
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Multi-Agent Game Abstraction via Graph Attention Neural Network

Yong Liu,1∗ Weixun Wang,2∗ Yujing Hu,3 Jianye Hao,2,4† Xingguo Chen,5 Yang Gao1†
1National Key Laboratory for Novel Software Technology, Nanjing University

2Tianjin University, 3NetEase Fuxi AI Lab, 4Noah’s Ark Lab, Huawei
5Jiangsu Key Laboratory of Big Data Security & Intelligent Processing,

Nanjing University of Posts and Telecommunications
lucasliunju@gmail.com, {wxwang, jianye.hao}@tju.edu.cn

huyujing@corp.netease.com, chenxg@njupt.edu.cn, gaoy@nju.edu.cn

Abstract

In large-scale multi-agent systems, the large number of agents
and complex game relationship cause great difficulty for pol-
icy learning. Therefore, simplifying the learning process is
an important research issue. In many multi-agent systems,
the interactions between agents often happen locally, which
means that agents neither need to coordinate with all other
agents nor need to coordinate with others all the time. Tradi-
tional methods attempt to use pre-defined rules to capture the
interaction relationship between agents. However, the meth-
ods cannot be directly used in a large-scale environment due
to the difficulty of transforming the complex interactions be-
tween agents into rules. In this paper, we model the rela-
tionship between agents by a complete graph and propose a
novel game abstraction mechanism based on two-stage atten-
tion network (G2ANet), which can indicate whether there is
an interaction between two agents and the importance of the
interaction. We integrate this detection mechanism into graph
neural network-based multi-agent reinforcement learning for
conducting game abstraction and propose two novel learning
algorithms GA-Comm and GA-AC. We conduct experiments
in Traffic Junction and Predator-Prey. The results indicate that
the proposed methods can simplify the learning process and
meanwhile get better asymptotic performance compared with
state-of-the-art algorithms.

1 Introduction

Multi-agent reinforcement learning (MARL) has shown a
great success for solving sequential decision-making prob-
lems with multiple agents. Recently, with the advance of
deep reinforcement learning (DRL) (Mnih et al. 2016;
Schulman et al. 2017), the combination of deep learn-
ing and multi-agent reinforcement learning has also been
widely studied (Foerster et al. 2018; Sunehag et al. 2018;
Rashid et al. 2018).

Recent work has focused on multi-agent reinforcement
learning in large-scale multi-agent systems (Yang et al.
2018; Chen et al. 2018), in which the large number of

∗Equal contribution, † corresponding author. This work is par-
tially done when Weixun Wang was intern in NetEase Fuxi AI Lab.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Hard
Attention

Soft
Attention

…

Game Abstraction Based on Two-Stage Attention Graph Embedding

Policy Network Actor-Critic Network

Game Abstraction Applications

GNN

0.5

0.2

0.2

Figure 1: Game Abstraction based on two-stage attention
mechanism and Graph Neural Network (GNN).

agents and the complexity of interactions pose a signifi-
cant challenge to the policy learning process. Therefore,
simplifying the learning process is a crucial research area.
Earlier work focuses on loosely coupled multi-agent sys-
tems, and adopt techniques such as game abstraction and
knowledge transfer to help with speeding up multi-agent re-
inforcement learning(Guestrin, Lagoudakis, and Parr 2002;
Kok and Vlassis 2004; De Hauwere, Vrancx, and Nowé
2010; Melo and Veloso 2011; Hu, Gao, and An 2015;
Yu et al. 2015; Liu et al. 2019). However, in a large multi-
agent environment, agents are often related to some other
agents rather than independent, which makes the previously
learnt single-agent knowledge has limited use. Recent work
focuses on achieving game abstraction through pre-defined
rules (e.g., the distance between agents) (Yang et al. 2018;
Jiang, Dun, and Lu 2018). However, it is difficult to de-
fine the interaction relationship between agents through pre-
defined rules in large-scale multi-agent systems. In this pa-
per, we propose to automatically learn the interaction rela-
tionship between agents through end-to-end model design,
based on which game abstraction can be achieved.

The key to game abstraction is learning the relationship
between agents. Recent work uses soft-attention mechanism
to learn the importance distribution of the other agents for
each agent (Jiang and Lu 2018; Iqbal and Sha 2019). How-
ever, the final output softmax function indicates that the im-
portance weight of each agent still depends on the weight of

7211



the other agents. That is to say, these methods cannot really
learn the relationship between agents and ignore irrelevant
agents to simplify policy learning.

As shown in Figure 1, we represent all agents as a
complete graph and propose a novel multi-agent game ab-
straction algorithm based on two-stage attention network
(G2ANet), where hard-attention is used to cut the unre-
lated edges and soft-attention is used to learn the importance
weight of the edges. In addition, we use GNN to obtain the
contribution from other agents, which includes the informa-
tion of the other agents to achieve coordination, and apply
the mechanism into several algorithms. We list the main con-
tributions as follows:
• We propose a novel two-stage attention mechanism

G2ANet for game abstraction, which can be combined
with graph neural network (GNN).

• By combining G2ANet with a policy network and Q-
value network respectively, we propose a communication-
based MARL algorithm GA-Comm and an actor-critic
(AC) based algorithm GA-AC.

• Experiments are conducted in Traffic Junction and
Predator-Prey. The results show that our methods can
simplify the learning process and meanwhile get better
asymptotic performance compared with state-of-the-art
algorithms.

2 Background
We review some key concepts in multi-agent reinforcement
learning and related work in this section.

Markov Game and Game Abstraction

Markov game, which is also known as stochastic game,
is widely adopted as the model of multi-agent reinforce-
ment learning (MARL). It can be treated as the extension
of Markov decision process (MDP) to multi-agent setting.
Definition 1 An n-agent (n ≥ 2) Markov game is a tuple
〈N,S, {Ai}ni=1, {Ri}ni=1, T 〉, where N is the set of agents, S
is the state space, Ai is the action space of agent i(i=1,...,n).
Let A = A1 × A2 × · · · × An be the joint action space.
Ri : S × A → R is the reward function of agent i and
T : S ×A× S → [0, 1] is the transition function.

In a markov game, each agent attempts to maximize its
expected sum of discounted rewards, E{∑∞

k=0 γ
kri,t+k},

where ri,t+k is the reward received k steps into the future by
agent i and γ is the discount factor.

Denote the policy of agent i by πi : S × Ai → [0, 1] and
the joint policy of all agents by π = (π1, . . . , πn). The state-
action value function of an agent i under a joint policy π can
be defined as:

Qπ
i (s,�a) = Eπ

{ ∞∑
k=0

γkrt+k
i |st = s,�at = �a

}
, (1)

where �a ∈ A represents a joint action and rt+k
i is the reward

received by agent i at time step (t+ k). However, since Qπ
i

depends on the actions of all agents, the concept of optimal
policy should be replaced with joint policy.

Game Abstraction The main idea of game abstraction is
to simplify the problem model of multi-agent reinforcement
learning (Markov game) to a smaller game, so as to reduce
the complexity of solving (or learning) the game equilibrium
policy.

Attention Mechanism

Attention is widely used in many AI fields, including natu-
ral language processing (Bahdanau, Cho, and Bengio 2014),
computer vision (Wang et al. 2018), and so on. Soft and hard
attention are the two major types of attention mechanisms.

Soft-Attention Soft attention calculates a importance dis-
tribution of elements. Specially, soft attention mechanism is
fully differentiable and thus can be easily trained by end-
to-end back-propagation. Softmax function is a common
activation function. However, the function usually assigns
nonzero probabilities to unrelated elements, which weakens
the attention given to the truly important elements.

Hard-Attention Hard attention selects a subset from in-
put elements, which force a model to focus solely on the im-
portant elements, entirely discarding the others. However,
hard attention mechanism is to select elements based on
sampling and thus is non-differentiable. Therefore, it can-
not learn the attention weight directly through end-to-end
back-propagation.

Deep Multi-Agent Reinforcement Learning

With the development of deep reinforcement learning, re-
cent work in MARL has started moving from tabular meth-
ods to deep learning methods. In this paper, we select
communication-based algorithms CommNet (Sukhbaatar,
Fergus, and others 2016), IC3Net (Singh, Jain, and
Sukhbaatar 2019), Actor-Critic-based algorithms MADDPG
(Lowe et al. 2017) and MAAC (Iqbal and Sha 2019) as base-
lines.

CommNet CommNet allows communication between
agents over a channel where an agent is provided with the
average of hidden state representations of the other agents
as a communication signal.

IC3Net IC3Net can learn when to communicate based on
a gating mechanism. The gating mechanism allows agents
to block their communication and can be treated as a simple
hard-attention.

MADDPG MADDPG adopts the framework of central-
ized training with decentralized execution, which allows the
policies to use extra information at training time. It is a sim-
ple extension of actor-critic policy gradient methods where
the critic is augmented with extra information for other
agents, while the actor only has access to local information.

MAAC MAAC learns a centralized critic with an soft-
attention mechanism. The mechanism is able to dynamically
select which agents to attend to at each time step.

7212



3 Our Method

In this section, we propose a novel game abstraction ap-
proach based on two-stage attention mechanism (G2ANet).
Based on the mechanism, we propose two novel MARL al-
gorithms (GA-Comm and GA-AC).

G2ANet: Game Abstraction Based on Two-Stage
Attention

We construct the relationship between agents as a graph,
where each node represents a single agent, and all nodes are
connected in pairs by default. We define the graph as Agent-
Coordination Graph.

Definition 2 (Agent-Coordination Graph) The relationship
between agents is defined as an undirected graph as G =
(N,E), consisting of the set N of nodes and the set E of
edges, which are unordered pairs of elements of N . Each
node represents the agent entry, and the edge represents the
relationship between the two adjacent agents.

In large scale multi-agent systems, the number of agents
is large, and not all agents need to interact with each other.
In this paper, we try to identify unrelated agents by learning
the relationship between agents, and perform game abstrac-
tion according to the learnt relationship. The simplest way
of game abstraction is to design some artificial rules. Yang
et al. proposed mean-field based multi-agent learning algo-
rithm, where each agent has its own vision and just needs to
interact with the agents in its vision (Yang et al. 2018). How-
ever, such mean-field MARL algorithm requires strong prior
knowledge of the environment and may not be suitable for
application in complex environments. In a large-scale MAS,
the interaction between agents is more complicated, the pre-
defined rules are difficult to obtain and it cannot dynamically
adjust based on the state transition. Inspired by attention
mechanism (Bahdanau, Cho, and Bengio 2014; Ba, Mnih,
and Kavukcuoglu 2014; Mnih et al. 2014; Xu et al. 2015;
Vaswani et al. 2017), we firstly propose the two-stage at-
tention game abstraction algorithm called G2ANet, which
learns the interaction relationship between agents through
hard-attention and soft-attention mechanisms.

Recent work has tried to combine MARL with the atten-
tion mechanism (Jiang and Lu 2018; Iqbal and Sha 2019).
However, the main idea is to use the soft-attention mecha-
nism to learn the importance distribution of all other agents
to the current agent through softmax function:

wk =
exp(f(T, ek))∑K
i=1 exp(f(T, ei))

, (2)

where ek is the feature vector of agent k, T is the current
agent feature vector, and wk is the importance weight for
agent k.

However, the output value of the softmax function is a rel-
ative value and cannot really model the relationship between
agents. In addition, this method cannot directly reduce the
number of agents that need to interact since the unrelated
agents will also obtain an importance weight. In addition,
the softmax function usually assigns small but nonzero prob-
abilities to trivial agents, which weakens the attention given

Agent 1 Agent N

Hard Attention

Soft Attention

LSTM LSTM

Gumble Softmax

Scaled Dot

Softmax

…

…

…

… …

… …

Figure 2: Two-Stage Attention Neural Network.

to the few truly significant agents. In this paper, we propose
a novel attention mechanism based on two-stage attention
(G2ANet) to solve the above problems.

We consider a partially observable environment, where at
each time-step t, each agent i receives a local observation
oti, which is the property of agent i in the agent-coordination
graph G. The local observation oti is encoded into a feature
vector ht

i by MLP. Then, we use the feature vector ht
i to

learn the relationship between agents by attention mecha-
nism. We know that the hard attention model can output a
one-hot vector. That is, we can get whether the edge between
node i and j exist in the graph G and which agents each
agent needs to interact with. In this way, the policy learn-
ing is simplified to several smaller problems and preliminary
game abstraction can be achieved. In addition, we find that
each agent plays a different role for a specific agent. That is,
the weight of each edge in the graph G is different. Inspired
by (Vaswani et al. 2017), we train a soft-attention model to
learn the weight of each edge. In this way, we can get a
sub-graph Gi for agent i, where agent i is only connected
with the agents that need to interact with, and the weight on
edge describes the importance of the relationship. For sub-
graph Gi, we can use Graph Neural Network (GNN) to ob-
tain a vector representation, which represents the contribu-
tion from other agents to agent i. Moreover, G2ANet has a
good generality which can combine with communication-
based algorithms (Sukhbaatar, Fergus, and others 2016;
Singh, Jain, and Sukhbaatar 2019) and AC-based algorithms
(Lowe et al. 2017; Iqbal and Sha 2019). We will discuss it in
the next subsection.

The two-stage attention mechanism is shown in Figure 2.
First, we use the hard-attention mechanism to learn the hard
weight W i,j

h , which determines whether there is interaction
relationship between agent i and j. In this paper, we use a
LSTM network to achieve it, where each time-step output
a weight (0 or 1) for agent i, j, where j ∈ {1, ..., n} and
i �= j. For agent i, we merge the embedding vector of agent
i, j into a feature (hi, hj) and input the feature into LSTM
model:

hi,j = f(LSTM(hi, hj)), (3)

where f(·) is a fully connected layer for embedding. How-
ever, the output of traditional LSTM network only depends
on the input of the current time and the previous time but ig-
nores the input information of the later time. That is to say,
the order of the inputs (agents) plays an important role in the

7213

Ryoma Usui

Ryoma Usui

Ryoma Usui



process and the output weight value cannot take advantage
of all agents’ information. We think that is short-sighted and
not reasonable. In this paper, we select a Bi-LSTM model to
solve it. For example, the relationship weight between agent
i and agent j also depends on the information of agent k in
the environment, where agent k ∈ {1, ..., n} and agent k is
not in {i, j}.

In addition, the hard-attention is often unable to achieve
back-propagation of gradients due to the sampling process.
We try to use gumbel-softmax (Jang, Gu, and Poole 2017)
function to solve it:

W i,j
h = gum(f(LSTM(hi, hj))), (4)

where gum(·) represents gumbel-softmax function. By
hard-attention mechanism, we can get a sub-graph Gi for
agent i, where agent i just connected with the agents that
need to coordinate. Then we use soft-attention to learn the
weight of each edge in Gi. As shown in Figure 2, the soft-
attention weight W i,j

s compares the embedding ej with ei,
using the query-key system (key-value pair) and passes the
matching value between these two embeddings into a soft-
max function:

W i,j
s ∝ exp(eTj W

T
k WqeiW

i,j
h ), (5)

where Wk transforms ej into a key, Wq transforms ei into a
query and W i,j

h is the hard-attention value. Finally, the soft-
attention weight value W i,j

s is the final weight of the edge,
which is defined as W i,j .

Learning Algorithm Based on Game Abstraction

Through the two-stage attention model, we can get a re-
duced graph in which each agent (node) is connected only
to the agent (node) that needs to interact with. For example,
in Figure 1, we can get a sub-graph Gi for agent i, where
the center node is agent i (node i). As we all know, GNN
has powerful encoding ability. If each node represents the
agent’s encoding in the sub-graph Gi, we can use GNN to
get a joint encoding for agent i, which defines the contri-
bution of all other agents for the current agent i. By the
joint vector encoding, our method can make better decisions.
As mentioned earlier, our two-stage attention-based game
abstraction method is a general mechanism. In this paper,
we combine G2ANet with policy network and Q-value net-
work respectively, and propose two learning algorithms: (1)
Policy network in communication model (GA-Comm):
Each agent considers the communication vectors of all other
agents when making decisions; (2) Critic network in actor-
critic model (GA-AC): Critic network of each agent consid-
ers the state and action information of all other agents when
calculating its Q-value in AC-based methods.

Policy Network Based on Game Abstraction As we
all know, much related work focus on learning multi-
agent communication (Sukhbaatar, Fergus, and others 2016;
Singh, Jain, and Sukhbaatar 2019), most of which achieve
communication through aggregation function, which can ac-
cess all other agents’ communication vector (e.g., average
function, maximum function) into one vector and pass it to

LSTM LSTM LSTM LSTM

FC FC FC FC

GNN GNN GNN GNN
Graph Neural Network

Hard-Attention

Soft-Attention

Figure 3: Communication model based on Game Abstrac-
tion

each agent. In this way, each agent can receive all agent’s
information and achieve communication. However, there is
no need for each agent to communicate with all other agents
in most environments. That means the frequent communica-
tion will cause high computing cost and increase the diffi-
culty of policy learning. In this paper, we combine the novel
game abstraction mechanism G2ANet with policy network
and propose a novel communication-based MARL learning
algorithm GA-Comm.

As shown in Figure 3, oi represents the observation of
agent i, its policy takes the form of:

ai = π(hi, xi), (6)
where π is the action policy of an agent, hi is the observa-
tion feature for agent i and xi is the contribution from other
agents for agent i. In this paper, we use a LSTM layer to
extract the feature:

hi, si = LSTM(e(oi), h
′
i, s

′
i), (7)

where oi is the observation of agent i at time-step t, e(·) is an
encoder function parameterized by a fully-connected neural
network. Also, hi and si are the hidden and cell states of the
LSTM. As for the contribution for agent i from other agents,
we firstly use two-stage attention mechanism to select which
agents the agent i need to communicate and obtain its impor-
tance:

W i,j
h = Mhard(hi, hj),W

i,j
s = Msoft(Wh, hi, hj), (8)

where W i,j
h is the hard-attention value and W i,j

s is the soft-
attention value calculated by hidden state hi, hj . Mhard

is the hard-attention model and Msoft is the soft-attention

7214



model. In this way, we can get the contribution xi from other
agents by GNN. We use a simple method to calculate, which
is a weighted sum of other agents’ contribution by two-stage
attention mechanism:

xi =
∑
j �=i

wjhj =
∑
j �=i

W i,j
h W i,j

s hj . (9)

Finally, we can get the action ai for agent i. During the
training process, we train the policy π with REINFORCE
(Williams 1992).

Actor-Critic Network Based on Game Abstraction In-
spired by MAAC (Iqbal and Sha 2019), we propose a novel
learning algorithm based on G2ANet. To calculate the Q-
value Qi(oi, ai) for agent i, the critic network receives the
observations o = (o1, ..., oN ) and actions, a = (a1, ..., aN )
for all agents. Qi(oi, ai) is the value function for agent i :

Qi(oi, ai) = fi(gi(oi, ai), xi), (10)

where fi and gi is a multi-layer perception (MLP), xi is the
contribution from other agents, which is computed by GNN.
In this paper, we use a simple method, which is a weighted
sum of each agents value based on our two-stage attention
mechanism:

xi =
∑
j �=i

wjvj =
∑
j �=i

wjh(V gj(oj , aj)), (11)

where the value, vj is an embedding of agent j, encoded with
an embedding function and then transformed by a shared
matrix V and h(·) is an elementwise nonlinearity.

The attention weight wj is computed by the two-stage at-
tention mechanism, which compares the embedding ej with
ei = gi(oi, ai) and passes the relation value between these
two embeddings into a softmax function:

wj = W i,j
h W i,j

s ∝ exp(h(BiLSTMj(ei, ej))e
T
j WT

k Wqei), (12)

where Wq transforms ei into a query and Wk transforms ej
into a key. In this way, we can obtain the attention weight wj

and calculate the Q value for each agent.

4 Experiments

In this section, we evaluate the performance of our game
abstraction algorithms in two scenarios. The first one is
conducted in Traffic Junction (Singh, Jain, and Sukhbaatar
2019), where we use policy based game abstraction algo-
rithm GA-Comm and baselines are CommNet and IC3Net.
The second is the Predator-Prey in Multi-Agent Particle en-
vironment (Lowe et al. 2017), where we use Q-value based
game abstraction algorithm GA-AC and the baselines are
MADDPG and MAAC.

Traffic Junction

The simulated traffic junction environments from (Singh,
Jain, and Sukhbaatar 2019) consists of cars moving along
pre-assigned potentially interesting routes on one or more
road junctions. Success indicates that no collisions occur at
a time-step. We can calculate the success rate according to

Hard-Attention Hard-Attention

Soft-Attention Soft-Attention

GNN GNN

…

…

…

…

…

Figure 4: Actor-Critic model based on Game Abstraction

the number of time steps and collisions (failures) in each
episode. The total number of cars is fixed at Nmax and new
cars get added to the environment with probability parrive
at every time-step. The task has three difficulty levels which
vary in the number of possible routes, entry points and junc-
tions. Fallowing the same setting in IC3Net (Singh, Jain,
and Sukhbaatar 2019), the number of agents in the easy,
medium, and hard environments is 5, 10, and 20, respec-
tively. We make this task harder by always setting vision
to zero in all the three difficulty levels, which means that
each agent’s local observation only has its position infor-
mation and each agent need to obtain other agents informa-
tion to achieve coordination via communication mechanism.
The action space for each car is gas and break, and the re-
ward consists of a linear time penalty −0.01τ , where τ is
the number of time-steps since the car has been active, and
a collision penalty rcollision = −10.

Figure 7 illustrates the success rate per episode attained
by various methods on TJ, where GA-Comm is our commu-
nication model based on G2ANet and IC3Net is a commu-
nication method based on one-stage hard attention. Table 1
shows the success rates on different levels (easy, medium,
and hard), which is the average success rate of 10 runs and
the variance of the 10 repeated experiments can be obtained
from the shaded area in Figure 7. Our proposed approach
based on game abstraction is competitive when compared to
other methods.

As the setting in IC3Net (Singh, Jain, and Sukhbaatar
2019), we use the method of curriculum learning to train
the model, gradually increase the number of agents in the
environment, and further simplify the learning of the model.
As shown in Figure 7, GA-Comm performs better than all
baseline methods in all modes. Our approach is not only
high in success rate but also more stable. In addition, as the
difficulty of the environment gradually increases (the num-
ber of junctions increases) and the number of agents gradu-

7215



One way
Car leaving

Car entering

(a)  Easy (b)  Medium (c)  Hard

Figure 5: Traffic Junction Environment. Agents have zero vision and can only observe their own location. The cars have to
cross the the whole road minimizing collisions.

Figure 6: Agents with the same color represent a group, and
each agent just need to interact with the agents in the group.

ally increases, the effect is more obvious. We can find that
the success rate of our method is about 6%, 7% and 11%
higher than IC3Net in the three levels (easy, medium and
hard), which verifies that our method is more effective (6-
7-11) as the difficulty of environment gradually increases.
This further illustrates the applicability of our game abstrac-
tion mechanism in large-scale multi-agent systems.

At different time steps in an episode, the relationship be-
tween agents is constantly changing. In our method, we can
learn the adaptive and dynamic attention value. In order to
analyze the influence of the game abstraction mechanism on
the learning results, the game relationship between agents
is showed in Figure 6(a), which only describes the attention
values of one certain time-step. Each agent has its color (e.g.,
green, blue, yellow, red, and purple), and the same color
agents represent a group. It is observed that each agent can
select their partners and form a group (purple is the indepen-
dent agent), and ignores the unrelated agents. For example,
all agents are mainly divided into four groups, each group
mainly gathers near the junction. For agent a, the green
agents are its teammates, which concentrate on one junc-

Table 1: Success Rate in the Traffic Junction

Algorithm Easy Medium Hard
CommNet 93.5% 78.8% 6.5%
IC3Net 93.2% 90.8% 70.9%
GA-Comm 99.7% 97.6% 82.3%

tion, and it can ignore other agents when making a decision.
In addition, for each agent, the importance is different for
the agents in the group. Figure 6(b-c) shows the final atten-
tion value distribution for agent a (left) and agent k. Agent
a, c, d, e in the same group and the importance of agent c
and agent d is larger than agent e for agent a. Similarly, the
importance of agent l,m is larger than agent n, o for agent k.
We can conclude that the game abstraction that first ignores
unrelated agents, and then learns an important distribution in
a smaller number of environments. In this way, we can avoid
learning the importance distribution of all agents directly in
a larger-scale MAS, and the final value is more accurate.

Multi-Agent Particle Environment

The second scenario in this paper is the Multi-Agent Par-
ticle Environment. As shown in Figure 8(a), we choose
predator − prey as the test environment, where the ad-
versary agent (red) is slower and needs to capture the good
agent (green), and the good agent is faster and needs to es-
cape. In this paper, we fix the policy (DQN) of the good
agents. As the setting in MADDPG, adversary agents re-
ceive a reward of +10 when they capture good agents.

We trained the model in the setting of Na = 5 and Ng = 2
for 1500 episodes, where Na is the number of adversary
and Ng is the number of good agents. Similarly, adversary
agents need to achieve multiple groups to capture all the
good agents. Figure 8 shows the learning curves of each
agent’s average reward, where MADDPG is an algorithm
proposed by Lowe et al. and MAAC is a soft-attention based
algorithm proposed by Iqbal and Sha. GA-AC outperforms
all the baselines in terms of mean reward. It is observed

7216



Figure 7: Experimental results in Traffic Junction. (a) is the result in easy version, (b) is the result in medium version and (c) is
the result in hard version. Shaded regions are one standard deviation over 10 runs.

Figure 8: Experimental result in Predator-Prey.

that our method is slower to learn (Compared with the soft-
attention method MAAC) in the early stage. We think that is
because the architecture of our two-stage attention network
is more complex. The final better performance verifies the
effectiveness of our game abstraction mechanism.

Figure 9: Attention value distribution. (a) is the attention
contribution for agent 1, (b) is the attention distribution for
agent 4.

As shown in Figure 8, it’s observed that five adversary
agents are divided into two groups to chase two good agents.
Each agent just needs to interact with the agents in the same
group, which can effectively avoid the interference of the
unrelated agents. The final result also shows that our game
abstraction mechanism based algorithm GA-AC has learned

a reasonable combination form. In Figure 9, we can obtain
the attention value distribution for agent 1 (Figure 9(a)) and
agent 4 (Figure 9(b)). Agents 1, 2, 3 are in the same group,
and the importance of agent 2 and agent 3 is larger than that
of agents 4 and 5 for agent 1. Similarly, the importance of
agent 5 is larger than agent that of agents 1, 2, and 3 for
agent 4. We can conclude that the game abstraction method
proposed in this paper can well model the game relationship
between agents, avoid the interference of unrelated agents
and accelerate the process of policy learning.

5 Conclusions

In this paper, we focus on the simplification of policy learn-
ing in large-scale multi-agent systems. We learn the rela-
tionship between agents and achieve game abstraction by
defining a novel attention mechanism. At different time
steps in an episode, the relationship between agents is con-
stantly changing. In this paper, we can learn the adaptive
and dynamic attention value. Our major contributions in-
clude the novel two-stage attention mechanism G2ANet, and
the two game abstraction based learning algorithms GA-
Comm and GA-AC. Experimental results in Traffic Junction
and Predator-Prey show that with the novel game abstrac-
tion mechanism, the GA-Comm and GA-AC algorithms can
get better performance compared with state-of-the-art algo-
rithms.

6 Acknowledgments

This work is supported by Science and Technology In-
novation 2030 New Generation Artificial Intelligence Ma-
jor Project No.(2018AAA0100905), the National Natural
Science Foundation of China (Nos.: 61432008, 61702362,
U1836214, 61403208), the Collaborative Innovation Center
of Novel Software Technology and Industrialization.

References

Ba, J.; Mnih, V.; and Kavukcuoglu, K. 2014. Multiple
object recognition with visual attention. arXiv preprint
arXiv:1412.7755.

7217



Bahdanau, D.; Cho, K.; and Bengio, Y. 2014. Neural ma-
chine translation by jointly learning to align and translate.
arXiv preprint arXiv:1409.0473.
Chen, Y.; Zhou, M.; Wen, Y.; Yang, Y.; Su, Y.; Zhang, W.;
Zhang, D.; Wang, J.; and Liu, H. 2018. Factorized q-
learning for large-scale multi-agent systems. arXiv preprint
arXiv:1809.03738.
De Hauwere, Y.-M.; Vrancx, P.; and Nowé, A. 2010. Learn-
ing multi-agent state space representations. In Proceedings
of the 9th International Conference on Autonomous Agents
and Multiagent Systems, 715–722.
Foerster, J. N.; Farquhar, G.; Afouras, T.; Nardelli, N.; and
Whiteson, S. 2018. Counterfactual multi-agent policy gra-
dients. In Thirty-Second AAAI Conference on Artificial In-
telligence.
Guestrin, C.; Lagoudakis, M. G.; and Parr, R. 2002. Co-
ordinated reinforcement learning. In Proceedings of the 9th
International Conference on Machine Learning, 227–234.
Hu, Y.; Gao, Y.; and An, B. 2015. Learning in multi-agent
systems with sparse interactions by knowledge transfer and
game abstraction. In Proceedings of the 2015 International
Conference on Autonomous Agents and Multiagent Systems,
753–761.
Iqbal, S., and Sha, F. 2019. Actor-attention-critic for multi-
agent reinforcement learning. In Proceedings of the 36th In-
ternational Conference on Machine Learning, 2961–2970.
Jang, E.; Gu, S.; and Poole, B. 2017. Categorical repa-
rameterization with gumbel-softmax. In 5th International
Conference on Learning Representations.
Jiang, J., and Lu, Z. 2018. Learning attentional communi-
cation for multi-agent cooperation. In Advances in Neural
Information Processing Systems, 7254–7264.
Jiang, J.; Dun, C.; and Lu, Z. 2018. Graph convolutional
reinforcement learning for multi-agent cooperation. arXiv
preprint arXiv:1810.09202.
Kok, J. R., and Vlassis, N. A. 2004. Sparse cooperative
Q-learning. In Proceedings of the 21st International Con-
ference on Machine Learning, 61–68.
Liu, Y.; Hu, Y.; Gao, Y.; Chen, Y.; and Fan, C. 2019. Value
function transfer for deep multi-agent reinforcement learn-
ing based on n-step returns. In Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelli-
gence, 457–463.
Lowe, R.; Wu, Y.; Tamar, A.; Harb, J.; Abbeel, O. P.; and
Mordatch, I. 2017. Multi-agent actor-critic for mixed
cooperative-competitive environments. In Advances in Neu-
ral Information Processing Systems, 6379–6390.
Melo, F. S., and Veloso, M. M. 2011. Decentral-
ized MDPs with sparse interactions. Artifitial Intelligence
175(11):1757–1789.
Mnih, V.; Heess, N.; Graves, A.; et al. 2014. Recurrent
models of visual attention. In Advances in neural informa-
tion processing systems, 2204–2212.
Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.; Lillicrap, T.;
Harley, T.; Silver, D.; and Kavukcuoglu, K. 2016. Asyn-

chronous methods for deep reinforcement learning. In In-
ternational conference on machine learning, 1928–1937.
Rashid, T.; Samvelyan, M.; de Witt, C. S.; Farquhar, G.; Fo-
erster, J. N.; and Whiteson, S. 2018. QMIX: monotonic
value function factorisation for deep multi-agent reinforce-
ment learning. In Proceedings of the 35th International Con-
ference on Machine Learning, 4292–4301.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.
Singh, A.; Jain, T.; and Sukhbaatar, S. 2019. Learning when
to communicate at scale in multiagent cooperative and com-
petitive tasks. In 7th International Conference on Learning
Representations.
Sukhbaatar, S.; Fergus, R.; et al. 2016. Learning multia-
gent communication with backpropagation. In Advances in
Neural Information Processing Systems, 2244–2252.
Sunehag, P.; Lever, G.; Gruslys, A.; Czarnecki, W. M.; Zam-
baldi, V.; Jaderberg, M.; Lanctot, M.; Sonnerat, N.; Leibo,
J. Z.; Tuyls, K.; et al. 2018. Value-decomposition networks
for cooperative multi-agent learning based on team reward.
In Proceedings of the 17th International Conference on Au-
tonomous Agents and MultiAgent Systems, 2085–2087.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. In Advances in neural information
processing systems, 5998–6008.
Wang, X.; Girshick, R.; Gupta, A.; and He, K. 2018. Non-
local neural networks. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 7794–
7803.
Williams, R. J. 1992. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Ma-
chine learning 8(3-4):229–256.
Xu, K.; Ba, J.; Kiros, R.; Cho, K.; Courville, A.; Salakhudi-
nov, R.; Zemel, R.; and Bengio, Y. 2015. Show, attend
and tell: Neural image caption generation with visual at-
tention. In International conference on machine learning,
2048–2057.
Yang, Y.; Luo, R.; Li, M.; Zhou, M.; Zhang, W.; and Wang,
J. 2018. Mean field multi-agent reinforcement learning. In
Proceedings of the 35th International Conference on Ma-
chine Learning, 5567–5576.
Yu, C.; Zhang, M.; Ren, F.; and Tan, G. 2015. Multiagent
learning of coordination in loosely coupled multiagent sys-
tems. IEEE Transactions on Cybernetics 45(12):2853–2867.

7218


