, identical plays performed on different parts of the field have a rela-

tively high distance from the reference play. Sweeting et al. [34] proposed a method for detect-

ing player spatial movement patterns in netball based on a sequence analysis of secondary

parameters (derived from the players’ trajectories) used for describing the external load on

players.

2.2 Soccer

Soccer has attracted substantial research interest in the past years, by academics as well as by

private companies. In this paper, however, we focus on a rather small subcategory of sports

analytics in soccer, i.e. spatial movement pattern detection and recognition. For a more general

overview of sports analytics in soccer, we refer to the works of Rein and Memmert [30], Sar-

mento et al. [35] and Memmert et al. [36].

Most research in spatial movement pattern detection and recognition in soccer makes use

of quantitative approaches. Kang et al. [37], for example, implemented a method for evaluating

the strategic performance of players, based on the regions of the field players consecutively

move through during the game. Similar to the team centroid method of Bourbousson et al.
[31, 32] in basketball, efforts have been made to study spatial movement patterns of a whole

team [38, 39], player groups [40] or individual players [41] using the team centroid in soccer.

Player movement pattern recognition in soccer
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An interface that supports a coach, analyst or reporter at identifying interesting game situa-

tions in soccer was created by Shao et al. [42]. Other efforts for facilitating the visual abstrac-

tion of spatial movement patterns, using clustering methods such as k-Means and k-Medoids,

can be found in Sasha et al. [43]. Popular quantitative distance measures for player spatial

movement pattern detection and recognition in soccer are, amongst others, the average

Euclidean distance [44], the perpendicular and angle distances [45] or the Fréchet distance

[46]. Gudmundsson and Wolle [23], for example, use these distance measures for detecting

correlations between player movements.

A smaller number of studies are of a qualitative nature, with considerable efforts on the

detection of spatial movement patterns through the use of T-patterns [47, 48]. The T-pattern

method aims at revealing temporal patterns that are not detectable through classic visualisa-

tion techniques. The method was applied to soccer by, amongst others, Sarmento et al. [18]

and Camerino et al. [49] to detect temporal patterns of match events with a spatial component.

Feuerhake [20] and Feuerhake and Sester [50] try to discover unknown spatial movement pat-

terns via data mining. At first this was done only for multiple players [50], but later the method

was generalized and extended to the trajectories of individual players [20]. The largest differ-

ence of this approach with our proposed method (see Section 3) is that in the former, the posi-

tions of the players at single timestamps are placed in sequence rather than the movement/

displacement during the time intervals between the timestamps. A similar approach was used

earlier by Grunz et al. [22], who used static team formations and their temporal evolution for

spatial movement pattern recognition. Feuerhake later suggested, however, to also use the

movement during the time intervals as sequence elements as is done in our method presented

below, be it only for single players. Also, using the approach of qualitative description of the

movements of multiple players during time intervals, Relative Movement (REMO), introduced

by Laube et al. [51], can be applied for movement pattern recognition. Laube et al. included a

soccer example in their paper, but to the best of our knowledge, neither this nor the other

methods mentioned above have proven to be sufficient for spatial movement pattern recogni-

tion in soccer [20].

3. Method

The method we present in this paper is based on the Qualitative Trajectory Calculus (QTC)

[52] a calculus that, just as REMO, originated in the field of Geography and was already used

for team formation analysis in soccer [53]. In this section, we present the basics of QTC and

exemplify its use for spatial movement pattern detection in soccer. Consecutively, we present

the case study approach and introduce the used dataset and chosen reference fragment.

3.1 The Qualitative Trajectory Calculus for spatial movement pattern

recognition in soccer

The Qualitative Trajectory Calculus is a qualitative calculus for describing spatio-temporal

relations between two or more Moving Point Objects (MPOs). The most basic form of the cal-

culus, QTCB, describes the relative movement of a pair of MPOs during a time interval by

means of two QTC-characters. When describing the relative movement of more than two

MPOs, pairwise relations are stored in a QTC-matrix. When describing relative movements

over multiple time intervals, the consecutive QTC-matrices can be gathered into a sequence.

3.1.1 Proposed method. By considering soccer players as MPOs, QTC can be used to

describe the spatial movements of those players during a particular time interval in a match

(Fig 1A). The spatial movements of a set of players during such a well-defined time interval

will be referred to as ‘a fragment’ from here on. As such, each fragment can be described by a
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QTC-matrix sequence (Fig 1B), where the number of players determines the dimension of the

individual QTC-matrices that make up the sequence, while the sequence length is defined by

the temporal length and resolution of the fragment.

In this case (which is an example of spatial movement pattern recognition), there are two

types of fragments. First, there is the reference fragment, which is the fragment of interest to

the coach, analyst or reporter, i.e. for which (s)he wants to find similar fragments in the

Fig 1. QTC for describing soccer movements. A fragment showing the positions of three players (Player1, Player2 and Player3) at four timestamps (t1, t2, t3, t4) on a

soccer field (a). The QTCB-matrix sequence describing the spatial movements during this fragment. In the first matrix of the sequence, the movement of each player

from t1 to t2 is described with respect to the position of all other players at t1. If this movement is towards another player at t1, the QTC-relation is denoted by ‘-’, if the

movement is away from it, the QTC-relation is denoted by ‘+’. If the movement is neither away from nor towards the marker, the QTC-relation is denoted by ‘0’. The

first character in each cell is the QTC-relation of the marker in the row header with respect to the marker in the column header, the second character is the QTC-

relation of the marker in the column header with respect to the marker in the row header (b).

https://doi.org/10.1371/journal.pone.0227746.g001
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database. The second type of fragments are the target fragments, which are all other fragments

of interest, e.g. all fragments for the same (or other) players. To start with, the reference frag-

ment is transformed into its QTC-matrix sequence representation. Subsequently, all target

fragments are also transformed to their QTC-matrix sequence representations. After that, the

distances between the reference fragment and all target fragments are calculated by comparing

the QTC-matrix sequences. The comparison of the reference QTC-matrix sequence with a tar-

get QTC-matrix sequence starts with the alignment of their matrices [54]. This alignment is

similar to the alignment of words, as described by Levenshtein [55], with the difference that a

sequence of matrices is aligned instead of a sequence of letters. The cost of aligning two whole

QTC-matrix sequences is defined as the sum of the costs of aligning all individual QTC-matri-

ces. If two matrices are identical, they get an alignment cost of zero, and if one or more of the

cells of the matrices contain different QTC-characters, a substitution cost is calculated. This

substitution cost is based on the conceptual distances between the different QTC-characters

[56]. QTC-matrices can be inserted or deleted at the maximum substitution cost. By dividing

the calculated distance for every target fragment by the maximum possible distance, relative

distances ranging from 0 to 1 are calculated. Target fragments with small distances to the refer-

ence fragment are considered to be more similar to the reference fragment than target frag-

ments with larger distances. The result of the spatial movement pattern recognition will thus

be a list of the fragments ordered according to the calculated distance. The coach, analyst or

reporter can use this list to examine the fragments that contain the movements most similar to

the reference fragment (s)he has selected, and can discover whether there is a pattern that

occurs regularly either by his/her own team or the opponent team. Ultimately, a coach can use

this information to adjust coaching (i.e. to train specific patterns) to increase the team perfor-

mance and win more matches.

3.1.2 Difference in speed. If two fragments contain identical movements, performed at

different speeds (e.g. a higher speed at the beginning and a lower speed at the end, as for frag-

ment 1 in Fig 2), the Levenshtein distance metric [54] will give an appropriate penalty in the

distance calculation (Fig 2). As such, the calculated distance between these fragments will not

be zero, but will be smaller than the distance that would result from a distance calculation

based on pairwise comparisons (where no substitutions or insertions of QTC-matrices are

allowed). Fig 2 shows two of such fragments along with the distance between them, computed

with both the Levenshtein distance metric as well as with the pairwise-comparison distance

calculation. It illustrates the ability of the first method to produce a more suitable, in this spe-

cific case lower, distance. Furthermore, by allowing insertions and deletions of QTC-matrices,

it is possible to include target fragments with a length different from the reference fragment

length. This is an important advantage since in soccer, similar movement actions are often per-

formed at different speeds.

3.1.3 Difference in location on the field. In order to distinguish between fragments with

identical movements taking place on different parts of the soccer field (e.g. fragment 1 and

fragment 2 in Fig 3), static points (i.e. points that do not move during the fragment) can be

added to the QTC-descriptions. In the top part of Fig 3, it is demonstrated that two such frag-

ments, each containing the spatial movements of three players, have a distance of zero because

only relations between the different players are described by QTC, which are exactly the same

in both fragments. In the bottom part of Fig 3, the middle point of the soccer field is added to

the fragment and thus to the QTC-description. Different relations of the players with respect

to the static point during both fragments result in a distance value corrected for this difference

in location of occurrence on the field.

3.1.4 Current implementation and limitations. The current (non-optimized) implemen-

tation of the method was done in the Python programming language. Given the vast number
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of QTC-matrices that need to be calculated and compared, the number and length of the target

fragments are limited. Permutations between players, allowing to recognise spatial movement

patterns performed by players other than the ones in the reference fragment, are possible,

though require high processing power.

3.2 Case study: Dataset and reference fragment selection

The case study consists of a situation where a user (e.g. soccer coach, analyst or reporter)

selects a basic reference fragment from a soccer match and (s)he is presented with the most

similar target fragments that occur during the same soccer match.

The dataset stems from a real soccer match of a 2016–2017 professional soccer competition.

Due to privacy concerns, the competition, the teams and the players used in this example are

presented anonymised. During the match, players were tracked with a temporal resolution of

25Hz, by a camera-based tracking system with high accuracy, similar to other verified systems

[57] used in similar studies [58, 59]. This dataset was collected as the official dataset of the

respective competition and contains 144,086 (x,y,t)-coordinates for each of the 22 players on

the field. Given the limitations mentioned in Section 3.1.4, we chose a situation where a coach,

analyst or reporter selects a rather simple reference fragment consisting of two players. A sim-

ple reference fragment is chosen to ensure that relatively similar spatial movements might be

found in just one soccer match [20]. Straight sprinting towards the opponents’ goal area, for

example, is a regularly trained spatial movement pattern [60] and is in fact the most common

Fig 2. The impact of a difference in speed on the distance between two fragments. Two almost identical fragments with spatial movements of two players (Player1
and Player2) with small differences in speed along with the distances calculated between them based on pairwise comparisons and on the Levenshtein distance metric.

The difference in speed occurs at t10 and t3 in fragment 1 and 2 respectively, and is emphasized by a double circle around the players’ positions.

https://doi.org/10.1371/journal.pone.0227746.g002

Player movement pattern recognition in soccer

PLOS ONE | https://doi.org/10.1371/journal.pone.0227746 January 16, 2020 7 / 16

https://doi.org/10.1371/journal.pone.0227746.g002
https://doi.org/10.1371/journal.pone.0227746


pattern to occur before a goal for both the scoring and the assisting player [61]. For this reason,

the first occurrence of such a straight run of two players in the match was selected as reference

fragment. The 20 seconds (500 timestamps) following the start of the sprint, a common dura-

tion for an attacking action in soccer [62], were included in the reference fragment, to add

some movement complexity besides the straight run towards the goal. The reference fragment

(Fig 4) thus contains the spatial movements of two attacking players of the same team, and

starts with them quickly moving towards the opponent’s goal area. Around the sixth second of

the fragment, however, the ball possession is lost and the two players start a defensive (parallel)

run towards their own goal area. The four corners of the soccer field were added to the frag-

ment as static points, to orientate the movements correctly on the soccer field (see Section

3.1.3). Despite the relative simplicity of this reference fragment, we are convinced that this is a

meaningful and interesting situation for a soccer coach, analyst or reporter [60, 61] and an

essential starting point to illustrate the method before switching to more complex examples

with more players and multiple soccer matches in the future.

For the full length of the match, every 10 timestamps (0.4 seconds) a target fragment of 500

timestamps was created, resulting in a set of 14,359 target fragments. Each target fragment

contains the spatial movements of the same players as the reference fragment, during 20 sec-

onds. The temporal resolution of both the reference fragment as well as the target fragments

was reduced with a factor 10 to facilitate faster calculations and to reduce the impact of noise

in the data on the pattern detection [20]. For each target fragment, the distance between its

QTCB-matrix representation and the QTCB-matrix representation of the reference fragment

Fig 3. The impact of a difference of location on the field on the distance between two fragments. The impact of a static point (Static1) on the distance between two

identical fragments with spatial movements of three players (Player1, Player2 and Player3) taking place on different parts of the field.

https://doi.org/10.1371/journal.pone.0227746.g003
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was computed based on the Levenshtein distance metric, thus allowing for small differences in

speed.

4. Results

Since for each of the target fragments the distance with respect to the reference fragment was

calculated, they can be ranked according to this distance. Fragments with a low distance con-

tain movements that are quite similar to the movements in the reference fragment, while the

movements in fragments with a high distance will hold little resemblance to the reference frag-

ment. Fig 5 displays the nine most similar, non-overlapping, target fragments ordered accord-

ing to ascending distance. Non-overlapping fragments are obtained by ordering the fragments

according to their rank (starting from rank number 1) and omitting the fragments with higher

ranks from the final ranking when they overlapped with a fragment with a lower rank. As

such, the number of results was reduced to 221. Depending on the actual spatial movements in

the match, a top-k (the k top ranked target fragments) can be considered as highly similar to

the reference fragment (similar to the approach of Sha et al. [27]).

Fig 4. Reference soccer fragment of 20 seconds. This fragment contains the spatial movements of two players (Player1 and Player2) together with four static points

(Static1, Static2, Static3 and Static4). Small black dots on the trajectories indicate the positions of the players at every 2 seconds.

https://doi.org/10.1371/journal.pone.0227746.g004
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4.1 Validation of the results

As Feuerhake [20] argues, the verification of spatial movement pattern recognition methods

and their results in sports is not a straightforward task due to the lack of a good ground truth.

Fig 5. Top nine results of the player spatial movement pattern detection with the reference fragment shown on top. The results are ordered according to ascending

distance to the reference fragment, with their rank numbers noted on the left top of the individual visualisations.

https://doi.org/10.1371/journal.pone.0227746.g005
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Furthermore, due to the huge variety in different methods, it cannot be assumed that finding

the same results as other established methods is desirable nor that it should be the goal. As

such, conform to other studies in this field, validation was firstly done by visual comparison of

the top-k results with the reference fragment. After successfully validating the results in this

manner, we proceeded by statistically testing the ranking of the top-k results presented in Fig

5. To that end, we ordered the non-overlapping target fragments according to their distance

with the reference fragment and detected two distinct groups of fragments (groups A and B in

Fig 6A), containing the fragments with rank numbers 1 & 2 and 3 & 4, respectively. Consider-

ing the regularly increasing distance curve for fragments with rank numbers above 4, we cre-

ated a control group C containing 12 elements (see Fig 6A). For validation, we wanted to test

whether a test panel would confirm the ranking in Fig 5. Our test panel consisted of 37 bache-

lor students of the Department of Movement and Sports Sciences of Ghent University with a

good knowledge of soccer. In their curriculum they have had at least two years of soccer clas-

ses, including practical sessions and theory on technique and tactics in soccer. The study

received institutional approval (Ghent University) and the participants’ informed consent was

obtained (verbally) and witnessed by the academic teacher. As a statistical test, we set up a

duo-trio test [63, 64], a statistical test for determining whether a difference exists between two

samples, by asking which of the two samples most resemblances a reference fragment. Our

duo-trio test consisted of 18 questions (Fig 6B) which were presented to the participants in

random order. Each question contained the visualisations (as in Fig 5) of the reference frag-

ment and two sample fragments, of which the participants had to indicate which one was most

similar to the reference fragment. Six questions compared the fragments of groups A and B (1

question A vs A, 1 question B vs B and 4 questions A vs B), twelve questions compared the

union A[B with group C. In the latter series of questions, each fragment of C was randomly

combined with a fragment of A[B. Questions for which the participants chose the sample frag-

ment with the lowest rank number as most similar to the reference fragment were considered

as correct answers.

The results, aggregated per question, are presented in Fig 6B. The results show that the par-

ticipants validated the ranking positively, thereby distinguishing between the fragments of

groups A[B and C and between the fragments of groups A and B with high levels of signifi-

cance [64]. When it came to ordering the elements in groups A and B separately (A vs A and B

vs B), the participants did not validate the exact ordering presented in Fig 5. Considering the

small differences in distance between the fragments in those groups, especially compared to

the distances with the other fragments, we consider this as acceptable. As such, the top-k (with

k = 4) was validated by the duo-trio test [65].

5. Discussion

In literature, it is described that, because of the limited accuracy of tracking technologies and

the vast number of possible positions of players on the soccer field, it is almost impossible to

find two fragments that contain identical spatial movements [20]. With respect to the first

issue, it can be noted that QTC is a relative calculus, meaning that only the relative spatial

movements in two fragments need to be the same in order to be considered as identical. Small

differences in the players’ coordinates of a given spatial movement pattern, for example, do

not cause large differences in its QTC-matrix sequence representation. Furthermore, QTC

allows for the recognition of spatial movement patterns consisting of identical movements that

occur on different places on the field or at different spatial scales. Adding to the qualitative

nature of the calculus, both the temporal (as in the case study) as well as the spatial resolution

can be reduced to cope with the limited accuracy of the data. The second issue is visible for the
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results of the case study presented in Section 4, where it is not straightforward to provide a

coach, who defined a relatively simple reference fragment, with highly similar fragments of the

same match. For the given reference fragment, four highly similar target fragments could be

found in the same soccer match (Fig 5). However, when equipped with a big dataset (contain-

ing multiple matches or seasons and thus more target fragments) and a clear focus or defini-

tion of the pattern of interest, more specific results, and thus better insights, are to be expected.

The advantage of the proposed method is that it can be adapted to the specific needs of the

requested analysis. In comparison with similar methods, such as the work of Shao et al. [42],

the proposed method is characterized by its scale, rotation and translation invariance. This

allows to find highly similar spatial movement patterns that occur, for example, on different

parts of the soccer field or at a different scale. Different static points could be included, how-

ever, to fix orientation and scale. Another advantage is that, while QTC typically describes rela-

tions between two or more MPOs, incorporation of static points allows for the comparison of

trajectories of single players. Besides this, permutations between players can be included,

allowing players to switch roles in target fragments. Furthermore, the Levenshtein distance

metric [54] supports the comparison of fragments with different temporal lengths. This means

that the target fragments can have a different length than the reference fragment, something

that was not included in the case study for reasons of simplicity, and could raise the chance of

finding target fragments with lower distances with respect to the reference fragment and thus

more similar spatial movement patterns. The advantage of the proposed method is therefore

that it allows for the recognition of similar spatial movement patterns that have different tem-

poral lengths or that occur at different speeds.

Moreover, we believe that the proposed method grasps the essence of the way a soccer

player positions him/herself on the field during a game. To that end, the player will mostly

look at its teammates and opponents, assessing his/her relative position to each of them and

adjust his/her location where needed by moving around on the field. This is exactly what QTC

describes, i.e. the changes in relative positions between all of the players during the match.

Fig 6. Set-up and results of the duo-trio test. The non-overlapping fragments ordered according to their distance with respect to the reference fragment, and the

delineation of the groups A, B and C (a). The questions, answers and significance levels of the duo-trio test (b).

https://doi.org/10.1371/journal.pone.0227746.g006
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Most other studies, however, such as Sweeting et al. [34], only use movements with respect to

the field (e.g. ‘turn 45 degrees on the field’) for the movement pattern detection and recogni-

tion, and do not take into account these interactions between players. As such, we believe that

the proposed method could support a soccer coach, analyst or reporter to get insight into the

spatial movement patterns that occur within one or multiple soccer matches. With the pro-

posed method, one can easily search for a movement pattern, e.g. to check whether the patterns

that were trained were executed during official matches, or get insight in patterns played by

opponent teams.

Limitations of the proposed method include the high requirements of computation power

and the necessity of recorded coordinates with a fine temporal resolution. Another limitation

is that ball possession is not taken into account, which could be solved by adding a postproces-

sing step. With respect to the high required computation power, we would like to emphasize

that possible solutions to reduce the complexity are available, such as the abortion of the

Levenshtein distance calculation when the edit distance between two fragments exceeds a pre-

defined threshold. Other solutions might involve the compression of the QTC-representations

of the fragments using Low Level (lossless) or even High Level (lossy) compression techniques.

Consequently, only the Levenshtein distance between fragments having low distances (below a

certain threshold) between their compressed QTC-representations could be calculated.

6. Conclusion and future work

In this paper, we introduced a method for the recognition of spatial movement patterns of

players movements in soccer. We followed a pattern matching procedure, by searching for tar-

get fragments with spatial movements similar to a reference fragment. The basics of the QTC

method for spatial movement pattern recognition were introduced and its use was illustrated

by a rather simple case study. Tests should be performed on bigger datasets, with more players

and more complex spatial movement patterns, with a more rigorous evaluation of the results

by real coaches. Furthermore, expanding the approach to the field of data mining, it would be

interesting to compare all fragments with each other and thus get insights in frequently played

patterns by certain players, thus performing spatial movement pattern detection. These results

could then be matched with formations of other teams, e.g. which players perform specific spa-

tial movement patterns when playing against other specific players. Also, reduction of the

complexity and demands for processing power, for which we provided some research sugges-

tions in our paper, should be studied more in depth.

Acknowledgments

We would like to thank Deltatre for providing the dataset used in this paper.

Author Contributions

Conceptualization: Jasper Beernaerts, Bernard De Baets, Matthieu Lenoir, Nico Van de

Weghe.

Data curation: Jasper Beernaerts.

Formal analysis: Jasper Beernaerts, Nico Van de Weghe.

Funding acquisition: Jasper Beernaerts.

Investigation: Jasper Beernaerts, Bernard De Baets, Matthieu Lenoir, Nico Van de Weghe.

Methodology: Jasper Beernaerts, Bernard De Baets, Matthieu Lenoir, Nico Van de Weghe.

Player movement pattern recognition in soccer

PLOS ONE | https://doi.org/10.1371/journal.pone.0227746 January 16, 2020 13 / 16

https://doi.org/10.1371/journal.pone.0227746


Project administration: Jasper Beernaerts, Nico Van de Weghe.

Resources: Jasper Beernaerts, Nico Van de Weghe.

Software: Jasper Beernaerts.

Supervision: Bernard De Baets, Matthieu Lenoir, Nico Van de Weghe.

Validation: Jasper Beernaerts, Bernard De Baets, Matthieu Lenoir, Nico Van de Weghe.

Visualization: Jasper Beernaerts, Nico Van de Weghe.

Writing – original draft: Jasper Beernaerts, Bernard De Baets, Matthieu Lenoir, Nico Van de

Weghe.

Writing – review & editing: Jasper Beernaerts, Bernard De Baets, Matthieu Lenoir, Nico Van

de Weghe.

References
1. Kelly DM and Drust B. The effects of pitch dimensions on heart rate responses and the technical

demands of small-sided soccer games in elite players. J Sci Med Sport. 2009; 12(1): 475–479.

2. Castellano J, Casamichana D and Dellal A. Influence of game format and number of players on heart

rate responses and physical demands in small-sided soccer games. J Strength Cond Res. 2013; 27(1):

1295–1303.

3. Randers BR, Orntoft C, Hagman M, Nielsen JJ, Krustrup P. Movement pattern and physiological

response in recreational small-sided football—effect of number of players with a fixed pitch size. J

Sports Sci. 2017; 36(13): 1–8.

4. James N. The role of notational analysis in soccer coaching. Int J Sports Sci Coach. 2006; 1(2): 185–

198.

5. Fernández J, Bornn L, Cervone D. Decomposing the Immeasurable Sport: A deep learning expected

possession value framework for soccer. In: Proceedings of the 13th annual Sloan Analytics Conference,

Boston, U.S.A., 1–2 March 2019.

6. Fernandez-Navarro J, Fradua L, Zubillaga A, Ford PR, McRobert AP. Attacking and defensive styles of

play in soccer: analysis of Spanish and English elite teams. J Sports Sci. 2016; 34(24): 2195–2204.

https://doi.org/10.1080/02640414.2016.1169309 PMID: 27052355

7. Tenga A, Holme I, Ronglan LT, Bahr R. Effect of playing tactics on achieving score-box possessions in

a random series of team possessions from Norwegian professional soccer matches. J Sports Sci. 2010;

28(3): 245–255. https://doi.org/10.1080/02640410903502766 PMID: 20391096

8. Winter C, Pfeiffer M. Tactical metrics that discriminate winning, drawing and losing teams in EUFA Euro

2012®. J Sports Sci. 2016; 34(6): 486–492. https://doi.org/10.1080/02640414.2015.1099714 PMID:

26508419

9. Hewitt A, Greenham G, Norton K. Game style in soccer: what is it and can we quantify it? Int J Perf Anal

Spor. 2016; 16(1): 355–372.

10. Lago-Ballesteros J, Lago-Peñas C, Rey E. The effect of playing tactics and situational variables on

achieving score-box possessions in a professional soccer team. J Sports Sci. 2012; 30: 1455–1461.

https://doi.org/10.1080/02640414.2012.712715 PMID: 22856388

11. Collet C. The possession game? A comparative study of ball retention and team success in European

and international football. J Sports Sci. 2013; 31(2): 123–136. https://doi.org/10.1080/02640414.2012.

727455 PMID: 23067001

12. Tenga A, Larsen O. Testing the validity of match analysis to describe playing styles in football. Int J Perf

Anal Spor. 2003; 3(2): 90–102.
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