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 Abstract—Reinforcement learning combined with deep 

neural networks has performed remarkably well in many 
genres of games recently. It has surpassed human-level 
performance in fixed game environments and turn-based 

two player board games. However, to the best of our 
knowledge, current research has yet to produce a result 
that has surpassed human-level performance in modern 

complex fighting games. This is due to the inherent diffi-
culties with real-time fighting games, including: vast ac-
tion spaces, action dependencies, and imperfect infor-

mation. We overcame these challenges and made 1v1 bat-
tle AI agents for the commercial game “Blade & Soul”. 
The trained agents competed against five professional 

gamers and achieved a winning rate of 62%. This paper 
presents a practical reinforcement learning method that 
includes a novel self-play curriculum and data skipping 

techniques. Through the curriculum, three different 
styles of agents were created by reward shaping and were 
trained against each other. Additionally, this paper sug-

gests data skipping techniques that could increase data ef-
ficiency and facilitate explorations in vast spaces. Since 
our method can be generally applied to all two-player 

competitive games with vast action spaces, we anticipate 
its application to game development including level de-
sign and automated balancing. 

 
 Index Terms—Deep learning, fighting game, imperfect 
information, reinforcement learning, self-play curricu-

lum learning 

I. INTRODUCTION 

 Reinforcement learning (RL) is extending its boundaries 

to a variety of game genres. In PVE (player versus environ-

ment) settings, such as those found in Atari 2600 games, RL 

agents have exceeded human level performance using vari-

ous methods [15], [16], [19], [5]. Likewise, in PVP (player 

versus player) settings, neural networks combined with 

search-based methods beat the best human players in turn-

based player games with 2 or more players —such as Go, 

Chess [20], and Mahjong [28]. Recently, RL research in 

games has shifted focus to the PVP settings found in more 

complex video games such as StarCraft2 [24], Quake3 [10], 

 
* Equal contribution. Alphabetical ordering. 
† Corresponding Author 

and Dota2 [18]. Even grand-master level RL agents have 

been developed for StarCraft2 [29], which is a highly com-

plex imperfect information game where an agent has to con-

trol multiple units at a time. 

 Fighting games—as one of the most representative types 

of complex PVP games—have been the focus of multiple 

studies that have made progress in this area. For instance, 

Monte-Carlo tree search (MCTS) based methods [27], [11], 

[9] have been applied to “FightingICE(FICE)", a game plat-

form made for the Fighting Game AI Competition [13]. 

However, it is hard to fulfill real-time conditions when ap-

plied to heavier game engines with longer query times. Ad-

ditionally, a deep RL based agent [12] was trained against a 

rule-based fixed opponent in "Little Fighter 2(LF2)". How-

ever, since the opponent's decision is unknown at a player’s 

decision time, agents trained against rule-based AIs cannot 

be generalized for unseen opponents. Our approach is 

largely similar to that of [3] in which a self-play deep RL 

method was applied to "Super Smash Bros. Melee (SSBM)”. 

Figure 1. A scene from the B&S Arena Battle 

 Year Commercial Dimension Pro-scene 

FICE 2013 No 2D No 

LF2 1999 Yes 2.5D No 

SSBM 2001 Yes 2D Yes 

BAB 2013 Yes 3D Yes 

Table 1: Fighting games from other works 
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However, the complexity of state and action space is signif-

icantly limited compared to our 3D environment with com-

plex game rules. We created pro-level AI agents for the real-

time fighting game “Blade & Soul (B&S) Arena Battle" via 

novel self-play based reinforcement learning. 

 B&S is a commercial massively multiplayer online role-

playing game. It supports duels between two players called 

“B&S Arena Battles (BABs)”. As presented in Table 1, 

BAB is a more modern fighting game compared to the 

games considered in other works; hence, it has much more 

complex game dynamics and heavier game engines. Addi-

tionally, a large number of people play BAB and it has more 

active professional scenes 1  than other fighting games. 

BAB’s larger number of active professional scenes stands 

out more significantly when compared to FightingICE, 

which was designed solely for research purposes. 

 Figure 1 displays a scene from BAB. In BAB, two players 

fight against each other to reduce their opponent's HP 

(health point) to zero within three minutes. To master BAB, 

an agent must be able to deal with multiple challenges. 

 First, an agent must manage vast action and state spaces 

compared to other fighting games [3][11][12]. An agent 

must make skill, move, and targeting decisions simultane-

ously, which yields many possible combinations. As a rough 

estimate, there are 144 potential actions for each time step: 

8 (avg. # of avail. skills) * 9 (8 directional + no move) * 2 

(facing opponent or moving direction). Since the average 

game length is 1,200 time steps (120 s), numerous scenarios 

are possible—not considering the opponent’s actions. 

 Moreover, an agent must consider the dependencies be-

tween skills: e.g., a skill may become available only for a 

short period of time following the use of another skill. As a 

result, out of the 45 skills in total (including “no-op”), the 

set of skills available at a given time constantly changes. The 

agent must also consider the properties of each skill because 

they have different cooldown times (required interval for re-

using a skill) and SP (skill point) consumptions, and serve 

one or more of five different functions: damage dealing, 

crowd control (a set of skills that reduces the number of pos-

sible actions the opponent can utilize; abbreviated CC) [32], 

resistance (which functions to make the player immune or 

resistant to CC skills), escape, and dash. In BAB, crowd 

control refers to a set of skills that reduces the number of 

possible actions the opponent can utilize. For example, 

when you "stun" a Destroyer (one of the classes in BAB), it 
can only use the skill "escape". When a Destroyer is 

"groggy", it becomes limited to the skills "escape" and "re-

treat". When it is "down", the Destroyer is limited to 5-6 

possible skills. 

 Lastly, an agent must deal with imperfect information set-

tings. Because BAB is a real-time game, two players make 

 
1 9 regional league winners from all over the world (including KOR, NA, 
EU, RUS, and CHN) participated in the 2018 B&S world championship 

their decisions simultaneously. This indicates that an agent 

is required to make decisions without knowing the oppo-

nent’s decision or strategy. Hence, BAB can be considered 

an imperfect information game [30][33]. For example, when 

a player uses a resistance skill and the opponent uses a 

crowd control skill at the same time, the player gains ad-

vantage over the opponent. As a result, the essence of the 

problem is to approximate a Nash equilibrium strategy so 

that the agent can respond appropriately to any opposing 

strategy. 

 To tackle these challenges, we have made improvements 

to vanilla self-play algorithm by diversifying opponent 

pools and skipping data to facilitate exploration. The main 

contributions of this work are as follows: 

• We devised a novel self-play curriculum [35] with agents 
of different styles. The curriculum made these agents com-
pete against each other and reinforced the agents simulta-
neously, rendering the agents capable of handling a variety 
of opponents. We empirically demonstrate that our curric-
ulum outperforms vanilla self-play method. 

• We diversified the fighting style of the game-playing AIs 
by reward shaping [17]. We created three types of agents 
with different fighting styles: aggressive, defensive, and 
balanced. We anticipate its application to game develop-
ment including level design and automated balancing.  

• We introduced data skipping techniques to enhance explo-
ration in vast space. These can be generally applied to any 
two-player real-time fighting games. 

• We evaluate our agents by pitting them against profes-
sional players in the 2018 B&S World Championship 
Blind Match. Our AI agents won three out seven matches, 
while the aggressive one beating all professional players 
both in the live event and pre-test. 

II. BACKGROUND 

A. Reinforcement Learning 

 In reinforcement learning [23], agent and environment 

can be formalized as a Markov decision process (MDP) [8]. 

For every discrete time step t, an agent receives a state 𝑠𝑡 ∈
𝑆 and sends an action 𝑎𝑡 ∈ 𝐴 to the environment. Then, the 

environment makes a state transition from 𝑠𝑡  to 𝑠𝑡+1  with 

the state transition probability 𝑃𝑠𝑠′
𝑎 = 𝑃[𝑠′|𝑠, 𝑎] and gives a 

reward function 𝑅: 𝑆 × 𝐴 →  ℝ, with the reward signal 𝑟𝑡 =
𝑅(𝑠𝑡 , 𝑎𝑡) ∈ ℝ given to the agent. Therefore, this process can 

be expressed with {𝑆, 𝐴, 𝑃, 𝑅, 𝛾}, where 𝛾 ∈ [0,1] is a dis-

count factor, which represents the preference for immediate 

reward over long-term reward. Here, the agent samples an 

action from a policy π: 𝑆 → 𝑃(𝐴), where 𝑃(𝐴) represents 

the set of probability distributions. The learning process 

modifies the policy to encourage good actions and suppress 

(fourth annual event). The winning prize was approx. $50k (compared to 
Tekken7: $30k) 
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bad actions. The objective of the learning is to find the opti-

mal policy 𝜋∗ that maximizes the expected discounted cu-

mulative reward. 

𝜋∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜋  𝐸𝜋[Σ𝑡  𝑟𝑡 ∗ 𝛾𝑡] 

B. Real-Time Two Player Game 

 In a real-time two player game, there are two players, 

namely, the agent and the opponent. Both of them send an 

action to the environment at the same time. Let us denote 

the policy of the agent as 𝜋𝑎𝑔, and the policy of the oppo-

nent as 𝜋𝑜𝑝. Each samples an action from its own policy for 

every time step. 

𝑎𝑡
𝑎𝑔

~𝜋𝑎𝑔(𝑎𝑡
𝑎𝑔

|𝑠𝑡),  𝑎𝑡
𝑜𝑝

~𝜋𝑜𝑝(𝑎𝑡
𝑜𝑝

|𝑠𝑡) 

Then, the environment makes a state transition by consid-

ering those two actions jointly.  

𝑠𝑡+1~𝑃(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡
𝑎𝑔

,  𝑎𝑡
𝑜𝑝

),  𝑟𝑡+1 = 𝑅(𝑠𝑡 , 𝑎𝑡
𝑎𝑔

,  𝑎𝑡
𝑜𝑝

) 

 Here, the MDP can be expressed as {S, 𝐴𝑎𝑔, 𝐴𝑜𝑝, 𝑃, 𝑅, 𝛾}. 

If 𝜋𝑜𝑝 is fixed, then we can regard the opponent as a part of 

the environment by marginalizing the policy of the opponent. 

This way, we can obtain 𝑃′ and 𝑅′: 
 

𝑃′(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡
𝑎𝑔

) 

=  ∑ 𝜋𝑜𝑝(𝑎𝑡
𝑜𝑝

|𝑠𝑡) ∗  𝑃(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡
𝑎𝑔

,  𝑎𝑡
𝑜𝑝

)

𝑎𝑡
𝑜𝑝

 

𝑅′(𝑠𝑡 , 𝑎𝑡
𝑎𝑔

) =  ∑ 𝜋𝑜𝑝(𝑎𝑡
𝑜𝑝

|𝑠𝑡) ∗  𝑅(𝑠𝑡 , 𝑎𝑡
𝑎𝑔

,  𝑎𝑡
𝑜𝑝

)

𝑎𝑡
𝑜𝑝

 

Then, the MDP expression turns into a simpler form with  

𝑃′  and 𝑅′ : {S, 𝐴𝑎𝑔, 𝑃′, 𝑅′, 𝛾} . This expression is coherent 

with the one player MDP. Therefore, any methods for the 

original MDP work in this form as well. 

C. BAB as MDP 

 If we assume 𝜋𝑜𝑝 or the pool of 𝜋𝑜𝑝 is fixed, BAB can be 

expressed as an MDP [34]. Figure 2 illustrates the agent-

environment framework in BAB. LSTM [6] based agents 

interact with the BAB simulator, which acts as the environ-

ment. For every time step with 0.1 sec intervals, state 𝑠𝑡 is 

constructed from the history of observations 𝐻𝑡 =
{𝑜1, 𝑜2, … , 𝑜𝑡}. To be specific, 𝑠𝑡 is composed of any infor-

mation that a human can access during a game, such as HP, 

SP, distance from opponent, distance from the arena wall, 

current position, remaining game time, remaining cooldown 

times for all 44 skills, an agent’s status info (midair, stun, 

down, kneel, etc.), and so on. Then, the agent decides on an 

action 𝑎𝑡 = (𝑎𝑡
𝑠𝑘𝑖𝑙𝑙 , 𝑎𝑡

𝑚𝑜𝑣𝑒,𝑡𝑎𝑟𝑔𝑒𝑡
) for every time step. Note 

that the targeting action (i.e., orientation) space was origi-

nally continuous. We discretized the space into two actions 

– facing the opponent and facing away from the opponent – 

and jointly considered it along with the quantized move de-

cision. Following this, the action is then sent to the environ-

ment and a state transition occurs accordingly.  

Here, exact rewards should also be determined. Rewards 

are closely related to high performance in BAB. We pro-

vided 𝑟𝑡
𝑊𝐼𝑁 , which is the reward for winning a game, and 

𝑟𝑡
𝐻𝑃 , the reward for the changes in HP margin. These re-

wards are designed based on the assumption that the more a 

player wins, and with more remaining HP, the better that 

player’s performance is. 𝑟𝑡
𝑊𝐼𝑁  is given at the terminal step 

of each episode with +10 for a win and -10 for a loss. 𝑟𝑡
𝐻𝑃 

may occur at every time step when the agent deals damage 

to the opponent and vice versa. Since HP is normalized to 

[0, 10], 𝑟𝑡
𝑊𝐼𝑁  and 𝑟𝑡

𝐻𝑃 have the same scale. 

𝑟𝑡 = 𝑟𝑡
𝑊𝐼𝑁 + 𝑟𝑡

𝐻𝑃 + 𝑟𝑡
𝐸𝑋𝑇𝑅𝐴 

𝑟𝑡
𝐻𝑃 = (𝐻𝑃𝑡

𝑎𝑔
− 𝐻𝑃𝑡−1

𝑎𝑔
) − (𝐻𝑃𝑡

𝑜𝑝
− 𝐻𝑃𝑡−1

𝑜𝑝
) 

𝑟𝑡
𝐸𝑋𝑇𝑅𝐴 =  −(𝑟𝑡

𝑡𝑖𝑚𝑒 + 𝑟𝑡
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) 

𝑟𝑡
𝐸𝑋𝑇𝑅𝐴 is an additional reward for guiding battle styles. 

It is the sum of the time penalty and the distance penalty. 

𝑟𝑡
𝑡𝑖𝑚𝑒  is a reward based on the game length, and 𝑟𝑡

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  

is a reward based on the distance between agents. These 

additional rewards are described in further detail in the next 

section. The value of γ is set to 0.995, which is close to 1.0, 

since all episodes in BAB are forced to terminate after 

1,800 time steps (= 3 min). 

III. SELF-PLAY CURRICULUM WITH DIVERSE STYLES  

 𝜋𝑜𝑝  needs to be fixed to formalize BAB as an MDP. 

However, 𝜋𝑜𝑝 is not fixed in general and our agent does not 

know which 𝜋𝑜𝑝 it is going to face. We propose a self-play 

curriculum with a diversified pool of 𝜋𝑜𝑝 to solve this issue. 

Existing self-play methods ([21], [22]) generally use oppo-

nent pools for training. Parameters of a network are stored 

at regular intervals during training to create a pool of past 

selves. Opponents are then sampled from this pool.  

 Although the self-play method of RL offers a way to learn 

the Nash equilibrium strategy [4], high coverage of strategy 

space is essential to efficiently find one. Vanilla self-play 

alone does not guarantee enough coverage for games with 

large problem spaces. To tackle this problem, AlphaStar [25] 

Figure 2. Agent-environment plot in BAB 
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diversified the opponent pool by imitating different human 

strategy and introducing three types of agents with different 

match making scheme. The Poker AI, Pluribus [1], hand-

tuned three different strategies on top of basic blueprint 

strategy. The three strategies are biased toward raising, call-

ing, and folding respectively.  

 Concurrently, we devised a novel self-play curriculum. 

We enforced diversity of agents’ strategies by introducing a 

range of different battle styles, and agents of different styles 

were made to compete against each other.  

 

A. Guiding Battle Styles through Reward Shaping 

One of the most noticeable fighting styles to invest with 

is the degree of aggressiveness. We used three dimensions 

of rewards to control the degree of aggressiveness. The first 

dimension is the “time penalty”. The aggressive agent re-

ceives larger penalties per time step, and this motivates it to 

finish the match in a shorter period of time. The second di-

mension is the relative importance of the agent’s HP to the 

opponent’s HP. Aggressive players will try to reduce the op-

ponent's HP rather than preserving their own HP, while de-

fensive players tend to act the opposite way. The final di-

mension is the “distance penalty”. Defensive players tend to 

ensure a certain distance from their opponents to respond 

appropriately against attacks, while aggressive players tend 

to approach their opponents and attack relentlessly. To real-

ize these properties, the aggressive agent received larger 

penalties in proportion compared to the distance between it-

self and its opponent. The specific reward weights used for 

each style are shown in Table 2. Note that each of these three 

dimensions can take continuous values. This means that it is 

possible to create a spectrum of different fighting styles with 

varying degrees of aggressiveness. However, to effectively 

demonstrate the viability of this method, we limited the 

number of fighting styles to three. By using any type of ad-

ditional reward signals along with 𝑟𝑡
𝑊𝐼𝑁  and 𝑟𝑡

𝐻𝑃 , this 

method could be applied to other fighting games in general 

to create agents with various fighting styles. 

B. Our Self-Play Curriculum 

 Figure 3 shows an overview of the proposed self-play cur-

riculum with three different types of agents. Agents of each 

style have their own learning process, and all three agent 

types were trained in a concurrent manner.  

 Each learning process consists of a learner and multiple 

simulators. The learner and the simulators work asynchro-

nously. In the simulators, an agent constantly plays matches 

against randomly sampled opponents from the shared pool. 

The most recent k models of each style are uniformly se-

lected with total probability mass of p, while other models 

are chosen uniformly with probability 1-p. As training goes 

on, p is linearly annealed from 0.8 to 0.1. A higher p assists 

in swift adaptation to the latest opponents, while a lower p 

stabilizes the learning process by alleviating catastrophic 

forgetting. Each simulator sends a match log to the learner 

 Aggressive Balanced Defensive 

Time penalty 0.008 0.004 0.0 

HP ratio 5:5 5:5 6:4 

Distance penalty 0.002 0.0002 0.0 

Table 2: Reward details of each style 

Figure 3. Overview of self-play curriculum with three different styles 

Authorized licensed use limited to: Aizu University. Downloaded on December 11,2021 at 08:53:24 UTC from IEEE Xplore.  Restrictions apply. 



2475-1502 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2021.3049539, IEEE
Transactions on Games

at the end of every match and updates its agent with the lat-

est parameters received from the learner. The same proce-

dure continues to be used through subsequent games. 

 The learner trains its agents in an off-policy manner using 

logs gathered from multiple simulators and sends the latest 

network parameters to the simulators on request. In addition, 

the learner sends its network parameters to the shared pool 

every C steps (e.g. C=10,000) of update. Thus, the pool has 

varying policies that come from the different learning pro-

cesses of the different styles. These sets of model parameters 

are provided as opponents to each learning process. By shar-

ing a pool, every learning agent encounters opponents of 

every style during training and learns how to deal with them. 

Therefore, agents trained via our self-play curriculum can 

ultimately learn how to face opponents with varying fighting 

styles while maintaining their own battle styles.  

IV. DATA SKIPPING TECHNIQUES 

 In this section, we detail two data skipping techniques: 

“no-op” and “maintain move decision”. Data skipping tech-

niques refer to the process of dropping certain data during 

training and evaluation procedures.  

A. Discarding Passive “No-op” 

 In fighting games, using skills generally consumes re-

sources, such as SP and cooldown time. Therefore, if a 

player overuses a certain skill, it will not be available for use 

during actual times of need. Thus, players should strategi-

cally use and retain their skills to ensure their availability 

when needed. To take this aspect into account, we concate-

nated a “no-op” action to the output of the policy network, 

allowing the agent to choose “no-op” and do nothing for a 

certain period if necessary. This means that our action space 

has 44 skills, plus an additional “no-op” action. This is sig-

nificant because human play logs of BAB show that “no-op” 

actions take up the largest portion of skill usage among hu-

man players. 

 “No-op” decisions can be categorized as passive and ac-

tive use cases. The passive use of “no-op” implies that an 

agent chooses “no-op” because there is no skill available for 

use. For example, when an agent is out of resources or is hit 

by an opponent’s CC skill, an agent has no option but to 

choose “no-op”. The active use of “no-op” means that an 

agent selects “no-op” strategically, even though other skills 

are available for use.  

We discarded passive “no-op” data from both the training 

and evaluation phases because passive “no-ops” are not used 

deliberately by an agent. In addition, the method enables 

LSTM to reflect representations of longer time horizons be-

cause the data is not provided to the network. We show in 

the experiment section that skipping passive “no-ops” 

greatly improves learning efficiency. Note that this method-

ology is generally applicable to other domains where a set 

of available skills changes constantly and the “no-op” action 

is a valid option to choose.  

B. “Maintain Move Decision” 

 Although a single skill decision can have a substantial in-

fluence on the subsequent states, the effect of a single move 

decision is relatively limited. The reason is that the distance 

a character moves in a single time step (0.1 s) is very short 

considering its speed. In order for any moving decision to 

have a meaningful effect, the agent should make the same 

moving decision consecutively for several ticks in a row. 

This allows the agent to literally “move” and leads to 

changes in subsequent states and rewards. Therefore, it is 

difficult to train a move policy from the initial policy with 

random move decisions. Since the chance of a random pol-

icy making the same decision consecutively is very low, ex-

ploration is extremely limited. We therefore propose main-

taining the move decision for a fixed number of time steps. 

Figure 4 shows how “maintain move decision” works 

with an example. If the agent selects a move action, it skips 

the move decision for the following n-1 time steps. This 

means that the agent maintains the same move decision for 

n steps in total. Note that our method has different purpose 

from frame skip technique [15] in Atari domain. Frame skip 

technique was introduced for simulator's efficiency. How-

ever, we cannot just skip the frames because skill decisions 

must still be made. Although we could not enjoy advantage 

in the simulator's efficiency, “maintain move decision” still 

facilitates training and this is solely because maintaining the 

move decision increases the influence of a single move de-

cision, as we will confirm with experiments. In this sense, 

“maintain move decision” rather can be viewed as ‘amplify-

ing advantage’ from [14]. 

V. EXPERIMENTS 

A. Implementation Details 

1) Network 

 The network is composed of LSTM-based architecture 

which has four heads with a shared state representation layer. 

Each head consists of 𝜋𝑠𝑘𝑖𝑙𝑙 , 𝑄𝑠𝑘𝑖𝑙𝑙 , 𝜋𝑚𝑜𝑣𝑒,𝑡𝑎𝑟𝑔𝑒𝑡  and 

𝑄𝑚𝑜𝑣𝑒,𝑡𝑎𝑟𝑔𝑒𝑡 . 𝑄𝑠𝑘𝑖𝑙𝑙 and 𝑄𝑚𝑜𝑣𝑒,𝑡𝑎𝑟𝑔𝑒𝑡  are used for the gradi-

ent update of 𝜋𝑠𝑘𝑖𝑙𝑙  and 𝜋𝑚𝑜𝑣𝑒,𝑡𝑎𝑟𝑔𝑒𝑡 , respectively. Before 

Figure 4. Examples of (a) regular move decisions and (b) main-

taining decisions for 1 second 
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the network output goes into the softmax layer, a Boolean 

vector indicating the availability of each skill operates to 

make the output of unavailable skill to negative infinity.  

2) Algorithm 

 We used actor-critic off-policy learning algorithm [26]. It 

enables us to deal with policy lag between the simulators 

and learner through truncated importance sampling. Moreo-

ver, we could also use the advantages of stochastic policy, 

which responds more stably to changes in the environment 

due to smooth policy updates and works well in the domain 

of games like rock-paper-scissors where deterministic pol-

icy is vulnerable to exploitation. For this specific algorithm, 

both 𝜋𝑠𝑘𝑖𝑙𝑙  and 𝜋𝑚𝑜𝑣𝑒,𝑡𝑎𝑟𝑔𝑒𝑡  are updated in an alternating 

manner with following gradient: 

𝑔𝑡
𝑎𝑐𝑒𝑟 = 𝜌�̅�∇𝜃𝑙𝑜𝑔𝜋𝜃(𝑎𝑡|𝑥𝑡)[𝑄𝑟𝑒𝑡(𝑥𝑡 , 𝑎𝑡) − 𝑉𝜃𝑣

(𝑥𝑡)] +  

𝔼𝑎~𝜋 ([
𝜌𝑡(𝑎) − 𝑐

𝜌𝑡(𝑎)
]

+

∇𝜃𝑙𝑜𝑔𝜋𝜃(𝑎|𝑥𝑡)[𝑄𝜃𝑣
(𝑥𝑡, 𝑎) − 𝑉𝜃𝑣

(𝑥𝑡)]), 

where 𝜌�̅� = min{𝑐, 𝜌𝑡}  with behavior policy 𝜇  and im-

portance sampling ratio 𝜌𝑡 =
𝜋(𝑎𝑡|𝑥𝑡)

𝜇(𝑎𝑡|𝑥𝑡)
.  [𝑥]+ = 𝑥 𝑖𝑓 𝑥 >

0 and zero otherwise.  

3) Learning System 

 In total, there are three learning processes with each learn-

ing process consisting of a learner and 100 simulators. Each 

learning process is largely similar to that proposed by [7]. 

The final agent is trained for two weeks, which is equivalent 

to four years of game play.  

B. Effect of Self-Play Curriculum with Three Styles 

 To demonstrate the effects of the proposed self-play cur-

riculum, we trained agents with and without the proposed 

curriculum. A baseline agent was trained with the vanilla 

self-play curriculum without any style-related rewards (only 

win reward and HP reward were included) and a pool of past 

selves was used. Meanwhile, three agents with different 

styles were trained with the self-play curriculum using the 

shared pool that we proposed. Our aggressive, balanced and 

defensive agents2 then played 1,000 matches each against 

the baseline agent to measure the performance. As shown in 

Table 3, the agents that followed the learnings from our cur-

riculum outperformed the baseline agent. 

Next, we conducted an ablation study to observe how the 

shared pool helps generalization. We wanted to confirm 

whether an agent would be able to deal with opponents of 

unseen style, when it experienced only a limited range of 

opponents during training. Thus, we created three styles of 

agents trained in exactly the same manner, except that they 

had their own independent opponent pools. We denote the 

three types of agents using shared pools as 𝜋𝑠ℎ
𝑎𝑔𝑔

, 𝜋𝑠ℎ
𝑏𝑎𝑙, and 

𝜋𝑠ℎ
𝑑𝑒𝑓

, and three type of agents using independent pools as 

 
2 We measured how the average game length differs for each style because 
game length is a good proxy for assessing the degree of defensiveness of 

𝜋𝑖𝑛𝑑
𝑎𝑔𝑔

, 𝜋𝑖𝑛𝑑
𝑏𝑎𝑙, and 𝜋𝑖𝑛𝑑

𝑑𝑒𝑓
. All of six agents were trained for 5M 

steps (equivalent to 6 days) each.  

Our assumption is that the agent trained with the shared 

pool is more robust when it faces opponents it has never en-

countered. Thus, we compared the winning rate of 𝜋𝑠ℎ
𝑎𝑔𝑔

 vs. 

{𝜋𝑖𝑛𝑑
𝑏𝑎𝑙 , 𝜋𝑖𝑛𝑑

𝑑𝑒𝑓
} and 𝜋𝑖𝑛𝑑

𝑎𝑔𝑔
 vs. {𝜋𝑖𝑛𝑑

𝑏𝑎𝑙 , 𝜋𝑖𝑛𝑑
𝑑𝑒𝑓

}. This experimental 

setting is based on three key ideas. First, 𝜋𝑠ℎ
𝑎𝑔𝑔

 and 𝜋𝑖𝑛𝑑
𝑎𝑔𝑔

 

have the same training settings except for sharing the pool. 

Second, 𝜋𝑠ℎ
𝑎𝑔𝑔

 and 𝜋𝑖𝑛𝑑
𝑎𝑔𝑔

 are evaluated against the same op-

ponents. Finally, although 𝜋𝑠ℎ
𝑎𝑔𝑔

 has encountered other 

styles from its pool, it has not confronted {𝜋𝑖𝑛𝑑
𝑏𝑎𝑙 , 𝜋𝑖𝑛𝑑

𝑑𝑒𝑓
}, for 

they were trained using independent opponent pools. If our 

assumption is correct, 𝜋𝑠ℎ
𝑎𝑔𝑔

 should have a higher winning 

rate. It is to be noted that 𝜋𝑖𝑛𝑑
𝑏𝑎𝑙  and 𝜋𝑖𝑛𝑑

𝑑𝑒𝑓
 are not a single 

model, but 10 models each sampled at the same fixed inter-

vals from their pools. We then conducted the same experi-

ments for the remaining two styles; the results are presented 

in Table 4. As shown in the table, agents trained with shared 

pool outperform their counterparts.  

Based on the data in Table 4, the effect of using a shared 

pool is marginal in the case of aggressive agents. It indicates 

that the strategy spaces in which trainings take place are 

similar whether or not various opponents are provided. This 

is related to the nature of fighting games in which one side 

should fight back if the other side approaches and initiates a 

brawl. Thus, in the case of an aggressive agent that attacks 

consistently, there is a little difference in the experience re-

gardless of the diversity of the opponent’s fighting style. 

C. Effect of Discarding Passive “No-op” 

 As discussed in the previous section, the “no-op” decision 

may be either active or passive. We conducted an experi-

ment to investigate the effect of discarding such passive “no-

op” data from learning. The sparring partner for the experi-

ment was the built-in BAB AI, with a performance compa-

rable to the top 20% of the players. We measured how fast 

an agent’s game play. The results were as follows: 66.6 sec for the aggres-
sive, 91.7 sec for the balanced, and 179.9 sec for the defensive agent. 

 Aggressive Balanced Defensive Average 

Shared 64.8% 79.6% 75.3% 73.6% 

Ind. 64.7% 72.1% 56.5% 64.4% 

Table 4: Generalization performance of three styles of agents 

for both with and without shared pool (7,000 games each) 

 Aggressive Balanced Defensive Average 

Vs. 

Baseline 
59.5% 63.8% 63.2% 62.2% 

Table 3: Winning rate of three style of agents against baseline 

(1,000 games each) 
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agents learned to defeat it, and the results are shown in Fig-

ure 5 (a). If “no-op” ticks are discarded from the learning 

data, the winning rate reaches 80% after 70k steps, whereas 

170k steps are required when “no-op” ticks are included. 

The amount of time steps required to reach 90% winning 

rate was reduced to half when passive “no-op” data was 

skipped. This experiment confirms that the training perfor-

mance is improved by discarding passive “no-op” from the 

learning data. 

D. Effects of the “Maintain Move Decision” 

 To examine the effects of the “maintain move decision”, 

we developed two learning processes, with both processes 

involving learning on a self-play basis. One process makes 

a moving decision at every time step, while the other makes 

a moving decision and sends the same decision for 9 more 

times in a row. We measured the entropy of the move policy 

to observe the effects. Entropy of the move policy for a 

given state 𝑠𝑡 is as follows. 

H(𝑠𝑡) =  − ∑ 𝜋𝑚𝑜𝑣𝑒(𝑠𝑡) ∗ log 𝜋𝑚𝑜𝑣𝑒(𝑠𝑡) 

Generally, entropy gradually decreases as learning pro-

gresses. Figure 5 (b) shows that the entropy declines faster 

if the technique is applied. A noticeable difference was also 

observed in the quality of movement which the agent 

learned. Before the technique was applied, the agent did not 

make any improvement from random motion, but it learned 

to approach and retreat with data skip. In addition, Figure 5 

(c) shows that the relative winning rate of the built-in BAB 

AI is made higher by applying “maintain move decision”. 

The longer the decision was repeated, the agent’s reaction 

became less immediate, but the agent moved more consist-

ently. In this case, we tested 1, 3, 5, 10 ticks for maintaining 

time. 10 ticks (equivalent to 1 s) yielded the best perfor-

mance. 

VI. PRO-GAMER EVALUATION 

 This section will address the results of both the pre-test 

and the Blind Match, and conditions to ensure fairness for 

human players.  

A. Conditions for Fairness 

1) Reaction Time 

 When humans confront an AI in a real-time fighting game, 

the most important factor that affects the result is the reac-

tion time. Humans require some time to recognize the skill 

used by the opponent and to press a button by moving 

his/her hand. Therefore, we applied 230 ms of delay time on 

average to the AI’s decision-making process to add fairness 

against human players. The average response time of a hu-

man is approximately 270ms [31]. However, a skilled pro-

gamer’s response time will be shorter than the average.  This 

amount of delay corresponds to the average reaction time of 

professional players in BAB. 

2) Classes and Skill Set 

 There are 11 classes in B&S, and each class has unique 

characteristics. Since there exists relative superiority among 

classes, we fixed the class of both AI and pro-gamer as “De-

stroyer” for all matches, training, and experiments con-

ducted in section V. Destroyer is a class that has an in-

fighting style and steadily appears in the B&S world cham-

pionship. Additionally, AI’s and pro-player’s skill trees 

were set as identical to ensure a fair match. The skill tree 

was chosen to match what the majority of users selected, 

based on the BAB user statistics. 

3) Evaluation Results 

 We invited two prominent pro-gamers, Yuntae Son (GC 

Busan, Winner of 2017 B&S World Championship), and 

Shingyeom Kim (GC Busan, Winner of 2015 and 2016 B&S 

World Championship), to test our agents before the Blind 

(c) Winning rates of built-in BAB AIs with and without “maintain 

move decision” 

Figure 5. Results of data skipping experiments 

 Aggressive Balanced Defensive 

Pro-Gamer 1 5-1 2-1 1-2 

Pro-Gamer 2 4-0 2-4 4-1 

Blind Match 2-0 1-2 0-2 

Total 
11-1 

(92%) 

5-7 

(42%) 

5-5 

(50%) 

Table 5: Final score of AI vs. Human 
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Match. Note that the total number of games played is differ-

ent for each style because the testers can play as many games 

as they want for each style. After the pre-test, we went for 

the Blind Match of 2018 World Championship. Our agents 

had matches against three pro-gamers: Nicholas Parkinson 

(EU), Shen Haoran (CHN), and Sungjin Choi (KOR). The 

video recording of the game highlights can be found at 

https://goo.gl/7VUTzV. 

The results of both the pre-test and the Blind Match are 

provided in Table 5. As can be seen from the table, the ag-

gressive agent dominated the game, while the other two 

types of agents had rather intense games. Based on our in-

terviews of pro-gamers, we concluded that the reason why 

the aggressive agent showed the best performance against a 

human player was because the aggressive agent delivered 

continuous attacks preventing the human player from taking 

short breaks in between moves required for decision-making; 

the AI, on the other hand, does not require these breaks.  

VII. CONCLUSION 

 Using deep reinforcement learning, we created AI agents 

that competed evenly with professional players in a 3D real-

time fighting game. To accomplish this, we proposed a 

method to guide the fighting style with reward shaping. 

With three styles of agents, we introduced a novel self-play 

curriculum to enhance generalization performance. Our 

self-play curriculum with three styles is effective against 

general or unknown opponents or when self-play training 

converges into an equilibrium that is not optimal. Agents 

will likely end up exploring only a small portion of the vast 

BAB space when they are limited to self-play. Thus, training 

with different styles obtained through reward shaping can be 

an effective way to find the optimal policy. We also pro-

posed data-skipping techniques to improve data efficiency 

and enable efficient exploration. Consequently, our agents 

were able to compete with the best BAB pro-gamers in the 

world. The proposed training methods are generally appli-

cable to other fighting games. 
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APPENDIX 

A. State Space 

 A state input is a feature vector of length 606, rather than 

an image. Features include the following agent information: 

health point, skill point, distance from the opponent, dis-

tance from the arena wall in 16 directions, position and ori-

entation, relative position from the opponent, remaining 

game time, remaining cooldown time and availability of 

each skill, abnormal condition (such as midair, stun, down, 

or kneel), etc. Abnormal condition refers to a state where the 

character’s actions are restricted. All such information is 

also available to human players. And all inputs are normal-

ized into a value between 0 and 1. 

B. Feature Discretization 

In the BAB environment, the current distance between 

oneself and the opponent determines whether some non-tar-

geting skills (i.e., skills that can be implemented regardless 

of the distance between oneself and the opponent) can suc-

cessfully hit the opponent. For example, the Destroyer’s 

“axe sweep” skill can only hit the opponent if one’s charac-

ter is less than or equal to 5 m from the opponent. Because 

the distance between oneself and the opponent is a feature 

that consists of a continuous value, the network has diffi-

culty learning whether these non-targeting skills will be suc-

cessful. Thus, in order to speed up the process, we used prior 

knowledge to discretize the following 4 crucial features: 

1) Distance between oneself and the opponent: 5 levels 

(0-3 m, 3-5 m, 5-8 m, 8-16 m, over 16 m) 

2) Skill state: 3 levels (skill has been recently used, skill 

has been used but not recently, skill has not been used) 

3) Final six remaining ticks before crowd control loses ef-

fect: 6 levels (1 tick, 2 ticks, 3 ticks, 4 ticks, 5 ticks, 6 ticks) 

4) Elapsed time upon using “retreat” skill: 6 levels (1 tick, 

2 ticks, 3 ticks, 4 ticks, 5 ticks, 6 ticks) 

To test the effectiveness of the feature discretization 

method, we designed an experiment comparing the success 

rates of counter attacks made against the “retreat” skill de-

pending on the use of this technique. The “retreat” skill ren-

ders the player invincible for a certain amount of time at the 

cost of being unable to implement any kind of action for a 

slightly longer period which places them at a vulnerable po-

sition for a short time space. To be successful against BAB 

pro-gamers, an agent must learn how to seize this moment 

to apply crowd control against the opponent. 

    The agents were trained for 1M steps and tested for 20 

games. Success rates were 75.0% and 13.9% with and with-

out feature discretization respectively. These results show 

that attacks against retreat skills became 5.4 times more suc-

cessful by employing feature discretization. 
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C. Action Space 

1) Skill 

  “Skills” refer to a number of unique actions defined in 

the game of BAB. They can be used separately or in a series 

to develop a myriad of strategies. The Destroyer class has 

44 skills; every skill has its own function such as dealing 

damage, applying crowd control, escaping, dashing, resist-

ing, etc. Our agents make a skill decision out of 45 options 

including “no-op”. 

2) Move and Target 

  “Move and target” refer to changing a player’s position 

and orientation. Although human players can move in 8 car-

dinal directions and have 360-degree vision, not all combi-

nations are necessary to achieve pro-level play. We reduced 

the action space into the following 6 options by combining 

move and target decisions: 1) hold position and orientation, 

2) move forward facing the opponent, 3) move to the right 

facing the opponent, 4) move to the left facing the opponent, 

5) move backward facing the opponent (results in slower 

movement but the player can react to the opponent’s attack), 

6) move forward facing away from the opponent (faster re-

treat but unable to react to the opponent’s attack). 

 

D. Hyperparameters 

Name Value 

start learning rate 1e-4 

decay steps 33,000 

decay rates 0.96 

end learning rate 2e-5 

optimizer Adam 

batch size 
8 (240 transi-

tions) 

LSTM sequence length 30 

send model to shared pool every C 

step 
15,000 

recent k models 10 

replay size 800,000 

entropy bonus coefficient 0.01 

gradient clipping 20 

Total HP reward weight 10 

Win reward weight 10 

Time reward weight per tick -0.008~0.0 

Distance reward weight per tick -0.002~0.0 

Table 6: Hyperparameter settings 

E. Network Architecture 

The network architecture employed in the BAB training process is 
described in Figure 6. Rectified linear unit (ReLU) is used as the 
activation function in all Multilayer perceptrons (MLPs) except the 

final MLP. The agent selects a skill by sampling from the pointwise 
multiplication result of (the Destroyer's) skill probability vector 
and skill availability vector. The discretized features are con-
structed as shown in Appendix B and are concatenated with the 
LSTM output. 

Figure 6. Network architecture 
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