
Companion AI for Starbound Game Using Utility
Theory

Elena Lebedeva
AI in Games Development Lab

Innopolis University
Innopolis, Russia

e.lebedeva@innopolis.ru

Joseph Alexander Brown
AI in Games Development Lab

Innopolis University
Innopolis, Russia

j.brown@innopolis.ru

Abstract—Starbound is a popular video game that has player
companions as one of its features, but its AI lacks awareness
about the player’s state, the enemies’ state and its own. This
study aims to solve it by implementing a new companion AI
which is based on utility theory. The AI was developed, and
the user study was conducted to evaluate its ability to assist the
player. The fighting ability was assessed by measuring AI’s ability
to stay alive during the battle and dealing damage to enemies
without the player’s interaction. As a result, the majority of user
study participants did not notice the difference between the built-
in AI and the one developed in this study. The participants that
noticed the difference enjoyed each type of companion in equal
measure. However, the fighting ability test showed that the utility-
based AI stays alive longer and deals more damage compared to
the built-in agent within the game currently.

Index Terms—AI, Non-player Character, Video games, Utility
theory

I. INTRODUCTION

As you explore the world of Starbound [1] as the romantic
space opera commander of a ship exploring the void, only to
find yourself a cast way crash-landed on a distant planet. The
player chooses one of the races for their character and then
travels from one world to another, collects resources, fights
monsters, and makes upgrades for their space ship. As you
explore, you might need to make some friends, and the more
intelligent they are, the better is your experience.

According to [2]: “AI can be applied to most aspects of
game development and design including . . . controlling the
Non-Player Characters (NPCs)” (p. 1). NPC’s primary purpose
is to entertain the player of a game: e.g. by being an enemy
that the player is required to eliminate. Warpeflet and Verhagen
[3] provides a taxonomy of the roles of NPCs in games,
and Warpefelt [4] examines further their believably. Another
example is assisting the player by fighting with game enemies.
The latter case will be observed in this study.

This type of NPC has existed in games for a long time:
in Half-Life [5] the player was assisted by NPCs that were
able to take simple commands “follow” and “stay”, shoot at
the enemies and give medicine if the player had a low health
level. In Fallout [6] the player could also exchange supplies
with their virtual companion. The more recent example could

be God of War [7], where the player was followed by the
companion that supported them during the battles in the game.

Starbound has a game mechanic that gives the player a
possibility of hiring Crew Member NPCs for their ship. These
NPCs can travel together with the player and either give a
static effect (e.g. the increasing of the jump height or the
boosting to the movement speed) or help during the battles
with hostile NPCs. The fighting ability of Crew Member NPC
has several problems:

1) No consideration of the player’s state. The NPC’s ac-
tions do not depend on the player’s health. For instance,
the NPC could come to the player and help them fight
the monsters close to the player if the player’s health is
low.

2) No consideration of own state. The NPC does not
choose the weapon depending on the distance to the
enemy and does not try to keep distant from the hostile
NPC if its health is low.

3) No consideration of the enemy’s state. The NPC
could perform some additional actions depending on the
enemy’s health, such as choosing an opponent among a
group of enemies with the lowest health.

These problems can make Crew Member NPC an inefficient
fighter and can cause a player’s frustration. As a result, the
decrease of a game experience quality occurs.

Fig. 1. A screenshot of Starbound gameplay. The player’s avatar is in the
center, their companion NPC is on the left.978-1-7281-8763-1/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: Aizu University. Downloaded on December 09,2021 at 14:50:56 UTC from IEEE Xplore. Restrictions apply.

The remainder of this paper is organized as follows: Section
II examines the related methods for creating helper NPCs;
Section III contains the detailed description of the method
used during the development of Crew Member NPC’s AI;
the experiment which is intended to test the developed in
this study AI and its results are described in Section IV;
conclusions made from the obtained results and proposed
future improvements are described in Section VI.

II. RELATED WORK

Many of the papers about companion NPC AI discuss
the human-like AI for competitive multiplayer games. For
example, the authors of [8] make a comparison on an evolving
teammate bot that aims to score as many points as possible and
die rarely and a hand-coded bot that aimed to be often seen by
the player. They concluded that players prefer different bots
depending on their expectations towards the gameplay.

An example of a study about companion AI in a single-
player game could be [9]. The authors investigated a new
approach to companion NPCs in the Third-Person Shooter
game. They created an adaptive AI that changes its behaviour
depending on game intensity. This AI was tested against non-
adaptive companion and companion with adaptive firepower
based on Dynamic Difficulty Adjustment (DDA). As a re-
sult, their approach compared to a non-adaptive companion
demonstrates more respect for gameplay flow and provides
an acceptable rate of game intensity level. Additionally, this
approach could be used together with DDA. Gabele et al. .
[10] examined representational aspects, but not mechanical
elements of their NPCs to allow for a relation to form between
a character and the player quickly.

In [11], Scott and Khosmood created a framework for a
companion AI in a tower defence game. The companion was
able to perform “complimentary” actions that are “...contrasted
with a mimicking [12] action and is defined as any action
by a friendly non-player character that furthers the player’s
strategy”. To evaluate the performance of the companion, the
authors conducted a user study, which showed that the majority
of the participants found the companion useful.

In this paper, Utility theory is applied. This methodology
allows us to create considerations that AI uses to determine
which action is better to perform. These considerations could
be used to solve the problems of Crew Member NPC’s AI
stated in section I. Utility theory application can be seen in
[13]. The authors created utility-based AI for a mixed reality
character to represent a resident of a small town in Iraq or
Afghanistan. According to the users of the simulator with this
character, it was close to people they would expect to see in
these countries.

III. PROPOSED METHOD

Utility theory [14] has the idea that AI has a set of actions
to perform. Every time before picking an action, AI weights
these actions by calculating the utility function. Utility function
maps some parameters of the environment onto a value that
describes how desirable the action is, typically a real number

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

Player’s health

Sc
or

e

Fig. 2. Linear function for “Player’s health is low” decorator

from 0 to 1. There are several actions that Crew Member
NPC can perform (i.e. attack) and decorators. The decorator
represents the factor that makes an action either more or less
desirable as a score. In this case, a score is a real number from
0 to 1.

An example of a decorator could be “Player’s health is low.”
decorator for the action “Protects the player”. The decorator
will use a decreasing function on the player’s health value (a
linear function in this implementation) as it is shown in Figure
2. The score is calculated as follows:

Score = − H

Hmax
+ 1 (1)

where H and Hmax are the player’s current and maximum
health respectively.

The lower the player’s health is, the higher is the score
returned by the decorator is, therefore, the more the action
“Protect the player” is desired to be performed.

An example of a non-linear utility function is the function
used in “Health is high” decorator who is depicted in Figure
3. The quadratic function was chosen in such a way so the AI
would react to the decrease of Crew Member NPC’s health
more desperately.

An action can have multiple decorators that form the utility
function of the action:

Utility =

∑N
i=1 Scorei

N
(2)

where N is the total number of decorators.
The actions “melee attack” and “range attack” with the

decorators “target is close” and “target is far” were designed in
order to improve Crew Member NPC’s approach to choosing
the weapon: if the enemy is close to them Crew Member
NPC will choose the melee weapon and the range weapon
otherwise. In cases when Crew Member NPC did not have
enough energy to use the ranged weapon, the “ move closer”
action will be triggered due to “not enough energy” decorator.
This action should not be performed if Crew Member NPC’s
health is low, and because of that, it has “health is high”
decorator, so the companion will not rush recklessly into the
enemies. The action “come closer to the player.” serves a

Authorized licensed use limited to: Aizu University. Downloaded on December 09,2021 at 14:50:56 UTC from IEEE Xplore. Restrictions apply.

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

Crew Member NPC’s health

Sc
or

e

Fig. 3. Quadratic function for “Health is high” decorator

set	target move	closer

target	is	set
target	is	far

melee	attack

target	is	set

target	is	close

enough	energy

range	attack

target	is	far

not	enough	energy

target	is	set

line	of	fire

no	line	of	fire

timer

health	is	high

come	closer	to	player

timer

player	health	is	low

player	is	far

not	moving

not	moving

target	is	not	set

Fig. 4. Actions and corresponding decorators developed for Crew Member
NPC’s AI. Decorators are colored blue, actions are colored yellow.

purpose of supporting the player and has decorators “player
is far,” and “player health is low” for that. This approach was
inspired by the AI that was focused on following the player
[8].

The complete picture of Crew Member NPC’s AI can be
seen in Figure 4. Tables I and II contain descriptions for
actions and decorators of the system. Table III contains utility
functions that were used for the decorators.

TABLE I
LIST OF ACTIONS

Name Description

set target
Set the nearest to Crew Member NPC entity
as a target for attack. Iterate entities in a constant
radius and ensure that the target is aggressive and alive.

move closer Try to move closer to the target using pathfinding.
come closer
to player Try to move closer to the player using pathfinding.

melee attack Use melee weapon.
range attack Use range weapon.

Fig. 5. The monster that the subjects were required to meet during the
experiment

IV. EXPERIMENT

In order to evaluate the quality of the developed Crew
Member NPC’s AI, the experiment with human subjects was
done.

A. Experiment Protocol

The following steps describe the procedure of the experi-
ment:

1) The subjects play the game where they are required to
reach the monsters (see Figure 5) of a particular type
while defending themselves from enemies with the Crew
Member NPC assisting them. Each subject plays the
game twice:

a) with Crew Member NPC that has build-in AI, i.e.
as it is presented the game;

b) with Crew Member NPC that has utility-based AI
developed during this study.

2) The subjects fill the form where they are asked if they
noticed any difference. If the answer is yes, then they
are asked which version of Crew Member NPC they
would prefer. Also, the subjects were asked if they had
any experience with Starbound.

Requirements and conditions:

TABLE II
LIST OF DECORATORS

Name Description
timer Circular timer that ticks after a constant period.
not moving Crew Member NPC is moving.
health is high Crew Member NPC’s health is high.

no line of fire The target is not on Crew Member NPC’s
line of fire.

not enough energy Crew Member NPC does not have enough
energy that is used for the range weapon.

target is set Crew Member NPC’s target is not empty and
is valid.

target is far Crew Member NPC’s target is outside of
the constant melee range.

target is not set Crew Member NPC’s target is empty or invalid.
player is far Player is outside of the constant melee range.
player health is low Player’s health is low.

target is close Crew Member NPC’s target is inside
the constant melee range.

line of fire The target is on Crew Member NPC’s
line of fire.

enough energy Crew Member NPC has enough energy that
is used for the range weapon.

Authorized licensed use limited to: Aizu University. Downloaded on December 09,2021 at 14:50:56 UTC from IEEE Xplore. Restrictions apply.

TABLE III
FUNCTIONS OF DECORATORS

Name Score

timer
S =

{
0 ∆ > p

(∆
p

)4 otherwise

where p is a tick period and ∆ is the time
difference between ticks.

not moving
S =

{
1 |V | > 1

1− |V | otherwise

where V is a Crew Member NPC’s movement
velocity.

health is high

S = (H
Hmax

)2

where H is the current Crew Member NPC’s
health level and Hmax is the maximum possible
Crew Member NPC’s health level.

no line of fire
S =

{
1 C = true

0 otherwise

where C is a predicate “there is a line collision
between Crew Member NPC and its target”

not enough energy

S = (E
Emax

)

where E is the current Crew Member NPC’s
energy level and Emax is its maximum possible
Crew Member NPC’s energy level.

target is set
S =

{
1 T = true

0 otherwise

where T is a predicate “target is empty or
invalid or dead”

target is far inverse of “target is close”
target is not set inverse of “target is set”

player is far

S =

{
(d
D

)4 d < D

1 otherwise

where d is the distance between the player and
Crew Member NPC and D is a constant
melee distance for Crew Member NPC

player health is low

S = (H
Hmax

)2

where H is the current player’s health level
and Hmax is the maximum possible player’s
health level.

target is close

S =

{
1 d < D

0 otherwise

where d is the distance between the target and
Crew Member NPC and D is a constant
melee distance for Crew Member NPC

line of fire inverse of “no line of fire”
enough energy inverse of “not enough energy”

Fig. 6. The appearance of Crew Member NPC during the experiment

TABLE IV
USER PREFERENCES ON COMPANION AIS

Had experience
with the game

Played the game
for the first time

Did not notice
the difference 2 7

Preferred
utility-based AI 2 1

Preferred
built-in AI 2 1

• The game is run on the same personal computer in order
to prevent technical issues and differences between ma-
chine capabilities from influencing the subject’s opinion.

• The order in which two versions of Crew Member NPC’s
AI is presented to the subject is random to minimize the
influence of the subject’s skill difference during each play,
in their opinion.

• The subjects are not told before the experiment what they
are going to judge in the game.

• The look of both Crew Member NPC versions is the same
(see Figure 6).

B. Results

15 subjects participated in the experiment. 6 of them had
experience with Starbound, while the others played this game
for the first time. 6 subjects noticed the difference in Crew
Member NPC between each of the two plays. 3 of them said
that they prefer the utility-based version of Crew Member
NPC’s AI; the rest of them said the opposite. Table IV shows
the detailed picture of user preferences.

The subjects that chose the built-in AI said that it was less
aggressive and did not attract attention to the enemies as much
as another companion did. The counterpart explained their
choice by saying that the new companion was more effective:
it followed the weapon of their choice , and its attacks were
more effective. Both groups stated that the built-in companion
was always trying to keep closer to the player, and the other
one was not.

V. PERFORMANCE EVALUATION

To test the fighting ability of Crew Member NPC’s AI, built-
in and utility-based AIs were put on an arena level, where they
were required to kill as many enemies as they can before they
die without the player’s interaction.

Authorized licensed use limited to: Aizu University. Downloaded on December 09,2021 at 14:50:56 UTC from IEEE Xplore. Restrictions apply.

TABLE V
PERFORMANCE EVALUATION RESULTS

T, seconds Damage
utility-based built-in utility-based built-in

average 15.367 11.967 0.124 0.034
best 29.784 24.596 0.255 0.074

worst 8.56 8.412 0.022 0.003
σ 5.352 3.229 0.065 0.018

p-value 0.004 0.000

Each of AIs was tested 30 times. During the test the time
T for which the companion stayed alive, and Damage were
measured. Damage is calculated as follows:

D =

∑N
i=1 Pi

N
(3)

where N is the number of enemies on the level and

Pi = 1− hi

Hi
(4)

where hi is the ith enemy’s current health and Hi is the
enemy’s maximum health.

The results of the test can be seen in Table V. Damage here
is calculated after Crew Member NPC’s death.

In order to show that the differences between the bots
were not due to random chance, but due to the behaviour
characteristics of the agents, a two-tailed t-test was performed.
The p-values from a two-tailed t-test show that the differences
are statistically significant with an extremely low margin of
potential error. This proves that the utility-based agent has
categorically better damage output and will survive longer.

VI. CONCLUSIONS AND FUTURE WORK

During the experiment the subjects that had no experience
with Starbound were noticeably struggling with the game
controls and mechanics. Because of that they were paying less
attention to Crew Member NPC’s behavior. Therefore in order
to fully test Crew Member NPC’s AI it is required to run the
experiment with subjects that are familiar with the game, e.g.
members of Starbound online community. This would make
the experiment more focused on the target audience of the
game for which Crew Member NPC’s AI can be important. It
is also because different players may prefer companions with
different types of behaviour: some of the subjects described
the utility-based companion as “tank” and the built-in one as
“support”. “Tank” is a common term for a playstyle in which
the player actively uses melee attacks against the enemies
performing a role of a shield, while “support” player attacks
from a distance. [15]

The performance testing showed that, on average, the utility-
based AI stays alive for a longer time and deals more damage
to enemies.

Since the AI’s utility system was developed as a modifica-
tion to the game using the provided modification API and was
written in the interpreted language Lua [16], the developed
system may have performance issues compared to the system
that is built in the game engine of Starbound.

As a further improvement, the actions of the utility system
could be separated into two categories: movement and attack.
The process of choosing activities from these categories could
be concurrent that will allow the AI to move and attack
simultaneously. During the human testing, it was determined
that when the player’s health is close to 50% or less, AI will
only pick “come closer to player” action and do not attack
enemies. Concurrent systems can solve this issue.

Also, a possible improvement could be a more intelligent
choice of the target, which can solve the cases when AI
attracts the enemy’s attention, when the player does desire this
outcome. Player’s focus and enemies’ health could be taken
into consideration by AI when choosing the target for attack.

Overall, the players do not always pay attention to their
companions in Starbound. When they do, they might prefer
a more cautious and passive companion even though its
intelligence might lower.

REFERENCES

[1] Chucklefish, Starbound. Chucklefish, 2016.
[2] S. M. Lucas, “Computational intelligence and ai in games: a new ieee

transactions,” IEEE Transactions on Computational Intelligence and AI
in Games, vol. 1, no. 1, pp. 1–3, 2009.

[3] H. Warpefelt and H. Verhagen, “Towards an updated typology of non-
player character roles,” in Proceedings of the International Conference
on Game and Entertainment Technologies, 2015.

[4] H. Warpefelt, “The non-player character : Exploring the believability of
npc presentation and behavior,” 2016.

[5] Valve, Half-Life. Valve, 1998.
[6] B. I. Studios, Fallout. Interplay Entertainment, 1997.
[7] S. M. Studio, God of War. Sony Interactive Entertainment, 2018.
[8] A. Friedman and J. Schrum, “Desirable behaviors for companion bots

in first-person shooters,” 2019.
[9] J. Tremblay and C. Verbrugge, “Adaptive companions in fps games.”

FDG, vol. 13, pp. 229–236, 2013.
[10] M. Gabele, A. Thoms, J. Alpers, S. Hußlein, and C. Hansen,

“Non-player character as a companion in cognitive rehabilitation for
adults - characteristics and representation,” in Proceedings of the 3rd
International GamiFIN Conference, Levi, Finland, April 8-10, 2019,
ser. CEUR Workshop Proceedings, J. Koivisto and J. Hamari, Eds.,
vol. 2359. CEUR-WS.org, 2019, pp. 130–141. [Online]. Available:
http://ceur-ws.org/Vol-2359/paper12.pdf

[11] G. Scott and F. Khosmood, “A framework for complementary companion
character behavior in video games,” arXiv preprint arXiv:1808.09079,
2018.

[12] T. Angevine, “Mimica: A general framework for self-learning compan-
ion ai behavior,” 2016.

[13] K. Dill and L. Martin, “A game ai approach to autonomous control
of virtual characters,” in Interservice/Industry Training, Simulation, and
Education Conference (I/ITSEC), 2011.

[14] S. Rabin, Game AI Pro: Collected Wisdom of Game AI Professionals.
A K Peters/CRC Press, 2013.

[15] J. Kim, B. C. Keegan, S. Park, and A. Oh, “The proficiency-congruency
dilemma: Virtual team design and performance in multiplayer online
games,” in Proceedings of the 2016 CHI conference on human factors
in computing systems, 2016, pp. 4351–4365.

[16] “Lua - about.” [Online]. Available: https://www.lua.org/about.html

Authorized licensed use limited to: Aizu University. Downloaded on December 09,2021 at 14:50:56 UTC from IEEE Xplore. Restrictions apply.

