
Reusing Agent’s Representations for Adaptation to
Tuned-environment in Fighting Game

Dae-Wook Kim
Electronics and Telecommunications

Research Institute
Daejeon, South Korea
dooroomie@etri.re.kr

Sung-Yun Park
Electronics and Telecommunications

Research Institute
Daejeon, South Korea
tjddbs5671@etri.re.kr

Seong-il Yang
Electronics and Telecommunications

Research Institute
Daejeon, South Korea

siyang@etri.re.kr

Abstract—Reinforcement learning agents have been used for
one-on-one fighting battlefield or quality assurance (QA) of
commercial games. In spite of its performance beyond human-
level, it is not easy to apply because actual commercial games are
frequently updated. In this paper, we propose a method to adapt
reinforcement learning agent to slightly tuned environment by
reusing representations of neural network. Agent trained by the
proposed method converges at 2.11 million steps, which shows at
least 3 times faster than those of fine-tuning and training from
scratch to reach the same competence. We also tested larger
representation layers with smaller actor-critic ones. Although
it fails to train agent, it demonstrates distinct characteristics.
Finally, action distributions of fully trained agent for each
environment are analyzed. Entire process of adapting to new
environment presented in this paper gives insights of game
balancing framework to game developers.

Index Terms—reinforcement learning, transfer learning, fea-
ture representation, FightingICE

I. INTRODUCTION

Reinforcement learning has been studied in many game
environments. It has been proved that reinforcement learning
agent shows better performance than human on the certain
game genre. In this trend, more and more game companies try
to make a profit with the contents of reinforcement learning
agents such as one-on-one fighting battlefield [1] or quality
assurance (QA) for game balancing [2]. Commercial game,
however, needs continuous maintenance including bug fix,
contents update or game balancing. Even if reinforcement
learning is a powerful tool to find an optimized strategy in
a complex game environment, an agent’s performance drops
rapidly when it plays in a slightly adjusted game environment.
Besides, it can act abnormal behavior in such an environment.
Meanwhile, re-training for each game update would be a
simple alternative; however, it needs a lot of computational
loads. For this reason, an agent should quickly adapt to a
certain new environment while using a trained model.

Considering adaptation to a new environment, we can think
about two simple solutions. The first is fine-tuning that trains
agents with additional epochs in the new environment while
initializing parameters from the trained model. It is useful
when the environment is not as much changed such as a

modification of skill damage buff & nerf1. It does not need to
learn feature representation from scratch. However, exploration
in the training process can be constrained by prior knowledge
of the trained model. The second one is training from scratch.
It is an advantage in a drastically changed environment like
substituting characters or modifying the skill triggers. In
short, re-training feature representation is more effective than
transferring it depending on the size of the environmental
difference.

The practical scenario for the one-on-one fighting game we
focus on is as follows.

• Step 1 : Set the game environment.
• Step 2 : Generate reinforcement learning agent by self-

play or simulation with hand-made agents.
• Step 3 : Find whether the agent’s strategy or behavior is

efficient or not.
• Step 4 : If some strategy or behavior not expected by

the game designer has been found, tune the parameters
of skills or damages.

• Step 5 : Generate agent again in tuned-environment.
• Step 6 : Go to step 3.

In this paper, we propose a representation transfer method
to promote adaptation to tuned-environment in fighting games.
The contribution of this paper is as follows. As far as we know,
it is the first time for representation transfer in fighting games,
especially the FightingICE [3] which is a well-known environ-
ment for research purposes. Assuming the differences in the
environment are small enough, the proposed method shows
training faster than fine-tuning. In addition, We analyzed the
effect of the size of the representation layers. Finally, it is
possible to utilize the game balance tuning for commercial
games by comparing agent behaviors in the prior environment
with those in the new environment.

The rest of this paper is organized in the following order. In
chapter 2, we describe works related to our study. Chapter 3
explains our proposed method with the game environment.
Experiment and result are presented in chapter 4. We remark
on the conclusion in chapter 5.

1The terms of buff and nerf are used in video games. Buff means to increase
the power of a game element and nerf is the opposite of buff

1120978-1-6654-2383-0/21/$31.00 ©2021 IEEE ICTC 2021

20
21

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 In

fo
rm

at
io

n
an

d
Co

m
m

un
ic

at
io

n
Te

ch
no

lo
gy

 C
on

ve
rg

en
ce

 (I
CT

C)
 |

 9
78

-1
-6

65
4-

23
83

-0
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

TC
52

51
0.

20
21

.9
62

09
88

Authorized licensed use limited to: Aizu University. Downloaded on January 17,2022 at 04:57:48 UTC from IEEE Xplore. Restrictions apply.

II. RELATED WORK

Many researchers have tried to apply reinforcement learning
to game development process. In [1], they made one-on-one
game agent in commercial game Blade&Soul. Using reward
shaping, the agent got its own style. J. Pfau, et al. [2]
generated playable agent using supervised learning in another
commercial game Aion. They evaluated character balances
from various simulations while modifying health point and
attack power. Y. Zheng, et al. [4] showed that an agent trained
by reinforcement learning and genetic algorithm could find
bugs in games. In [5], they also found game bugs from route
heatmap generated by reinforcement learning agent.

Meanwhile, many studies are trying to apply reinforcement
learning agents to similar environments. Transfer learning in
deep reinforcement learning is well defined in [6]. According
to [6], the proposed method in this paper corresponds to the
knowledge transfer and categorically belongs to the represen-
tation transfer. Representation learning generates features by
itself, combining important information from inputs. A high-
performance agent can be obtained without any game insight
from the game designer. For example, the agent trained with
representation learning beats humans without prior knowledge
of Go [7].

As a prior study on representation transfer, A. A. Rusu,
et al. [8] attempted to transfer the representation to another
environment by designing the double size of the original
network in parallel, one is copied from the original and the
other is initialized by random numbers. The agent learns
parallel networks in a new environment, considering whether
to use knowledge of the original network or not. However,
its experimental environment is somewhat difficult to apply to
commercial games. They made a new environment by flipping
the screen or adding image noises; therefore, the spatial
relation of the input state was not preserved. In addition,
since the neural network is composed of parallel structures,
the computational load for training increases as the size of the
network increases. In [9], for breakouts of the Atari game,
they tested whether the agent could be transferred to the
environment where the noise was added and compared it with
fine-tuning and training from scratch similar to our experiment.
However, they showed that the training from scratch got the
best performance.

III. METHOD

We concentrate on the player versus player (PvP) environ-
ment, especially the environment with minor changes, rather
than the player versus environment (PvE) discussed in the
previous chapter.

A. Game Environment

Agents are trained in FightingICE which is a fighting
game environment for research purpose as shown in Fig. 1.
FightingICE has held international competition every year.
Hence, there are many various agents that have already been
developed. Besides, it provides customization of detailed skill
design such as skill damage, the energy value needed to be

Fig. 1. Fighting game environment called FightingICE.

committed, each action frame, and so on. The opponent agent
is carefully selected as Monte Carlo Tree Search (MCTS) AI
because it has ability to act local optimal strategy in most
cases regardless of environmental changes. We fix the battle
characters as Zen vs Zen for the experiment.

Two types of environment used in our experiments are
detailed in Table I. Env A is the same as the default set-
ting in FightingICE 4.40. we found that the combination
of STAND B and DASH2 actions was the most effective
strategy from a preliminary experiment based on reinforcement
learning. In this environment, a fully-trained agent approaches
the opponent using DASH and then pins the opponent by
taking the successive action of STAND B at the corner. For
this reason, we nerf the hit damage of STAND B in Env B
to -1.3 ‘Hit Add Energy’ means the energy the agent obtains
when the agent hits the opponent. We also drastically reduced
it to confine the skill use.

B. Reinforcement Learning

The configuration of state, action, reward, network structure,
and hyper-parameters for reinforcement learning is assigned
the same as [10]. The dimension of the state vector equals
330. The reward composed of HP, round, and time is applied.
Proximal policy optimization (PPO) [11] is used for reinforce-
ment learning algorithm.

2These are skill names in FightingICE. For example, STAND B is one of
the kick attacks.

3We also noticed that STAND B decreased the opponent’s HP even if
its damage was set to 0 because the combo system in FightingICE caused
additional damage which was not able to be customized.

TABLE I
SPECIFICATION OF GAME ENVIRONMENTS FOR EXPERIMENTS

Name Description Specification of STAND B
Hit Damage Hit Add Energy

Env A FightingICE
ver. 4.40 10 5

Env B Nerf STAND B
from ver. 4.40 -1 1

1121

Authorized licensed use limited to: Aizu University. Downloaded on January 17,2022 at 04:57:48 UTC from IEEE Xplore. Restrictions apply.

C. Reusing Representation

Since fine-tuning trains the agent based on the agent itself
trained in the previous environment, it transfers knowledge of
the features. However, as the additional training progresses,
error between the action policy and estimated value function
affects the entire network. As a consequence, it can mess
up the feature representation which the network has learned
from the original environment. This problem gets worse as the
network becomes bigger.

For this reason, we propose reusing representations to
accelerate transfer learning. Fig. 2 (a) shows the network to
generate reinforcement learning agent on FightingICE. Let’s
assume that the front part of the network corresponds to
processing the input state as a feature, and the latter part of it
does to find the policy. Then, we are able to cut the middle
of it. Fig. 2 (b) and (c) illustrate that the network composition
according to the cutting point. In Fig. 2 (b), for example, the
first two layers play a role in representation and remain layers
do a role in action selection. For the representation function f ,
the actor-critic function g, the state s and the initial network
parameter θ0, the feature z is expressed as

z = f(s; θ0f) (1)

Also, policy π and estimated value V is driven by

π, V = g(z; θ0g) (2)

IV. EXPERIMENT AND RESULT

We evaluated trained agents by the number of steps to reach
the average episode reward 5. This threshold was set based
on the relationship between the rewards. The agent over the
threshold reward showed stable win rate performance against
the opponent.

The models for the experiment are shown in Table II. For
the first experiment, we tested whether the proposed method
improves adaptation to the tuned environment comparing other
methods. Four models of baseline 1, baseline 2, RR (Reusing
Representation) v1, and RR v2 were tested. Baseline 1 is
vanilla reinforcement learning without transfer learning to Env
B. Baseline 2 tunes trained model from Env A to Env B. As
the first version of the proposed method, RR v1 freezes the
parameters of the representation function f trained in Env
A and fine-tunes only for the actor-critic function g. The
second version, RR v2, similarly freezes representation, but
the training starts with the actor-critic function initialized to
a random number. We expected that it explored action space
broader than the first version.

For the second experiment, models with different network
divisions are trained where all models reuse representations.
This experiment is to test the performance according to the
number of training parameters. RR v1 L3 consists of rep-
resentation function of the first three layers and actor-critic
function of the remaining layers based on RR v1. RR v2 L3
is composed in the same way as RR v1 L3.

Fig. 2. Neural network configurations of the proposed method to train
reinforcement learning agent. (a) Basic network without network division for
baseline. (b) Representation function with the first two layers and actor-critic
function with remaining layers for RR v1 and RR v2. (c) Representation
function with the first three layers and actor-critic function with remaining
layers for RR v1 L3 and RR v2 L3.

Detailed experimental results are described in Table III.
Fig. 3 also illustrates the result of each experiment. Baseline
1 spent the longest time to reach the desired performance.
Baseline 2 reached the threshold within about 7M steps. It is
5-times faster than baseline 1. When the difference between
environments is small, it demonstrates that fine-tuning needs
a shorter training time than the training from scratch. RR v1
shows the fastest adaptation to the tuned environment in 2.1M
steps. RR v2 touched the threshold at 4.4M steps, which is
slightly slower than RR v1. While RR v1 needs to tune only
the action output of the network, the parameter initialization
of RR v2 requires another computational cost. Nevertheless, it
still shows superior performance compared to baseline 1 and
baseline 2. It means the representation function compresses
necessary information well from the input state and increases
the training speed.

Surprisingly, RR v1 L3 and RR v2 L3 failed in training
despite fewer network parameters. We stopped it at 20M
steps since the performance had not improve during the long
and tedious training process. There are two possibilities for
training failures. First, as the size of the representation function

1122

Authorized licensed use limited to: Aizu University. Downloaded on January 17,2022 at 04:57:48 UTC from IEEE Xplore. Restrictions apply.

TABLE II
TRAINING PROCESS OF EACH MODEL

Name Description Training Process Number of Parameters

Baseline 1 training from scratch (θ0f , θ
0
g) → (θBf , θBg)

359,032
Baseline 2 fine-tuning (θAf , θAg) → (θBf , θBg)

RR v1 parameter preserved θAf frozen, θAg → θBg 140,572
RR v2 parameter initialized θAf frozen, θ0g → θBg

RR v1 L3 RR v1 with 3 layers representation θA
f̃

frozen, θAg̃ → θBg̃ 85,957
RR v2 L3 RR v2 with 3 layers representation θA

f̃
frozen, θ0g̃ → θBg̃

TABLE III
STEPS TO REACH THE MEAN EPISODE REWARD 5

Name Steps (M) Relative Speed
Compared to baseline 2

Baseline 1 35.38 19.84 %
Baseline 2 7.02 100 %

RR v1 2.11 332.70 %
RR v2 4.41 159.18 %

RR v1 L3 Failed (> 20) -
RR v2 L3 Failed (> 20) -

increases, that of the actor-critic function decreases. Hence,
layers are too small to extract optimal policy and value from
representation features. Second, policy and value outputs are
limited by the representation function. In the second situation,
the optimal policy cannot be obtained from any feature inputs.
Although reusing representation speeds up adaptation in a
new environment, it cannot guarantee performance depend
on network structures and parameters. Additional experiments
and tests such as varying network division are left for future
work.

Fig. 4 shows the action distribution of the agents that
find the sub-optimal in each environment. Because of nerfing
STAND B, the proportion of STAND B decreased to 0 in
Env B. As an alternative action, the agent found CROUCH B,
CROUCH FB, and STAND A. In addition, it seems that
STAND B works well with DASH, and CROUCH FB does
with FORWARD WALK.

V. CONCLUSION

Reinforcement learning agents have been used in many
commercial games. However, it has a definite disadvantage
of performance degradation when a game environment is
changed. In this paper, we proposed the method of reusing rep-
resentations of neural networks. Compared to fine-tuning and
training from scratch, the proposed method shows remarkable
training speed. It converges at 2.11 million steps, which is 3-
times faster than fine-tuning. Meanwhile, using more layers
on the representation function conversely failed to train it.
We also analyzed the action distribution of trained agents for
each environment. The whole process described in this paper
provides insights into the game balancing framework for game
developers.

Fig. 3. Mean episode reward by training method and network division. The
later parts of Baseline 1, RR v1 L3 and RR v2 L3 were cut because they
took too long training time.

Fig. 4. Action distributions of fully trained agent for each environment. Since
STAND B was nerfed on Env B, its proportion is close to 0.

ACKNOWLEDGMENT

This research is supported by Ministry of Culture, Sports
and Tourism (MCST) and Korea Creative Content Agency
(KOCCA) in the Culture Technology (CT) Research & De-
velopment Program 2021 (Project Number: R2019020067).

REFERENCES

[1] I. Oh, S. Rho, S. Moon, S. Son, H. Lee, and J. Chung, “Creating
pro-level AI for a real-time fighting game using deep reinforcement
learning,” IEEE Transactions on Games, 2021.

1123

Authorized licensed use limited to: Aizu University. Downloaded on January 17,2022 at 04:57:48 UTC from IEEE Xplore. Restrictions apply.

[2] J. Pfau, A. Liapis, G. Volkmar, G. N. Yannakakis, and R. Malaka,
“Dungeons & replicants: automated game balancing via deep player
behavior modeling,” 2020 IEEE Conference on Games (CoG), pp. 431–
438, August 2020.

[3] F. Lu, et al., “Fighting game artificial intelligence competition platform,”
2013 IEEE 2nd Global Conference on Consumer Electronics (GCCE),
pp. 320–323, October 2013.

[4] Y. Zheng, et al., “Wuji: Automatic online combat game testing using
evolutionary deep reinforcement learning,” 2019 34th IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE), pp.
772–784, November 2019.

[5] J. Bergdahl, C. Gordillo, K. Tollmar, and L. Gisslén, “Augmenting
automated game testing with deep reinforcement learning,” 2020 IEEE
Conference on Games (CoG), pp. 600–603, August 2020.

[6] Z. Zhu, K. Lin, and J. Zhou, “Transfer Learning in Deep Reinforcement
Learning: A Survey,” arXiv preprint arXiv:2009.07888, 2020.

[7] J. Schrittwieser, et al., “Mastering atari, go, chess and shogi by planning
with a learned model,” Nature, vol. 588.7839, pp. 604–609, 2020.

[8] A. A. Rusu, et al., “Progressive neural networks”. arXiv preprint
arXiv:1606.04671, 2016.

[9] S. Gamrian, and Y. Goldberg, “Transfer learning for related rein-
forcement learning tasks via image-to-image translation,” International
Conference on Machine Learning, pp. 2063–2072, PMLR, May 2019.

[10] D. W. Kim, S. Park, and S. I. Yang, “Mastering Fighting Game Using
Deep Reinforcement Learning With Self-play,” 2020 IEEE Conference
on Games (CoG), pp. 576–583, August 2020.

[11] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

1124

Authorized licensed use limited to: Aizu University. Downloaded on January 17,2022 at 04:57:48 UTC from IEEE Xplore. Restrictions apply.

