
Monte Carlo Tree Search Based Algorithms for
Dynamic Difficulty Adjustment

Simon Demediuk∗, Marco Tamassia∗, William L. Raffe†, Fabio Zambetta∗, Xiaodong Li∗

and Florian “Floyd” Mueller‡

∗School of Science - ‡ School of Media and Communication
Royal Melbourne Institute of Technology RMIT, Melbourne, Australia

Email: firstname.secondname@rmit.edu.au
†Games Studio, Faculty of Engineering and IT

University of Technology UTS, Sydney, Australia
Email: william.raffe@uts.edu.au

Abstract—Maintaining player immersion is a crucial step in
making an enjoyable video game. One aspect of player immersion
is the level of challenge the game presents to the player. To
avoid a mismatch between a player’s skill and the challenge
of a game, which can result from traditional manual difficulty
selection mechanisms (e.g. easy, medium, hard), Dynamic Dif-
ficulty Adjustment (DDA) has previously been proposed as a
means of automatically detecting a player’s skill and adjusting
the level of challenge the game presents accordingly. This work
contributes to the field of DDA by proposing a novel approach
to artificially intelligent agents for opponent control. Specifically,
we propose four new DDA Artificially Intelligent (AI) agents:
Reactive Outcome Sensitive Action Selection (Reactive OSAS),
Proactive OSAS, and their “True” variants. These agents provide
the player with an level of difficulty tailored to their skill in real-
time by altering the action selection policy and the heuristic
playout evaluation of Monte Carlo Tree Search. The DDA AI
agents are tested within the FightingICE engine, which has been
used in the past as an environment for AI agent competitions. The
results of the experiments against other AI agents and human
players show that these novel DDA AI agents can adjust the level
of difficulty in real-time, by targeting a zero health difference as
the outcome of the fighting game. This work also demonstrates
the trade-off existing between targeting the outcome exactly
(Reactive OSAS) and introducing proactive behaviour (i.e., the
DDA AI agent fights even if the health difference is zero) to
increase the agents believability (Proactive OSAS).

I. INTRODUCTION

The concept of flow in games has been argued to be crucial
in ensuring the player is immersed in the game. Cowley et
al. [1] have mapped Csikszentmihalyi’s Flow theory [2] to
video games for the purpose of showing that a player will
continue to play a game that they are immersed in. To ensure
that players remain immersed in a particular video game, the
level of challenge presented to the player by the game needs
to be based on the player’s skill level in that game. If the
level of challenge is appropriate for the individual player, the
player is more engaged. When the game becomes too easy or
too hard, the player may become frustrated or disengaged [3].
This process involves changing the strategies and behaviour
of the AI opponent or environment to match the skill level of
the player. This produces a video game that is more enjoyable

and long-lived, since the game can alter its level of challenge
as the skill level of the player progresses.

Sweetser et al. [4] developed a model for evaluating games
called GameFlow, derived from Flow Theory. It was used
to predict the success of a game, by evaluating them in the
following topic areas: concentration, challenge, player skill,
control, clear goals, feedback, immersion and social interac-
tion. Although the work done by Sweetser et al. separates
the concept of challenge from the concept of immersion,
definitions of immersion found in [5] and [6] include the level
of challenge faced by the player as part of what makes a game
immersive.

The effect of challenge on enjoyment is supported by work
done by Yannakakis et. al. [7], which measured empirically
that players found a game’s entertainment value to be high
when an opponent in the game is at an appropriate level.
In early work conducted by Malone [8], it is suggested that
player-vs-player competition is motivating simply because it
provides a challenge at an appropriate difficulty level. In these
competitive games, ranking systems such as Chess Elo [9]
and Microsoft’s TrueSkill [10] attempt to match players for
an appropriate level of challenge based on their skill rank.
Players that have a similar skill rank are said to be evenly
matched, as each player has a 50% chance of winning the
game in question.

For single player video games, the level of challenge is
generally the first question asked of the player, in the form of
setting the difficulty (e.g easy, medium or hard). These static
difficulty settings are used by developers to group players into
a limited number of skill ranges. This can be problematic
in cases where a player is unaware of their skill level for
the game in question. Additionally, as a player’s skill level
changes through play, since the difficulty remains static, a gap
between the players skill and the difficulty of the game can
form. Therefore, a mechanism is desirable that can modify the
difficulty of the artificial opponents to provide an appropriate
level of challenge based on the individual skill level of each
player [11].

Tailoring the difficulty of a game to each player is a non-
trivial task. Dynamic Difficulty Adjustment (DDA) [12] has



been applied in various forms in different game genres in order
to address this issue. DDA systems aim to vary the level of
difficulty of a game according to the current player’s skill
level, both at the beginning and during game play. The level
of difficulty that a DDA system provides is not one of the fixed
levels (easy, medium or hard) but rather a custom difficulty
level that matches the players current skill. The difficulty that
is appropriate for a player, is one in which the player has a 50%
chance to either win or lose the game. As the players skill level
changes so does the level of the DDA system, such that the
level of difficulty perceived by the player is constant. There has
been a focus in the literature on tailoring a game’s difficulty to
the level of the player through the use of Artificial Intelligence
agents [11], [13]–[15] or Artificial Intelligent controlled game
environments [12], [16].

This paper presents a number of improvements to the
current state of the art DDA systems through the development
of a DDA Artificially Intelligent (AI) agent which implements
Monte Carlo Tree Search (MCTS) [17] with novel heuristic
playout evaluation functions and action selection criteria.
Through modifying the way in which Monte Carlo Tree Search
selects the next action, our DDA AI agents are able to vary
the level of difficulty of the Artificial Intelligent opponent in
real-time to provide an appropriate level of difficulty to the
individual player. This work uses the FightingICE engine as
a test-bed for our agents; the engine as been used in recent
years for AI agent competitions. Unlike the main stream of the
competition, which aim at producing a winning bot, our agents
aim at finishing games with the smallest possible health points
gap. We conduct experiments in the FightingICE 2D real-time
fighting game against both artificial and human opponents to
demonstrate the ability of the agents to change the level of
difficulty to match that of the current opponent.

This paper is structured as follows: Section II gives a
brief background on traditional MCTS algorithms. Section
III introduces Reactive Outcome Sensitive Action Selection
(Reactive OSAS, or ROSAS) and Proactive OSAS (POSAS),
presenting the modifications to the action selection policy and
playout evaluation heuristics to MCTS. Section IV describes
the experiments conducted against other automated bots and
human players as well as the results of these experiments,
while Sections V and VI give a final discussion of these results
and their implications for future work.

II. BACKGROUND

Monte Carlo Tree Search (MCTS) is a tree-based search
algorithm used in decision processes [17]. MCTS iteratively
builds a search tree where each edge represents an action.
Note that nodes do not encode states; rather, they encode the
sequence of actions from the root to the node itself.

Unlike other search algorithms such as Minimax, MCTS
does not build the entire tree, nor does it build it uniformly.
Instead, the search is usually interrupted at a predefined depth,
and a “playout” is used to assess the quality of the solution at
the leaf node. A playout is a simulation of the process at hand
starting from the current state, which is represented by the root

Fig. 1. One iteration of the general MCTS approach (from Browne et. al. [17])

node. In the simulation, the agent executes first the actions in
the path root–leaf, and then a sequence of random actions. The
outcome of the simulations is used as a heuristic to assess the
quality of the leaf node. Notice that, if the playout is run until
the end of the process, this mechanism does not require a
heuristic designed through expert knowledge to evaluate the
outcome of the playout: instead, the actual outcome of the
process can be used (e.g., final score, or victory/loss). If the
playout is interrupted before the end of the process, as we do
in this work, a simple heuristic can be used.

To build the tree, MCTS repeatedly iterates through 4 phases
(see Figure 1), until the time allotted for the computation
expires. The first of these phases is “selection”, where the tree
is descended starting from the root node, selecting the most
promising nodes, until a leaf node is reached. The second
phase is “expansion”, where a new child of the leaf node is
created (if the leaf is within the depth limit) and descended
into. The third phase is “simulation”, where the actions of
the path root–leaf are executed in the simulator, followed by
a sequence of random actions; this is called a playout. The
fourth and final phase is “back-propagation”, where the result
of the playout is used to update the information of the nodes
that were traversed.

The selection phase is particularly critical to the perfor-
mance of MCTS. Due to the stochastic nature of playouts, the
scores found are bound to be noisy. Consequently, at the early
stages of the exploration of a node, the score of its children
are not fully reliable. This, in turn, can affect the remainder of
the exploration if the exploration follows the highest value. To
address this, Upper Confidence Bound (UCB1) [18] applied
to Trees (UCT) [19] drives exploration balancing the score of
a node with the number of times it has been visited compared
to its siblings. Specifically, the formula used is:

UCT = X j +2Cp

√
lnn
n j

, (1)

where X j is the average reward from action j, n j is the number
of times action j was tried at the node, n is the sum of n j for
all actions and CP > 0 is a constant.

The four phases can be repeated as many times as the time-
budget allows. After the tree is built, a child action of the
root node is selected according to some technique. The most



popular is to choose the action that was visited most often.
This strategy seems to be at least as effective as choosing
the action with the highest average score. The techniques that
we propose in this paper are variations of MCTS in that they
use either a different action-selection strategy or a different
heuristic to evaluate the results of playouts. These changes
have dramatic effects on the behaviour of an agent driven by
MCTS.

III. DYNAMIC DIFFICULTY ADJUSTMENT AI
AGENTS

MCTS has been used to develop DDA AI agents in the
past by Hao et. al. [20]. Their methodology restricts the
time allotted for building the search tree by using a pre-
calculated formula that best achieves the desired outcome
in their experiments. This approach has several limitations:
it requires the development of a different equation for each
game type, and is more time consuming and complex to
calculate when compared to our method of changing the
MCTS action selection policy or playout evaluation heuristic.
Another significant limitation of their implementation is its
dependence on the computational power of the hardware that
runs MCTS. Finally, the approach is not principled, and as
such is prone to producing unbalanced behaviours. In fact, in
some advantageous states, this technique may find a strong
action even under tight computational constraints; similarly,
in disadvantageous states, the technique may struggle to find
a strong enough action even under generous computational
constraints. This is because the formula used is not dependent
on the starting state, and as such does not differentiate between
advantageous and disadvantageous ones.

Another approach to DDA that is related to ours is Chal-
lenge Sensitive Action Selection (CSAS), proposed by An-
drade et al. [21]. CSAS employs action values to determine
the action to use, and uses Q-learning [22] to estimate such
values. At play-time, after Q-learning has been trained, given
the current state s of the game, CSAS ranks the actions a
based on the estimates Q(s,a) provided by Q-learning. The
action corresponding to the current level is then chosen to
be performed. The level is initially 0.5, indicating that the
action in the 50th percentile is to be chosen (that is, the action
corresponding to the median value). The level is increased
or decreased periodically, every τ time steps, depending on
the current situation of the game. In their tests, they used a
fighting game, and used the health difference to decide whether
to increase, decrease or leave unaltered the level. The main
limitation of the approach is that the parameter τ needs to be
tuned, different values compromising between rapid change of
level (which causes jittering) and slow change of level (which
can potentially be too slow to track the opponent level before
the game finishes). Another limitation derives from the lack
of principle on which to base the system: the median action
can be a very strong action in certain states and a very weak
one in others; in fact, the rank of the action is not a good
indication of its strength.

In this section we describe our approach to using Monte
Carlo Tree Search (MCTS) with Upper Confidence Bound 1
applied to Trees (UCT) [19] for DDA AI agents. Our approach
is inspired by CSAS, and addresses its main limitations. We
are not proposing new MCTS algorithms; rather, we propose
agents that use MCTS as a search technique with the aim of
producing an appropriate level of challenge to the opponent.
Our contribution consists in two action selection strategies
(that MCTS uses to select the action after the tree has been
built) and in two heuristic playout evaluation strategies (that
MCTS uses to evaluate the state resulting from playouts) that
give rise to behaviours that fit a DDA AI agent.

A. Reactive Outcome-Sensitive Action Selection

Our first DDA AI agent, Reactive Outcome-Sensitive Action
Selection (ROSAS), is developed with the goal of matching
as closely as possible the current skill level of the opponent.
ROSAS builds a search tree using MCTS, where playouts are
evaluated with the aim to promote strong actions: this is the
same as normal MCTS. For instance, in a 2D real-time fighting
game, the health points difference between players can be
used. In particular, the score is to be positive if the DDA
AI agent is winning, negative if it is losing. This is the same
heuristic that an AI trying to win would use. However, after
the search tree is built, ROSAS selects the action whose score
is the closest to zero; i.e., the action most likely to produce
an outcome with a zero health points difference. The formula
to select the action is:

action = argmax
a
−|r[a].score| , (2)

where r is the root node of the tree and r[a] is the child of r
corresponding to action a.

B. Proactive Outcome-Sensitive Action Selection

A limitation of ROSAS is that it produces non-proactive
behaviour; this reactive behaviour results in an agent that
only responds, never trying to take a lead. This can feel very
unnatural and could even be exploited by players to win, by
waiting for the last second to deal damage to the agent driven
by ROSAS.

To address this limitation, we develop a second DDA
AI agent, Proactive Outcome-Sensitive Action Selection
(POSAS). This agent is similar to ROSAS: it builds a tree us-
ing MCTS and selects an action with the goal of matching the
opponent level. However, ROSAS takes a different approach
to the final selection: all actions in a defined interval around
zero are all considered equally valuable and one is randomly
selected. The formula used is:

action = argmax
a
−(|r[a].score|− Ih)

+, (3)

where r is the root node of the tree, r[a] is the child of r corre-
sponding to action a, Ih is the half-size of the interval around
zero in which all actions are considered equally valuable, and
(·)+ indicates the ramp function; i.e., a function behaving like
the identity function for positive numbers and returning 0 for
negative numbers.



Fig. 2. Example of asymmetric tree (from Browne et. al. [17]).

This mechanism allows ROSAS to take the initiative and
gain some advantage over the opponent. While this does
not target the desired outcome exactly, it behaves in a more
realistic fashion and is less exploitable by players.

In our 2D real-time fighting game, Ih is set at ±10% of
maximum player health.

C. True ROSAS/POSAS

The main strength of MCTS is that it explores the search
tree asymmetrically. This means that the regions of the tree
that are most promising will be expanded and explored more.
Figure 2 shows an example of such a tree. While this is
useful to make the most well-informed decision, ROSAS and
POSAS cannot take advantage of this; in fact, the opposite
happens: the region of the tree they are most interested, that
with balanced outcomes, is under-explored. This is due to
the playout evaluation strategy, which values advantageous
outcomes more, leading to a deeper exploration in those areas.

To address this limitation, we propose two additional DDA
AI agents, True ROSAS and True FOSAS. Both these agents
change the heuristic strategy of MCTS such that the tree is
expanded in a way that aligns with their respective goals.

True ROSAS evaluates nodes using the formula:

node.score =−|hs| , (4)

where hs is the heuristic strategy employed; for our 2D real-
time fighting game, this is the health points difference. When
the tree is fully built, True ROSAS selects the action with the
most visits (or the one with highest score). This ensures the
tree expansion is in-line with the action selection policy of
the ROSAS algorithm, ensuring the most relevant areas are
explored more in depth.

True POSAS, similarly, evaluates nodes using the formula:

node.score =−(|hs|− Ih)
+, (5)

where hs is the heuristic strategy employed, Ih is the half-size
of the interval around zero in which all actions are considered

Fig. 3. Screen capture of the fightingICE game.

equally valuable, and (·)+ indicates the ramp function; i.e.,
a function behaving like the identity function for positive
numbers and returning 0 for negative numbers.

This maintains the goal of POSAS while expanding the
search tree in the areas that relate to the heuristic strategy
rather than the most promising actions for victory.

IV. EXPERIMENTAL RESULTS

In this section we describe the two experiments we con-
ducted to investigate the effectiveness of the DDA AI agents
and their results. We developed the four agents ROSAS,
POSAS, True ROSAS and True POSAS to play a 2D fighting
game [23] called FightingICE (see Figure 3). FightingICE
is real-time fighting game similar to Street Fighter [24] and
Mortal Kombat [25]. Two players face off in a 2D arena
and using a combination of movement, jumping, crouching,
blocking, punching, kicking and special attacks try to lower
the opposing player health points. The game is played over
timed rounds, and the round ends when either the timer ends
or one player’s health points reach zero.

A. Bot Trials

To test the DDA AI agents ability to adapt to an individual
opponent and provide an appropriate level of challenge, we
played all four agents against a number of bots from the 2016
CIG FightingICE competition and recorded their performance.

To provide the appropriate level of difficulty, the bot and
our agent need to be evenly matched with either having a 50%
of winning. The outcome ROSAS targeted was a zero health
points difference between itself and the bot that it was playing
against, as previous work in this area [26] has shown that
this indicates the opponents are evenly matched throughout
the game. For example, if the opponent bot had a lead of 20
health points, ROSAS would select an outcome that would
reduce the health point lead of the opponent bot to or as close
to zero as possible. True ROSAS builds the search tree based



Agent Name Mean Median St. dev.
TOST
± 20

p-value

TOST
± 50

p-value

CSAS -13 1 71 0.439 0.191
ROSAS -1 -1 17 0.033 0.000
POSAS -11 16 39 0.360 0.049
True ROSAS -1 0 9 0.001 0.000
True POSAS -9 -15 34 0.308 0.023

TABLE I
AGGREGATED MEAN AND MEDIAN FINAL HEALTH DIFFERENCE,

STANDARD DEVIATION, AND TWO ONE-SIDED T-TESTS (TOST) p-VALUE
FOR DIFFERENT HEALTH POINT INTERVALS, BETWEEN THE AGENT AND

ALL BOTS. AGGREGATED OVER ALL 500 GAMES.

Agent Name Win Rate
CSAS 36%
ROSAS 40%
POSAS 37%
True ROSAS 24%
True POSAS 39%

TABLE II
AGGREGATED WIN RATE (PERCENTAGE) FOR OUR AGENTS AND ALL BOTS.

AGGREGATED OVER ALL 500 GAMES.

on the same outcome targeted by ROSAS and then selects the
highest valued action.

The POSAS agent targets a health point difference in the
range of ±10% the maximum health points. This is done
by generating a list of all the actions that will result in the
desired outcome range and randomly selecting one; if none
are present, the action with the value closest to the interval is
chosen. True POSAS, similarly, builds its search tree based on
the same outcome range as POSAS and then randomly selects
one of the highest valued actions, or the closest one to the
target range.

The experiment conducted involved the four agents playing
100 games against each of the following bots: paranahueBot,
BANZAI, Poring, DragonSurvivor and RandomCommands1.
Each game consisted of three 90 second rounds with both
players starting with 500 health points.

Additionally we develop an agent using Challenge Sensitive
Action Selection [21] (CSAS) to compare against our DDA AI
agents. To provide a fair comparison, our implementation of
CSAS uses MCTS to compute the actions value and rank, as
opposed to Q-Learning [22], as in the original work. We tested
the CSAS agent against the same bots as the other agents in
the same setting.

Table I shows the mean and standard deviation of the final
health difference between our agents and the competition
bots, aggregated over all 500 fights that our agents played.
A positive mean indicates that the agent, on average, finished
with more health points than the opponent, and a negative
mean indicates the opposite. Table I also shows the p-values
as computed by Two One-Sided t-Tests (TOST) on the final
health difference compared for different intervals.

1RandomCommands plays by performing random actions, a list of the
random commands can be found at [23].

CSAS ROSAS POSAS TRUE ROSAS TRUE POSAS MCTS
AI

600

400

200

0

200

400

600

Fi
n
a
l 
H

P
 d

if
fe

re
n
ce

Final HP difference of AIs

Fig. 4. Boxplot of the final health point difference between our agents, CSAS
and traditional MCTS and all bots, for all games.

Agent Name Mean Standard Deviation
ROSAS +16 ±67
POSAS -4 ±48
True ROSAS -4 ±52
True POSAS +1 ±39

TABLE III
AGGREGATED MEAN FINAL HEALTH DIFFERENCE, STANDARD DEVIATION
AGENTS AND THE HUMAN PLAYERS. AGGREGATED FOR ALL 5 PLAYERS.

B. Player Trials

To test whether our agents perform suitably well against
human players we conducted a small internal study where we
played our agents against 5 people. The experiment involved
the players first playing 2 games, one against RandomCom-
mands and one against Jaybot2016 [23] to get a feel for the
game. The players then played four games, one game against
each of our agents in random order. All players were familiar
with the genre of fighting game, but were unsure of their level
of skill. As before, each game consisted of three 90 second
rounds with the health points for both players set at 500. The
results are shown in Table III. Due to the small number of
games played, statistical test were not conducted on these
results. This experiment has only anecdotal value, and a larger
study is required to draw a conclusion.

V. DISCUSSION

The CSAS methodology could have benefited from replac-
ing RL with MCTS: there is an improvement in both the
mean and standard deviation when compared to the numbers
reported in the original work 2. This could also be due to
the difference between the two gaming platforms. We were
not able to obtain a copy of the game used in their study.
MCTS did not require us to design an appropriate space
representation, making the difference less likely to be related
to poor decisions in this regard on our side.

We analysed the final health difference of the bot matches
that we ran in the experiments, to gain confidence that our

2We took into account that the experiments performed in [21] used a
different maximum health compared to our experiments.



agents were performing as we designed them. We computed
the p-values of the samples collected using Two One-Sided t-
Tests (TOST); the results are shown in Table I. We looked at
two different health point intervals, the first interval we looked
at was ±20. This interval represents 4% of the total health
points of the players, and it is important that our ROSAS and
True ROSAS agents are playing within this interval as it is very
close to the target of a zero health point difference. The results
of the tests show that we have confidence that the True ROSAS
agent (p-value=0.001) and the ROSAS agent (p-value=0.033)
have a mean final health point difference within this interval.
These results also indicate that our ROSAS agent and True
ROSAS agent perform better than CSAS when aiming for a
zero health point difference against the bots. The POSAS agent
and the True POSAS agent target a health point difference
range of ±10%, this is represented by the interval ±50. We
have confidence that both the POSAS agent (p-value=0.049)
and True POSAS agent (p-value 0.023) are playing within the
target range of health point difference, when playing against
the bots. No statistical test were run on our human trial data
because of the small sample size. Whilst the sample is not
sufficiently large to draw any conclusion, the results shown in
Table III suggest that the agents, when playing against human
players, can achieve similar performance to those achieved
when playing against bots. A larger study will be conducted
in future work to confirm this hypothesis.

Table I shows that our agents have an improved mean and
standard deviation when compared to CSAS. Even though
ROSAS and True ROSAS produce a mean closely matching
zero and a small standard deviation, the agents will only ever
respond after the player achieves a health point lead; i.e.,
they will not take any initiative to engage with the player
when there is no health point difference. When used in tests
against bots this is acceptable; however, human players may
feel unfairness at the resulting rubber-banding effect, not to
mention their suspension of disbelief is likely to be disrupted.
It was also suggested by human players, anecdotally, that
ROSAS had the most unrealistic behaviour of all the agents.
POSAS and True POSAS provide a more interactive opponent
that will initiate actions against the player even when there is
no health point difference, and will at times stay timid when
there is a health point difference due to its action selection
range. While this results in a larger standard deviation when
compared to ROSAS, it produces better perceived behaviours
by human players.

In Figure 4 we see the distribution of the final health point
difference between the agents and the bots. From this box-plot
it is evident that True ROSAS is able to best track the desired
outcome of a zero health points difference. On the other hand,
CSAS shows a large number of outliers, which may result in
a number games against players which are at an inappropriate
level of difficulty.

Our algorithms closely match the desired outcome of a
zero health points difference, suggested in previous work [21]
as an appropriate level of difficulty. None of the algorithms,
however, achieve a win rate of 50% (see Table II) which has

been suggested in the literature [7], [8], [10] as an appropriate
level of difficulty. This is due to the inherent nature of the
algorithms responding to the players action; this, in a situation
of low health for both players, will result in defeat more
often than victory for the algorithms. The algorithms could
be modified to target an outcome above a zero health point
difference to achieve a win rate of 50%. However, the value
of a 50% win rate over that of a zero health points difference
throughout the game has not been established. Since the value
of a 50% win rate is in the uncertainty of the outcome, we
suggest an other (possibly more accurate) metric for such
uncertainty could be the HP difference between the players.
In fact, a difference close to zero throughout the game is a
symptom of an unpredictable outcome; assuming the game
does not break the player suspension of disbelief. For this
reason we speculate that there could be more value in keeping
the player on the edge of losing rather than achieving an exact
50% win rate

An intrinsic limitation of all DDA AI agent systems is that
the difficulty level provided by the agents is limited by the
maximum level the AI can play. In this case, our DDA AI
agents are all limited by the maximum strength of MCTS.
Figure 4 shows the results from an agent that uses MCTS
with the aim of winning rather than providing an adaptive
level of difficulty. In these experiments the MCTS agent had
no problem winning against the different bots used. However,
it may be the case that a stronger bot or a professional human
player can consistently beat this traditional MCTS agent. In
this case our agents will not be provide a suitable level of
difficulty for that bot or player.

VI. CONCLUSIONS

This paper presents a novel approach to Dynamic Difficulty
Adjustment systems, through the use of MCTS search trees, by
changing the method in which the search tree is built and how
actions are selected. Unlike existing approaches, this method
requires smaller changes to the traditional MCTS algorithm
used to develop expert AI agents. Our agents change the way
the actions are selected by focusing on a desired outcome
rather than victory.

The proposed DDA AI agents have shown that they are
capable of providing an appropriate level of difficulty for a
range of different bots and human players. They also show
improved performance when compared to existing methods
for DDA in the fighting genre, additionally they are less
complex in implementation than previous MCTS-based DDA
algorithms.

Although this implementation works well for the fighting
game genre, the strategies employed in this type of game
are very short term. Traditional MCTS has been shown to
be an effective method in developing AI agents in games
that have long term strategies and vast search spaces [27],
as well as, in games in which a heuristic can describe the
game outcome [17]. In future work, we will be investigating
how our approach can be applied to games that require longer
term strategy, using a turn-based game like Carcassonne [28].



Furthermore, with realism in mind, our proactive agents can
be modified to provide even better opponents. For example,
once a health point difference is selected in with the defined
range around a zero health point difference, actions should
adhere to such decision for more time than they currently
do (one decision every frame). Notice that this is not the
same as the evaluation cycle in CSAS; the difference is that
our proactive agents select a target health point difference,
while CSAS selects the level of actions (of which the rank
is a potentially inaccurate proxy), which could lead to an
increase in health points difference until the rank is readjusted.
Additionally, the range used for decisions could be made to
scale relatively to the skill level of the opponent, to ensure
that the algorithm takes a more realistic initiative against more
skilled opponents; i.e., the agent should take a larger health
points lead against skilled players, who are more likely to
make a strong come-back.

The current literature suggests that a win rate of 50% is an
appropriate level of difficulty for matching players in compet-
itive games. However, this may not be true for entertainment
purposes; the authors suggest that keeping players on the edge
may have increased entertainment value. Further investigation
of this is required to inform Dynamic Difficult Adjustment
system developers of the best methodology for entertaining
their players.

The best approach may again be different for training or
educational purposes; a slightly higher than 50% player win-
rate may increase player motivation and avoid disheartening
players (especially those with a fear of failure) [29] during
training by ensuring that they win more often than they lose.

As an extension of this work, we hypothesize that the
actions selected by our agents against the human players can
be used to determine the players skill level for the purposes
of reporting player skill progression and training players to be
better at the game through Dynamic Difficulty Adjustment.
By computing the average strength of actions chosen by our
algorithms, we could measure players skill level in a similar
way to how we have previously proposed [30].

REFERENCES

[1] B. Cowley, D. Charles, M. Black, and R. Hickey, “Toward an under-
standing of flow in video games,” Computers in Entertainment (CIE),
vol. 6, no. 2, p. 20, 2008.

[2] M. Csikszentmihalyi, Flow : the psychology of optimal experience,
1st ed., ser. Harper Perennial modern classics. New York: Harper
Perennial, 2008.

[3] J. Chen, “Flow in games (and everything else),” Communications of the
ACM, vol. 50, no. 4, pp. 31–34, 2007.

[4] P. Sweetser and P. Wyeth, “Gameflow: a model for evaluating player
enjoyment in games,” Computers in Entertainment (CIE), vol. 3, no. 3,
pp. 3–3, 2005.

[5] C. Jennett, A. L. Cox, P. Cairns, S. Dhoparee, A. Epps, T. Tijs, and
A. Walton, “Measuring and defining the experience of immersion in
games,” International journal of human-computer studies, vol. 66, no. 9,
pp. 641–661, 2008.

[6] E. Brown and P. Cairns, “A grounded investigation of game immersion,”
in CHI’04 extended abstracts on Human factors in computing systems.
ACM, 2004, pp. 1297–1300.

[7] G. N. Yannakakis and J. Hallam, “Towards capturing and enhancing
entertainment in computer games,” in Hellenic Conference on Artificial
Intelligence. Springer, 2006, pp. 432–442.

[8] T. W. Malone, “What makes things fun to learn? heuristics for designing
instructional computer games,” in Proceedings of the 3rd ACM SIGS-
MALL symposium and the first SIGPC symposium on Small systems.
ACM, 1980, pp. 162–169.

[9] A. Elo, “New USCF rating system,” Chess Life, vol. 16, pp. 160–161,
1961.

[10] R. Herbrich, T. Minka, and T. Graepel, “Trueskill: A bayesian skill rating
system,” in Advances in Neural Information Processing Systems, 2006,
pp. 569–576.

[11] A. L. Alexander, T. Brunyé, J. Sidman, and S. A. Weil, “From gaming to
training: A review of studies on fidelity, immersion, presence, and buy-
in and their effects on transfer in pc-based simulations and games,” in
The interservice/industry training, simulation, and education conference
(I/ITSEC), NTSA, Orlando, Florida, 2005.

[12] R. Hunicke and V. Chapman, “Ai for dynamic difficulty adjustment in
games,” in Challenges in Game Artificial Intelligence AAAI Workshop,
2004, pp. 91–96.

[13] G. N. Yannakakis and J. Hallam, “Real-time game adaptation for
optimizing player satisfaction,” Computational Intelligence and AI in
Games, IEEE Transactions on, vol. 1, no. 2, pp. 121–133, 2009.

[14] P. M. Avery and Z. Michalewicz, “Adapting to human gamers using
coevolution,” in Advances in Machine Learning II. Springer, 2010, pp.
75–100.

[15] A. Baldwin, D. Johnson, and P. A. Wyeth, “The effect of multiplayer
dynamic difficulty adjustment on the player experience of video games,”
in CHI’14 Extended Abstracts on Human Factors in Computing Systems.
ACM, 2014, pp. 1489–1494.

[16] G. N. Yannakakis and J. Togelius, “Experience-driven procedural content
generation,” Affective Computing, IEEE Transactions on, vol. 2, no. 3,
pp. 147–161, 2011.

[17] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A survey of monte carlo tree search methods,” IEEE Transactions on
Computational Intelligence and AI in games, vol. 4, no. 1, pp. 1–43,
2012.

[18] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine learning, vol. 47, no. 2-3, pp.
235–256, 2002.

[19] L. Kocsis and C. Szepesvri, “Bandit based monte-carlo planning,”
in Machine Learning: ECML 2006, ser. Lecture Notes in Computer
Science, J. Frnkranz, T. Scheffer, and M. Spiliopoulou, Eds. Springer
Berlin Heidelberg, 2006, vol. 4212, pp. 282–293.

[20] Y. Hao, S. He, J. Wang, X. Liu, W. Huang et al., “Dynamic difficulty
adjustment of game ai by mcts for the game pac-man,” in Natural
Computation (ICNC), 2010 Sixth International Conference on, vol. 8.
IEEE, 2010, pp. 3918–3922.

[21] G. Andrade, G. Ramalho, H. Santana, and V. Corruble, “Challenge-
sensitive action selection: an application to game balancing,” in Intel-
ligent Agent Technology, IEEE/WIC/ACM International Conference on.
IEEE, 2005, pp. 194–200.

[22] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press Cambridge, 1998, vol. 1, no. 1.

[23] R. U. Intelligent Computer Entertainment Lab, “Fighting game ai
competition,” http://www.ice.ci.ritsumei.ac.jp/ ftgaic/, 2017.

[24] Takashi Nishiyama, “Street Fighter,” Game [Arcade], Osaka, Osaka
Prefecture, Japan, August 1987, CAPMCOM, Osaka, Japan.

[25] E. Boon and T. John, “Mortal Combat,” Game [Arcade], Chicago,
Illinois, U.S., October 1992, midway Games, Chicago, Illinois, U.S.

[26] G. Andrade, G. Ramalho, H. Santana, and V. Corruble, “Extending
reinforcement learning to provide dynamic game balancing,” in Pro-
ceedings of the Workshop on Reasoning, Representation, and Learning
in Computer Games, 19th International Joint Conference on Artificial
Intelligence (IJCAI), 2005, pp. 7–12.

[27] S. Gelly and D. Silver, “Monte-carlo tree search and rapid action value
estimation in computer go,” Artificial Intelligence, vol. 175, no. 11, pp.
1856–1875, 2011.

[28] Z.-M. Games, “Carcassonne,” http://www.zmangames.com/carcassonne-
universe.html, 2017.

[29] J. E. Brophy, Motivating students to learn. Routledge, 2013.
[30] S. Demediuk, W. L. Raffe, and X. Li, “An adaptive training framework

for increasing player proficiency in games and simulations,” in Proceed-
ings of the 2016 Annual Symposium on Computer-Human Interaction in
Play Companion Extended Abstracts. ACM, 2016, pp. 125–131.


