### Multi-Agent Game Abstraction via Graph Attention Neural Network

Yong Liu, Weixun Wang, Yujing Hu, Jianye Hao, Xingguo Chen, Yang Gao

> *The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)*

### introduction / Related works

- goal: simplifying MA learning process
- earlier work: game abstraction and data transfer
- some relationship is not needed

## earlier work: mean-field MARL interact with the agents in its vision

don't fit to conplex environment

- requires prior knowledge
- can't dynamically adjust to state transition

#### **Attention mechanism:**

mechanism to learn which vector input is important

- soft-attention
- hard-attention

#### Soft-attention

used in earlier work, but there are some problems.

- output is relative value: can't model the relationship
- can't reduce the agents number to interact
- nonzero agents weakens the attention to the significant agents.

#### hard-attention

make zero attention

one-hot vector [0, 0, 1, 0]

#### **Proposed Methods**

- Game abstraction: G2ANet
- Applied algorithm: GA-Comm and GA-AC

# Overview



#### step1: G2ANet

#### Game abstraction with Two-Stage Attention



use both hard-attention and soft-attention describe relation with graph

#### structure of Attentions use LSTM(RNN) in hard-attention



#### step2: graph

#### GNN to obtain contribution from other agents



#### step3: 2 Learning algorithm based on Game Abstraction

- GA-Comm: Policy Network based on GA
- GA-AC: Actor-Critic based on GA

#### Experiments

They prepared two environments:

- traffic junction
- predator-prey

#### **Traffic Junction**

- car appears from entry point
- action
  - gas: move forward
  - brake: stop
- goal: avoid collision



#### **Predator-prey**

- 2 Predators, 5 Preys and Obstacles
- predator will chase prey
- goal: catch prey



#### Results: GA-Comm (Traffic Junction)



| Algorithm | Easy  | Medium | Hard  |
|-----------|-------|--------|-------|
| CommNet   | 93.5% | 78.8%  | 6.5%  |
| IC3Net    | 93.2% | 90.8%  | 70.9% |
| GA-Comm   | 99.7% | 97.6%  | 82.3% |

Higher than other methods.

#### Results: GA-AC (predator-prey)

Achieved high reward

Learning is slow at beginning, but then grow rapidly



#### Conclusion

- they succeed to simplify 2 MARL by adapting G2ANet.
- it is adaptive to dynamic relation between agents.

#### Thank you for listening!