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Abstract—In recent years, deep reinforcement learning has 
garnered significant attention because it can be applied to 
higher-dimensional environments compared with traditional 
reinforcement learning. However, the number of trials increases 
in behavior acquisition, particularly in tasks with high 
dimensions and sparse rewards. To improve learning speed, we 
apply curriculum learning, which improves the learning 
performance by changing the difficulty of the task in a stepwise 
manner, to the behavior acquisition of a shooting game as well 
as conduct experiments. We compare the learning performance 
with and without the application of curriculum learning and 
confirm the faster behavior acquisition of the shooting game AI 
through experimental evaluation. Additionally, we analyze and 
discuss the development of other tasks and an algorithm for 
automatic curriculum generation. 

Index Terms—Deep Reinforcement Learning; Curriculum 
Learning; DeepQ-Network; Game AI; 

I. INTRODUCTION 
In recent years, autonomous agents using reinforcement 

learning have been adapted to increasingly difficult tasks [1]. 
Reinforcement learning is a learning method in which an 
agent interacts with its environment, decides on a course of 
action based on a strategy, and receives a reward from the 
environment as an evaluation. The goal of the agent is to 
maximize the reward obtained through a series of actions. 
However, in environments where rewards are sparse or states 
are abundant, the experience of rewarding behavior may be 
insufficient or the search for states may be time consuming. 
Additionally, a significant number of trials are required to 
determine the optimal behavior [2]. 

Deep learning has garnered attention in the field of image 
recognition because of its ability to extract detailed features 
from input data. In this context, deep reinforcement learning 
[3], a combination of reinforcement learning and deep 
learning, has enabled adaptations to higher-dimensional 
environments such as images. However, as the number of 
states in the task increases, the number of trials required for 
learning in deep reinforcement learning behavior acquisition 
increases. The significant number of trials required to acquire 

an action is a longstanding problem in deep reinforcement 
learning. 

II. OBJECTIVE 
Whereas deep reinforcement learning can be applied to 

complex tasks with many states, the computational cost is 
prohibitive. In addition, when the reward is sparse, many trials 
are required to learn the optimal behavior owing to 
insufficient exploration [4]. A sparse environment implies that 
random action selection during exploration is extremely 
unlikely to be rewarded. This problem is directly related to the 
difficulty of the target task. Furthermore, it implies that for the 
same task, if the difficulty level is high (low), then many (few) 
trials are required for the agent to learn to acquire the behavior. 

Therefore, we assumed that we can avoid sparse 
environments caused by high task difficulty by applying 
curriculum learning, in which the difficulty of the task is 
changed in a stepwise manner during learning. In this study, 
we conducted verification and experiments on the application 
of curriculum learning in deep reinforcement learning for 
game AI to reduce the number of trials before an agent 
acquires an action or to improve the learning performance 
based on the same number of trials. The techniques and 
insights gained from these experiments are expected to be 
applicable not only to game AI, but also to various automated 
tasks, and their applications are expected to expand and 
further develop in the future. 

III. DEEP REINFORCEMENT LEARNING 
In reinforcement learning, an agent in an environment 

receives a state st as input at time t and selects an action at 
based on a strategy π, resulting in a reward rt+1 and a change 
in the state to st+1 [5]. This sequence of events is shown in 
Figure 1. The agent performs this series of actions in a trial-
and-error manner and aims to maximize the final reward. Q-
Learning, a type of reinforcement learning, treats the states as 
discrete and stores the Q-values of each action for each state 
in a Q-table. In a low-dimensional environment, all states can 
be represented in a Q-table; however, in an image-based 
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environment, the input states become high dimensional. As 
the number of states increases, it becomes difficult to 
represent all of them in a Q-table; consequently, the measures 
cannot be calculated. Therefore, a deep Q-network (DQN), 
which uses deep learning to compute Q-learning measures, 
was proposed [6]. The DQN comprises a superior 
convolutional neural network that can extract fine features for 
high-dimensional states, such as images and Q-learning, and 
is a typical method involving conventional reinforcement 
learning algorithms. In the Atari 2600 game task, we obtained 
excellent results that were comparable or superior to human 
scores. 

IV. CURRICULUM LEARNING 
Bengio et al. introduced curriculum learning as a machine 

learning concept to improve the learning efficiency in 
supervised learning [7]. In our experiments, we demonstrated 
that the prediction accuracy of models increased when the 
examples presented were simple at the beginning and became 
more difficult gradually as the learning progressed in 
language modeling and image classification. Narvekar et al. 
[8] applied this curriculum learning concept to reinforcement 
learning, where a new structure for curriculum learning was 
devised, as supervised learning and reinforcement learning are 
significantly different. In that study, the source of the target 
task, known as “Curriculum,” was generated; subsequently, 
the agent on each task was trained, followed by the target task. 
Generating a task that is the source of the target task implies 
setting difficulty levels in stages until the target task, which is 
the goal, is reached. By gradually increasing this difficulty 
level as the agent learns, we improved the learning efficiency 
in reinforcement learning. 

The application of curriculum learning in reinforcement 
learning has indicated excellent performance in various 
experiments, as well as in problems involving tasks that are 
difficult to learn using traditional reinforcement learning. 
Curriculum generation enables good performances to be 
achieved, thereby contributing to a faster learning process and 
the convergence of the target task [9-10]. 

V. EXPERIMENT 
The application of curriculum learning in deep 

reinforcement learning, which has been investigated in recent 
years, involves many experiments where the structure of the 
learning environment and the elements being built are 

changed during curriculum generation, and qualitative 
difficulty levels are set [11-13]. For example walls and 
obstacles that exist in the game stage are removed, the stage 
size is reduced to facilitate goal achievement, and the 
curriculum is applied through qualitative changes in difficulty. 
When applying the curriculum through qualitative change, the 
structure of the learning environment must be understood, and 
the characteristics of the obstacles during learning for the 
agent must be inferred. Subsequently, the structure of the 
learning environment as well as the elements of its 
construction must be modified, and a new environment must 
be created for each curriculum with a difficulty level that 
renders it viable as a curriculum. 

However, studies regarding the application of curricula 
with quantitative changes in difficulty are scarce. Therefore, 
in this study, we investigated curricula with quantitative 
changes in the application of curriculum learning in deep 
reinforcement learning. Quantitative change implies that the 
difficulty level must be clearly defined as a numerical value. 
In terms of qualitative changes, when a Level 1-3 curriculum 
exists, Level 2 need not necessarily be twice as difficult as 
Level 1, and Level 3 need not be three times as difficult as 
Level 1. However, in the case of quantitative changes, the 
difficulty level must be clearly defined as a numerical value; 
therefore, Level 2 must be twice as difficult as Level 1, and 
Level 3 must be three times as difficult as Level 1. Hence, a 
shooting game was used as the subject of this experiment such 
that the curriculum can be applied through quantitative 
changes. 

 A shooting game is an environment where the player has 
to evade and attack the enemy while avoiding the enemy’s 
bullets and hitting the enemy with his own attack. In this study, 
we generated a curriculum with varying difficulty levels by 
changing the number of bullets fired by the enemies. The 
enemy’s projectiles were set to launch with an arbitrary 
probability at regular intervals; therefore, the difficulty can be 
set using this value. In other words, the difficulty of Level 1, 
which has a 10% probability of launching a bullet at a certain 
time, Level 2, which has a 20% probability of launching a 
bullet at a certain time, and Level 3, which has a 30% 
probability firing a bullet at a certain time, can be clearly 
expressed as Level 2 being twice as difficult as Level 1, and 
Level 3 being three times as difficult as Level 1. Theoretically, 
Level 2 is twice as difficult as Level 1, and Level 3 is three 
times as difficult as Level 1. By changing the probability of 
bullets launched by the enemies, a curriculum with 
quantitative difficulty levels can be created without changing 
the stage structure. Hence, we performed our experiment by 
exploiting the characteristics of this shooting game. 

A. Experimental environment 
In this study, we prepared a shooting game as a learning 

environment for the agents. An example of this environment 
is shown in Figure 2. This environment is a vertical scrolling 
shooter with a stage (screen) size of 480 × 640. Figure 3 shows 
the four types of objects that comprise the game, i.e., the 
player, enemy, player bullets, and enemy bullets (from left to 
right). The environment maintains the variable step as a 
temporal concept, and all objects are updated based on the 
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rules at each step. The origin (x, y) = (0, 0) is assumed to be 
the upper left corner of the screen. Table 1 describes each 
object and the game rules.  

When the player and enemy bullets, player bullets and 
enemy, or player and enemy are in contact with each other, 
each of them disappears. Eliminating an enemy results in a +1 
reward, and eliminating a player earns a -1 reward. The game 
ends when the player disappears, and the sequence of events 
from start to finish is known as an episode. In other words, the 
game is a task for learning strategies to obtain more rewards 
in one episode. 

 

 
 

It is noteworthy by changing the “arbitrary probability” 
underlined in the enemy bullet entry in Table 1, the change is 
quantitative, and this probability is defined as the difficulty 
level. For example, if the probability is set to 1/60, then each 
enemy object on the screen has a 1/60 probability of launching 
an enemy bullet at each step. If the probability is set to 1/30, 
then the difficulty will be twice as high as the previous 
probability of 1/60. 

B. Overview of DQN 
An overview of the convolutional neural network used in 

the DQN for the experiments is shown in Figure 4. In the 
learning environment, the game screen was a 480 × 640 pixel 
RGB image, which is converted to an 84 × 84 pixel grayscale 
image when the agent observes it. As input to the DQN, four 
temporally sequential images were provided. Therefore, the 
input layer of the DQN used in this experiment was 84 × 84 × 
4 dimensional data. The data were passed through three 
convolutional layers, and finally, two values were output at 
the output layer. 

In the DQN used in this study, Boltzmann selection was 
used as the agent’s action selection method [14]. Boltzmann 
selection is an action selection method in which each action is 
assigned a selection probability based on the Q-value obtained 
by learning. A is a set whose elements are actions; τ is a 
parameter that determines the amount of difference to be 
evaluate between each Q-value, and it is known as the 
temperature parameter.  

 

𝜋(𝑠, 𝑎) =
𝑒𝑥𝑝 +𝑄(𝑠, 𝑎)𝜏 .

∑ 	!∈# exp +
𝑄(𝑠, 𝑏)
𝜏 .

(1) 

 
The ε-greedy method [6], which is a general action 

selection method, cannot be regarded as an action selection 
method based on the learning process because the probability 
is determined by a predetermined value. In reinforcement 
learning, the balance between knowledge exploration and 
utilization is important. Hence, we used Boltzmann selection, 

 

 

Fig. 4. Convolutional Neural Network 

 

 
Fig. 2. Shooting Game 

 

                      
Fig. 3. Four types of objects 

 

TABLE I.  OBJECT AND THE GAME RULES 

objects Rules 

player (agent) 
Appears at (455, 320) at the 

beginning. Can move +- 16px to 
x per step. 

enemy 

Appears at (100~440, 0) with a 
probability of 1/50 per step. 

Moves 2px to y and +1px to x per 
step (reverses every 100 steps) 

player bullet 
Appears at center of player every 

15 steps. Moves -8px to y for 
each step. 

enemy bullet 

Appears at center of each enemy 
object at an arbitrary probability 

per step. Moves to the player 
point at the time of appearance at 

approximately 4px per step. 
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which uses learning-based selection probabilities, because it 
can be regarded as be an action selection method that allows 
for the flexible exploration and utilization of knowledge. 

C. Experimental setup 
For our experiment, normal learning and curriculum-

applied learning were represented by the DQN and CL, 
respectively. In this section, we compare them through 
experiments conducted on the DQN and CL. As mentioned 
earlier, the difficulty level is defined as the probability that an 
enemy bullet will be launched. Therefore, a probability of 
1/30 was set as the highest difficulty level, and a curriculum 
was generated using it as the target task. In regard to the DQN, 
learning was performed in the target task for 10,000 episodes. 
In regard to the CL, the students learn based on the curriculum 
up to 6,000 episodes, after which they learn based on the target 
task for 4,000 episodes. In other words, we compared the 
difference in learning performance with and without the 
curriculum for up to 6,000 episodes using the results for the 
next 4,000 episodes. In addition, behavior acquisition in deep 
reinforcement learning has a high degree of randomness 
owing to its characteristics, and the learning results are likely 
to vary. Therefore, a five-trial experiment was conducted for 
each training, and the average of the experiments was used for 
performance comparison. 

Table 2 shows the curriculum of the six patterns generated. 
The starting probabilities were 1/60, 1/90, and 1/120, where 
three and six steps were required to reach the highest difficulty 
level with a probability of 1/30. Each pattern is shown in 
Table 2. The values were obtained empirically from the results 
of preliminary experiments. Figures 5 and 6 show examples 
of the difference in enemy bullets depending on probability, 
using probabilities 1/30 and 1/120. 

A summary of the experimental process is as follows. 

Step1. Definition of the target task (DQN) 

Determine the highest level of difficulty you want 
the agent to learn to be 1/30 of the probability. 

Step2. Definition of the Curriculum (CL) 

The curriculum should have three starting points: 
1/60, 1/90, and 1/120, which are the target task 
probability multiplied by 1/2, 1/3, and 1/4. For each 
of these, we have a method of increasing difficulty 
every 1,000 episodes and a method of increasing 
difficulty every 2,000 episodes, for a total of six 
different curricula (Table 2). 

Step3. Definition of the experimental method 

For learning by DQN, 10,000 episodes are 
considered as one trial. In the case of CL learning, 
6,000 episodes of curriculum-applied learning 
followed by 4,000 episodes of target-task learning is 
considered one trial. 5 trials of DQN and CL_A to F 
are performed respectively. 

 

 

Step4. Definition of evaluation method 

Average the rewards obtained in five trials for each 
of DQN and CL_A-F, and compare the transitions or 
values.  

 

 

TABLE II.  CURRICULUM SETUP 

Curriculum 
Value of x with probability 1/x 

(1k=1,000episodes) 
0~ 1k~ 2k~ 3k~ 4k~ 5k~ 6k~ 

CL_A 60 55 50 45 40 35 30 

CL_B 60  50  40  30 

CL_C 90 80 70 60 50 40 30 

CL_D 90  70  50  30 

CL_E 120 105 90 75 60 45 30 

CL_F 120  90  60  30 
 

 

 
Fig. 5. Difference in enemy bullets with a probability of 1/30 

 
 

 
Fig. 6. Difference in enemy bullets with a probability of 1/120 
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D. Experimental results 
Figure 7 shows the results for the DQN and CL. The graph 

shows the average of the rewards obtained in each episode of 
the five experiments, smoothed using a moving average of 
301 intervals. Figure 8 shows a comparison of the learning 
results after 6,000 episodes. Figure 9 shows a graph of the 
average Q values obtained in each episode of the five 
experiments. 

As shown in Figure 7, the results from the start of learning 
to 6,000 episodes were the lowest for the DQN as the 
curriculum was generated, and the CL increased the value of 
the reward obtained in the order of the curriculum difficulty. 
The result indicates that the curriculum rendered the task 
easier and less difficult. 

Figure 8 shows that the overall results of the rewards 
obtained by the CL were generally higher than those obtained 
by the DQN. In general, the performance improved as the 
difficulty order of the curriculum increased; however, after 
6,000 episodes, all the difficulty levels were the same. 
Therefore, in a few situations, it was overtaken, depending on 
the results of trial and error. When the last difficulty level in 
the curriculum and the highest difficulty level in the target 
task differed significantly, the increase in reward immediately 
after 6,000 episodes became lower; however, the participants 
gradually adapted to the target task. The reward obtained by 
CL_F immediately after 6,000 episodes was approximately 
8.5. This value corresponds to the value of the reward 
obtained after approximately 3,000 episodes in the DQN. 
Although this difference decreased gradually, it did not 
disappear as the CLs adapted to the target task. Furthermore, 
a difference of approximately 4.0 was indicated between the 
reward in the DQN and the higher reward in the CL 
immediately after 6,000 episodes, and a difference of 
approximately 3.5 immediately before 10,000 episodes. 

As shown in Figure 9, the increase in the Q-value was 
greater for the CL than for the DQN; in fact, for the CL, the 
increase was greater at lower levels of curriculum difficulty. 
This indicates that the Q-value was higher because the 
difficulty level was lower, and hence more possibilities to earn 
rewards. In this experiment, because the probability of an 
action to be selected depended on the Q-value of the 
Boltzmann selection, it was assumed that a significant 
increase in the Q-value based on the curriculum rendered it 
easier for the agents to reflect the knowledge that they 
obtained from their actions.  

VI. DISCUSSION AND SUMMARY 
The experimental results showed a difference in the 

episodes with the same level of reward by applying 
curriculum learning, thereby confirming the reduction in the 
number of trials before the agent can acquire the action. The 
difference in the rewards obtained in the same episodes 
confirmed the improvement in learning performance for the 
same number of trials. We discovered that the easier the 
curriculum, the better was the comparative learning results in 
the target task; however, we could not confirm the extent to 
which the simplification of the curriculum was effective. 
Based on our experiments, we discovered that the simpler the  

 

 
curriculum, the lower was the increase in the reward for 
moving to the target task, suggesting that oversimplifying the 
curriculum to be generated would impose a greater impact. 

In our experiment, a shooting game was used as the target. 
Therefore, it will be challenging to determine the tasks can be 

 
Fig. 7. The relationship between episodes and rewards 

 

 
Fig. 8. The relationship between episodes and rewards 

(After 6,000 episodes) 
 

 
Fig. 9. The relationship between episodes and Q-value 
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enabled or performed effectively by the application of 
curriculum learning in deep reinforcement learning. In 
addition, we created a curriculum in which the difficulty level 
was varied quantitatively, beginning with a task that was 
several times easier than the target task. Because the learning 
environment by the curriculum was created by changing the 
numerical values, it needs not be created in advance and can 
be generated during learning. In this study, we generated the 
curriculum manually. If we can formulate the curriculum 
based on an index obtained in each learning process, then we 
can generate an optimal curriculum based on the process, 
including a trial-and-error learning process. The resulting 
curriculum generation algorithm can be applied to any 
environment in which the difficulty level can be quantitatively 
managed as a numerical value; therefore, it is expected to be 
further developed and applied. 
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