
Mimicking Human Strategies in Fighting Games
using a Data Driven Finite State Machine

S. Saini, P.W.H. Chung and C. W. Dawson
Department of Computer Science,

Loughborough University,
Loughborough, UK, LE11 3TU

S.S.Saini@lboro.ac.uk

Abstract—Multiplayer fighting videogames have become an
increasingly popular over the last few years, especially with the
introduction of online play, making for a more competitive
experience. Multiplayer fighting games give players the
opportunity to utilize particular strategies and tactics to win,
allowing them to use their own signature style. As a player can
only play against a particular opponent who is actively
participating in the game themselves, they cannot practice
combating the opponent’s style if the opponent is not
participating in the game. This paper presents a novel approach
for an avatar to learn and mimic the style of a player. It does this
by recording and analyzing the data before splitting it up into
two tiers; tactical data and strategic data.. The approach uses a
Naïve Bayes classifier to classify the tactics to particular states,
and a Data Driven Finite State Machine to dictate when certain
tactics are used. Statistics recorded during an experiment
involving the approach are discussed, which indicate that the
architecture of the Artificial Intelligence is fit for purpose, but
does require refinement. Limitations of the architecture are
discussed, including that such an approach may not provide
accurate results when more parameters are considered.

Keywords-Artificial; Intelligence; fighting; game; FSM; Bayes

I. INTRODUCTION

Gaming has seen a large increase in popularity over recent
years, owing largely to the availability of online gaming.
Increased usage of multiplayer functionality has brought new
challenges to research Artificial Intelligence (AI) within
gaming. This field of research is commonly referred to as
Game AI . Fighting games have been explored in the past,
however, the majority of research is restricted to creating a
‘good’ AI player. Reference [2] investigate the use of
Artificial Neural Networks to create an AI fighter. However,
as with much of the research conducted in the field of Game
AI, the problem is concerned with improving the AI player
such that it is harder to beat, rather than refining the AI to
behave in a particular way defined by a human.

There is a lack of research conducted in the field of AI
applied to strategic fighting games. While the use of AI
techniques make for engaging Real Time Strategy games [1],
the work carried out in the genre of fighting games is limited to
shorter term tactics using ANN [2]. Implementing AI
techniques in a fighting game to enable the CPU controlled
player to learn and mimic human strategies is an area that has
not yet been explored.

The research reported in this paper is concerned with
implementing an AI Player that is capable of mimicking
human tactics and strategies. Strategy can be defined as a
preliminary decision making activity, whereas tactics can be
defined as an action based decision making activity [7]. This is
to say that a strategy is a long term plan formulated ahead of
time, where as tactics are short term actions that are carried out
amidst the action taking place, to realize the strategy. In the
context of fighting games, this would firstly entail executing
the same combinations of moves as the human subject being
mimicked, which addresses the tactical level. Secondly, this
would need to happen in response to a situation where the
moves are carried out based on the statistics of the game world,
which addresses the strategic level.

The following sections of this paper shall describe the proof
of concept game used to aide this research, and also provide
some background on AI techniques used in the solution
presented. An overview of the solution as well as the game
that has been designed as a test bed is also provided.

II. PROOF OF CONCEPT GAME

To aid the design, implementation, testing and evaluation
of a sufficient approach to address the problem, a proof of
concept game has been created. The game is a one-on-one
fighting game, allowing players to perform attacks, movements
and defend. In the game, each fighter has a health attribute
initiated at 100. If a fighter’s health attribute reaches zero, the
other fighter wins the bout.

Figure 1. Proof of Concept Game screenshot.

Table I below lists the moves available to a player as well
as the effect a move has on the opponent, provided the distance
between the two on-screen fighters falls within the ‘From’ and
‘To’ threshold.

 978-1-4244-8625-0/11/$26.00 ©2011 IEEE

Authorized licensed use limited to: Aizu University. Downloaded on January 19,2022 at 01:16:46 UTC from IEEE Xplore. Restrictions apply.

TABLE I. GAME RULES

Move From To Health Blocked Evasion Notes

Jab 4.1 5 1 Health – 0.5 Back

Cross 4.1 5.5 2 Health – 0.5 Left

Right Hook 4 4.7 3 Health – 0.5 Back

Left Hook 4 4.7 3 Health – 0.5 Back

Uppercut 0 4 4 Health – 0.5 Right

Haymaker 4 4.5 10 N/A N/A

Right Body Shot 0 4 2 Health – 0.5 N/A

Left Body Shot 0 4 2 Health – 0.5 N/A

Short Jab 0 4 2 Health – 0.5 Back

Short Cross 0 4 3 Health – 0.5 Left

Evade Back Evasion

Evade Left Evasion

Evade Right Evasion

Push 0 4 2 Health – 0.5 Opponent 5 back

Block

Low Block

Front Kick 4 4.7 2 Health – 0.5

Low Kick 0 4 2 Health – 0.5

Sidekick 4.1 5.5 4 Health – 0.5

Roundhouse 4.1 5.5 2 Health – 0.5

Stomp Kick 4.1 5.5 4 Health – 0.5

Knee 0 4 2 Health – 0.5

F Lunge Player 6 Forward

B Lunge Player 6 Back

If the opponent is within the range specified by the ‘to’ and
‘from‘ attributes listed, and is not blocking or performing an
appropriate evasion, they shall be struck and the value in the
‘health’ field shall be deducted from their health. If the
opponent is performing a block (or in some cases a low block)
when the move connects, their health shall deplete as indicated
by the value ‘blocked’ field. If timed correctly, certain moves
can be evaded. For example, if the player throws a jab and the
opponent reacts by performing the ‘back’ move with the
correct timing, the move shall not connect and no health shall
be depleted.

The rationale behind designing a game in this way was to
allow players to combine their own unique tactics to form
longer term strategies. The variety of moves include lunging
forward and back, making for flexibility in movement. This
footwork combined with the evasion maneuvers and attacks
make for a creative fighting system, empowering the players to
define various strategies and providing them with the tools to
execute short term tactics to accommodate said strategies.

III. BACKGROUND

This section provides background knowledge on the AI
techniques used as part of the multi-tiered architecture.

A. Naïve Bayes Level
Various classifiers can be used for clustering traits to

certain player types. In the same manner, classifiers can be
used to cluster moves or combinations of moves and assign
them to tactics or strategies. The Naïve Bayes Classifier (NBC)
is one such classified, and provides a simple approach to
classification which simplifies the problem by assuming
attributes are independent of the target value. The problem
typically involves a set of training data, then a new instance the
classifier is asked to produce a target value for using (1).

(1)

where vNB is the class value output by the classifier, and ai

are the values for attributes fed into the classifier. vj denotes
elements of the set V which are the possible class values. For
example, in the context of the proof of concept game,V =
{Inner, Outer, Defend}. The NBC is typically less accurate
than Bayesian Belief Network due to its ignorance, however, it
is computationally quicker [3].

Authorized licensed use limited to: Aizu University. Downloaded on January 19,2022 at 01:16:46 UTC from IEEE Xplore. Restrictions apply.

B. Data Driven Finite State Machine
In practice, a Finite State Machine is a description of how

an object can change its state over time in response to the
environment and events that occur. Each state in the FSM
represents a behavior, resulting in AI behavior changing as
states change from one to another. The function T resides
across all states, meaning that the states shall be left and
entered in accordance to fulfilling the transition criteria for that
particular state. The input is fed into the FSM continually as
long as the game is active [4].

The use of finite state machines in videogames is promoted
by many developers due to their robust nature as they are easy
to test and modify [5]. However, the primary limitation of
finite state machines lies in its predictability. The actions
performed in a given state do not alter as time goes on, nor do
the triggers that cause state transitions. This is to say that the
entire finite state machine is a static, rule based system [5],
rather than a system that is capable of learning and evolving as
the game is played. Once a player has found a way to counter
the finite state machine logic, they could exploit the static
nature of the technique and use the same tactics to succeed
each time. One may argue that finite state machines are not
representative of a valid artificial intelligence technique as they
do not adapt or learn from their environment.

The static and predictable nature of hard-coded finite state
machines can be addressed by implementing data driven finite
state machines. The data driven approach uses authored data
that powers the FSM. A data driven FSM is useful for
instantiating custom FSMs whose states and transition logic are
defined in an external file [6]. This approach of placing a
dependency on an external file to dictate how the FSM should
behave makes for a flexible solution. If we consider simulating
a players’ strategy, the data contained within the file can be
written in real-time during gameplay and then used to compile
a finite state machine.

IV. IMPLEMENTATION

A. Solution Architecture
The approach used to solve the problem relies on a

combination of the techniques discussed previously.

Figure 2. Multi-tiered architecture

By identifying the levels of play into strategic and tactical,
a specific AI technique can be used to tackle each level, with
information being passed between levels. Figure 2 shows the
architecture for this approach. A data driven finite state
machine (FSM) is used to model the players’ various strategies
and how/when the player transitions into a particular strategy.
While the FSM was previously cited as being a weak technique
due to predictability, and lack of flexibility at the tactical level,
a data driven FSM rectifies these weaknesses.

The usage of the architecture can be categorized into two
distinct approaches. The first use would be during the data
capture phase. This is when the human vs human bout takes
place. It is during the data capture phase that information on
the moves performed as well as the condition of the game
world (namely the player’s health and distance between
fighters) is collated. Once this information has been identified,
the moves that are performed (see Table 1 for list of available
moves) are assigned to different pre-determined states using
the Naïve Bayes classifier that has been trained to classify such
data. In the proof of concept game, there are three states; Outer,
Inner and Defend. The Outer state is for moves and
combinations of moves that are executed at a distance, whereas
the inner state is for moves and combination of moves that are
performed up close to the opponent. The defend state is used
for combinations that are deemed defensive and entail heavy
blocking.

Once the combinations have been assigned to their
respective strategy states, the Finite State Machine is created
based on the inputs captured during the human vs human bout.
The tactics are classified and state transitions are identified
along with transition functions. The data driven finite state
machine contains the previous, current and next state for a
given transition and is based on the health of the AI player.

During the simulation phase of the architecture usage,
information is passed from the top down. Strategies are
selected based on inputs from the DD FSM. These strategies
dictate the tactics that are used as they have previously been
classified during the data capture phase. Once a tactic is
actioned, the appropriate moves are carried out by the AI
player.

B. Experiment and Results
To demonstrate the effectiveness of the proposed approach,

a strategy is fabricated prior to playing the game. The strategy
being actioned here is as follows:

� The fighter shall begin by maintaining a distance and
attacking the opponent using long range moves
(During this time the fighter is in the Outer state).

� If the fighter is being pummeled to the point that their
health statistic drops beyond a certain point (circa 70),
they shall retreat and assume a defensive position
(during this time the fighter is in the Defend state).

� Whilst blocking, the fighter shall lose further health.
When the health depletes beyond a certain threshold,
which in this case is approximately 50 units, the fighter
shall attack at close quarters (During this time the
fighter is in the Inner state).

Two human players play the game, with the second player
employing the aforementioned strategy. The raw data from the
bout is recorded, including the tactics (combinations of moves)
used during each phase of the strategy. These data are
transformed through a series of programs. Firstly, the tactical
combinations are classified to strategy states, outer, inner or
defend, using a Naïve Bayes classifier. Following the
classification, the data driven finite state machine is created.
Each state in the FSM has the appropriate tactics assigned

Authorized licensed use limited to: Aizu University. Downloaded on January 19,2022 at 01:16:46 UTC from IEEE Xplore. Restrictions apply.

based on the raw data collated during the human vs human
bout. The data in Table III and Table IV were extracted from
raw data that were captured in real-time during gameplay. The
statistics of the game as well as the moves being carried out
were spooled to a file every time the AI fighter made a move,
or in the instance of the human vs. human bout, whenever the
player being mimicked made a move (refer to Table II for
legend on moves).

TABLE II. MOVES LEGEND

Character Move
j Jab
c Cross
b Block
m Left Body Blow
n Right Body Blow
u Uppercut
a Back Lunge
z Back Evasion

TABLE III. HUMAN VS HUMAN STATISTICS

Health Moves State

100 j j Outer

100 j Outer

100 c c Outer

100 j j c Outer

67 b b b Defend

50 b Defend

50 b Defend

49.5 m Inner

49.5 n Inner

49.5 u Inner

49.5 u u Inner

49.5 m m Inner

TABLE IV. AI VS HUMAN STATISTICS

Health Moves State
100 j j Outer

89 c Outer

89 j j Outer

79 j Outer

70 c c Outer

67 b b Defend

57 b b Defend

56 b Defend

55.5 b b Defend

45.5 b Inner

45.5 n Inner

17.5 m m Inner

17.5 u Inner

17.5 u Inner

Table III above shows the overall trend of the second
fighter, whose strategy shall be mimicked. The data show that
the second fighter begins the bout whilst delivering long range
attacks. When the fighter’s health drops below 67, they begin
blocking, which in turn depletes their health at a slower rate.
When the health is depleted beyond 50, the second fighter
begins attacking again, this time moving in close and using
shorter range attacks. This strategy and the underlying tactics
are mirrored in the bout between a human player and a CPU
controlled player which is based on fighter 2 from the human
vs human bout. As Table IV shows, the same tactics are used
for each of the states, and the transition to different states occur
at around the same threshold values.

In Table V and Table VI, different strategies are used and
data are recorded at 10 point health intervals. The Human
Moves and Human State columns contain moves carried out by
the human being mimicked at the instant the health dropped 10
points, as well as the state they correspond to. These data are
recorded during the initial human vs human bout. The AI
Moves and AI State columns contain moves carried out by the
AI during the simulation at the instant the health dropped 10
points, as well as the state they correspond to.

In Table V, the strategy employed by the human player
who is to be mimicked is as follows :

� Initially perform close range moves from the inner
state.

� When health drops below 65, begin attacking from a
distance (outer state).

� If health drops below 35, start blocking (defend state).

� When health drop below 15, revert to inner state.

In Table VI, the strategy employed by the human player
who is to be mimicked is as follows :

� Begin in the defensive state, perform blocks, back
lunges and evasions.

� When health drops below 50, begin attacking from the
outer state.

TABLE V. COMPARISON 1

Health
Human
Moves

Human
State

AI
Moves

AI
State

100 u Inner n m Inner

90 n n Inner n Inner

80 m m Inner n Inner

70 u m Inner m m Inner

60 j j Outer c Outer

50 c Outer j j Outer

40 j Outer j Outer

30 b Defend b b Defend

20 b b Defend b b Defend

10 n Inner n Inner

Authorized licensed use limited to: Aizu University. Downloaded on January 19,2022 at 01:16:46 UTC from IEEE Xplore. Restrictions apply.

TABLE VI. CAMPARISON 2

Health
Human
Moves

Human
State

AI
Moves

AI
State

100 z Defend b Defend

90 b Defend b b Defend

80 a Defend z Defend

70 z Defend b Defend

60 b Defend a Defend

50 b Defend b b Defend

40 c Outer j Outer

30 c c Outer c c Outer

20 j c Outer c j Outer

10 j j Outer j Outer

The data provided in Table V and Table VI demonstrate that
the state transitions made by the AI player are driven by the
same transition functions as those made by the human. The
tactics used by the AI within a particular state do not deviate
from those used by the human when in that state throughout
the course of the game.

V. CONCLUSIONS AND DISCUSSION

The data provided in Table III and Table IV correspond
with the strategy that was premeditated from the outset. This is
also the case for the strategies captured in Table V and Table
VI. These data demonstrate that the tiered approach described
in this paper can indeed be utilized to mimic human strategies.
The results show the tactics that are performed by the CPU
fighter correlate to those performed by the human fighter.

While the approach in this paper has been demonstrated to
work, it is not without its limitations. The primary limitation of
the technique described in this paper lies with the fact that it
cannot be tailored to games that utilize a variety of statistics.
Some fighting games may consider the player’s morale and
stamina as factors on which strategic decisions are based.
However, due to the nature of the data driven finite state
machine, if a variety of statistics change at the time of
transitioning into a different state, there is no way of knowing
why a player chose to enter the state as the decision could be
based on any of those statistics dropping below a particular
threshold, or even all of them. Further to this, the strategy takes
into account the actions performed by the fighter that is to be
mimicked. There is an underlying assumption that the driver
for these actions is solely the fighter’s health. There is no
consideration for what the opponents last move was, or what
state the opponent is in. It could very well be the case that the
player in question is waiting for their opponent to begin
blocking high before attacking their lower body. However, this
strategy would not be captured using the current model as the

trigger to entering the attack state would be dependent on the
opponent’s actions rather than any statistics.

A further limitation of the technique discussed in this paper
involves anomalies that may exist in the data. The strategy
described and mimicked here was carefully thought out and
executed during gameplay. However, if a player has a strategy
in mind and deviates from it, whether by mistake or
intentionally, the consequences of adding such noise to the data
could impact the overall strategy of the AI player. Noise
reduction could be used during the transformation of data to
detect and handle such anomalies so that they do not impact
the high level strategy being used.

Furthermore, playing the game against an AI fighter can
feel static and not as fluid as it does when playing against the
human fighter. This is because the strategy is being mimicked
exactly, with no consideration for mistakes and preferences.
For example, if a player has a combination they enjoy
executing time and time again then this is not evident in the
bout against the AI Player due to the indiscriminate way that
the tactics belonging to a state are chosen. Furthermore, the
player may occasionally make mistakes and perform certain
moves when it was not their intention. Rather than treating
these data as an anomaly and disregarding them, they can be
used to create a concise Player Model, adding a level of
realism and chaos to the way the AI fighter plays the game. A
Player Model is a model based on statistic of how a particular
player plays a game and considers their strengths, weaknesses,
preferences and actions they may avoid. Further research could
be conducted to append a player model to the architecture of
the solution described in this paper. A similar experiment could
then be conducted, but further to the statistical analysis
conducted here, a Turing type test could also be conducted.

REFERENCES

[1] C. Miles, J. Quiroz, R. Leigh and S. J. Lewis, “Co-evolving influence
map tree based strategy game players,” in Proc. 2007 IEEE Symposium
on Computational Intelligence in Games, pp. 88-95, 2007.

[2] B. Cho, S. H. Jung, Y. R. Seong and H. R. Oh, “Exploiting intelligence
in fighting action games using neural networks,” IEICE Trans. on
Information and Systems, vol. E89-D, no. 3, pp. 1249–1256, 2006.

[3] S. He, J. Du, J. Meng, H. Chen and Q. Zhu, “Strategy-based player
modelling during interactive entertainment sessions by using Bayesian
classification,” in Proc. 4th International Conference on Natural
Computation, pp. 255-261, 2008.

[4] D. Fu and R. Houlette, “The Ultimate Guide to FSMs in Games,” in A.I
Game Programming Wisdom 2, S. Rabin, Ed. Charles River Media,
2003, pp. 283-301.

[5] D. Johnson and J. Wiles, “Computer Games with Intelligence,”
Australian Journal of Intelligent Information Processing Systems, vol. 7,
pp. 61-68, 2001.

[6] G. Rosado, “Implementing a Data-Driven Finite State Machine,” in A.I
Game Programming Wisdom 2, S. Rabin, Ed. Charles River Media,
2003, pp. 307-317.

[7] A. Mouchet. “Subjectivity in the articulation beetween strategy and
tactics in team sports: an example in rugby,” Italalian Journal of Sport
Sciences, vol. 12, no. 1, pp. 24-33, 2005.

Authorized licensed use limited to: Aizu University. Downloaded on January 19,2022 at 01:16:46 UTC from IEEE Xplore. Restrictions apply.

