Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, Igor Mordatch

Part of Advances in Neural Information Processing Systems 30 (NIPS 2017)

1. Introduction

Reinforcement Learning is often used in various single agent domain

 Traditional reinforcement (Q learning, Policy gradient) do not suit for multi-agent

goal of algorithm

- 1. do not change model in different environment
- 2. no particular structure between agents
- 3. behave cooperative or competitive

2. method (related work)

DDPG(deep deterministic policy gradient)

- Replay buffer (use past experience for learning)
- Actor-Critic

2.1. method

MADDPG (multi-agent DDPG)

agent information is available for all critic

•Centralized training with Decentralized execution

2.2 Inferring Policies of Other Agents

- each agent maintain approximation of agents' policy
- Maximize log probability of agents' actions

$$\mathcal{L}(\phi_i^j) = -\mathbb{E}_{o_j, a_j} \left[\log \hat{\boldsymbol{\mu}}_i^j(a_j | o_j) + \lambda H(\hat{\boldsymbol{\mu}}_i^j) \right]$$

2.3 Agents with Policy Ensembles

Solve overfitting problem
train a collection of different sub-policies

3. Environments

- Cooperative communication
- Cooperative navigation
- Keep-away
- Physical deception
- Predator-prey
- Covert communication

Cooperative Communication

- 2 cooperative agent
- Speaker agent teach Listener correct landmark
- goal: listener reach to true landmark
- Reward: distance from true landmark

Predator-Prey

• 1 prey, N predator, Obstacles

goal, reward
 prey: run away
 predator: catch prey

4.Result

MADDPG scored highest

- MADDPG
- DDPG
- DQN
- Actor-Critic
- TRPO
- REINFORCE

Cooperative communication

Lack of consistent gradient signal

Result: Learning Policies of Other Agents

Same success rate as using true policy

Result: Training with Policy Ensembles

- Effective in competitive environments
 - keep-away
 - cooperative navigation
 - predator-prey

Conclusion

- MADDPG was more effective than traditional RL.
- Applicable to any multi-agent algorithm.

Future work

 solve the problem; Input for Q grows with number of agents

Thank you for listening!