
2475-1502 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2021.3049539, IEEE
Transactions on Games

Creating Pro-Level AI for a Real-Time Fighting Game

Using Deep Reinforcement Learning

Inseok Oh*, Seungeun Rho*, Sangbin Moon, Seongho Son, Hyoil Lee and Jinyun Chung†

Game AI Lab, AI Center, NCSOFT, South Korea

{ohinsuk, gloomymonday, sangbin, hingdoong, onetop21, jchung2050}@ncsoft.com

 Abstract—Reinforcement learning combined with deep

neural networks has performed remarkably well in many
genres of games recently. It has surpassed human-level
performance in fixed game environments and turn-based

two player board games. However, to the best of our
knowledge, current research has yet to produce a result
that has surpassed human-level performance in modern

complex fighting games. This is due to the inherent diffi-
culties with real-time fighting games, including: vast ac-
tion spaces, action dependencies, and imperfect infor-

mation. We overcame these challenges and made 1v1 bat-
tle AI agents for the commercial game “Blade & Soul”.
The trained agents competed against five professional

gamers and achieved a winning rate of 62%. This paper
presents a practical reinforcement learning method that
includes a novel self-play curriculum and data skipping

techniques. Through the curriculum, three different
styles of agents were created by reward shaping and were
trained against each other. Additionally, this paper sug-

gests data skipping techniques that could increase data ef-
ficiency and facilitate explorations in vast spaces. Since
our method can be generally applied to all two-player

competitive games with vast action spaces, we anticipate
its application to game development including level de-
sign and automated balancing.

 Index Terms—Deep learning, fighting game, imperfect
information, reinforcement learning, self-play curricu-

lum learning

I. INTRODUCTION

 Reinforcement learning (RL) is extending its boundaries

to a variety of game genres. In PVE (player versus environ-

ment) settings, such as those found in Atari 2600 games, RL

agents have exceeded human level performance using vari-

ous methods [15], [16], [19], [5]. Likewise, in PVP (player

versus player) settings, neural networks combined with

search-based methods beat the best human players in turn-

based player games with 2 or more players —such as Go,

Chess [20], and Mahjong [28]. Recently, RL research in

games has shifted focus to the PVP settings found in more

complex video games such as StarCraft2 [24], Quake3 [10],

* Equal contribution. Alphabetical ordering.
† Corresponding Author

and Dota2 [18]. Even grand-master level RL agents have

been developed for StarCraft2 [29], which is a highly com-

plex imperfect information game where an agent has to con-

trol multiple units at a time.

 Fighting games—as one of the most representative types

of complex PVP games—have been the focus of multiple

studies that have made progress in this area. For instance,

Monte-Carlo tree search (MCTS) based methods [27], [11],

[9] have been applied to “FightingICE(FICE)", a game plat-

form made for the Fighting Game AI Competition [13].

However, it is hard to fulfill real-time conditions when ap-

plied to heavier game engines with longer query times. Ad-

ditionally, a deep RL based agent [12] was trained against a

rule-based fixed opponent in "Little Fighter 2(LF2)". How-

ever, since the opponent's decision is unknown at a player’s

decision time, agents trained against rule-based AIs cannot

be generalized for unseen opponents. Our approach is

largely similar to that of [3] in which a self-play deep RL

method was applied to "Super Smash Bros. Melee (SSBM)”.

Figure 1. A scene from the B&S Arena Battle

 Year Commercial Dimension Pro-scene

FICE 2013 No 2D No

LF2 1999 Yes 2.5D No

SSBM 2001 Yes 2D Yes

BAB 2013 Yes 3D Yes

Table 1: Fighting games from other works

Authorized licensed use limited to: Aizu University. Downloaded on December 11,2021 at 08:53:24 UTC from IEEE Xplore. Restrictions apply.

2475-1502 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2021.3049539, IEEE
Transactions on Games

However, the complexity of state and action space is signif-

icantly limited compared to our 3D environment with com-

plex game rules. We created pro-level AI agents for the real-

time fighting game “Blade & Soul (B&S) Arena Battle" via

novel self-play based reinforcement learning.

 B&S is a commercial massively multiplayer online role-

playing game. It supports duels between two players called

“B&S Arena Battles (BABs)”. As presented in Table 1,

BAB is a more modern fighting game compared to the

games considered in other works; hence, it has much more

complex game dynamics and heavier game engines. Addi-

tionally, a large number of people play BAB and it has more

active professional scenes 1 than other fighting games.

BAB’s larger number of active professional scenes stands

out more significantly when compared to FightingICE,

which was designed solely for research purposes.

 Figure 1 displays a scene from BAB. In BAB, two players

fight against each other to reduce their opponent's HP

(health point) to zero within three minutes. To master BAB,

an agent must be able to deal with multiple challenges.

 First, an agent must manage vast action and state spaces

compared to other fighting games [3][11][12]. An agent

must make skill, move, and targeting decisions simultane-

ously, which yields many possible combinations. As a rough

estimate, there are 144 potential actions for each time step:

8 (avg. # of avail. skills) * 9 (8 directional + no move) * 2

(facing opponent or moving direction). Since the average

game length is 1,200 time steps (120 s), numerous scenarios

are possible—not considering the opponent’s actions.

 Moreover, an agent must consider the dependencies be-

tween skills: e.g., a skill may become available only for a

short period of time following the use of another skill. As a

result, out of the 45 skills in total (including “no-op”), the

set of skills available at a given time constantly changes. The

agent must also consider the properties of each skill because

they have different cooldown times (required interval for re-

using a skill) and SP (skill point) consumptions, and serve

one or more of five different functions: damage dealing,

crowd control (a set of skills that reduces the number of pos-

sible actions the opponent can utilize; abbreviated CC) [32],

resistance (which functions to make the player immune or

resistant to CC skills), escape, and dash. In BAB, crowd

control refers to a set of skills that reduces the number of

possible actions the opponent can utilize. For example,

when you "stun" a Destroyer (one of the classes in BAB), it
can only use the skill "escape". When a Destroyer is

"groggy", it becomes limited to the skills "escape" and "re-

treat". When it is "down", the Destroyer is limited to 5-6

possible skills.

 Lastly, an agent must deal with imperfect information set-

tings. Because BAB is a real-time game, two players make

1 9 regional league winners from all over the world (including KOR, NA,
EU, RUS, and CHN) participated in the 2018 B&S world championship

their decisions simultaneously. This indicates that an agent

is required to make decisions without knowing the oppo-

nent’s decision or strategy. Hence, BAB can be considered

an imperfect information game [30][33]. For example, when

a player uses a resistance skill and the opponent uses a

crowd control skill at the same time, the player gains ad-

vantage over the opponent. As a result, the essence of the

problem is to approximate a Nash equilibrium strategy so

that the agent can respond appropriately to any opposing

strategy.

 To tackle these challenges, we have made improvements

to vanilla self-play algorithm by diversifying opponent

pools and skipping data to facilitate exploration. The main

contributions of this work are as follows:

• We devised a novel self-play curriculum [35] with agents
of different styles. The curriculum made these agents com-
pete against each other and reinforced the agents simulta-
neously, rendering the agents capable of handling a variety
of opponents. We empirically demonstrate that our curric-
ulum outperforms vanilla self-play method.

• We diversified the fighting style of the game-playing AIs
by reward shaping [17]. We created three types of agents
with different fighting styles: aggressive, defensive, and
balanced. We anticipate its application to game develop-
ment including level design and automated balancing.

• We introduced data skipping techniques to enhance explo-
ration in vast space. These can be generally applied to any
two-player real-time fighting games.

• We evaluate our agents by pitting them against profes-
sional players in the 2018 B&S World Championship
Blind Match. Our AI agents won three out seven matches,
while the aggressive one beating all professional players
both in the live event and pre-test.

II. BACKGROUND

A. Reinforcement Learning

 In reinforcement learning [23], agent and environment

can be formalized as a Markov decision process (MDP) [8].

For every discrete time step t, an agent receives a state 𝑠𝑡 ∈
𝑆 and sends an action 𝑎𝑡 ∈ 𝐴 to the environment. Then, the

environment makes a state transition from 𝑠𝑡 to 𝑠𝑡+1 with

the state transition probability 𝑃𝑠𝑠′
𝑎 = 𝑃[𝑠′|𝑠, 𝑎] and gives a

reward function 𝑅: 𝑆 × 𝐴 → ℝ, with the reward signal 𝑟𝑡 =
𝑅(𝑠𝑡 , 𝑎𝑡) ∈ ℝ given to the agent. Therefore, this process can

be expressed with {𝑆, 𝐴, 𝑃, 𝑅, 𝛾}, where 𝛾 ∈ [0,1] is a dis-

count factor, which represents the preference for immediate

reward over long-term reward. Here, the agent samples an

action from a policy π: 𝑆 → 𝑃(𝐴), where 𝑃(𝐴) represents

the set of probability distributions. The learning process

modifies the policy to encourage good actions and suppress

(fourth annual event). The winning prize was approx. $50k (compared to
Tekken7: $30k)

Authorized licensed use limited to: Aizu University. Downloaded on December 11,2021 at 08:53:24 UTC from IEEE Xplore. Restrictions apply.

2475-1502 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2021.3049539, IEEE
Transactions on Games

bad actions. The objective of the learning is to find the opti-

mal policy 𝜋∗ that maximizes the expected discounted cu-

mulative reward.

𝜋∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜋 𝐸𝜋[Σ𝑡 𝑟𝑡 ∗ 𝛾𝑡]

B. Real-Time Two Player Game

 In a real-time two player game, there are two players,

namely, the agent and the opponent. Both of them send an

action to the environment at the same time. Let us denote

the policy of the agent as 𝜋𝑎𝑔, and the policy of the oppo-

nent as 𝜋𝑜𝑝. Each samples an action from its own policy for

every time step.

𝑎𝑡
𝑎𝑔

~𝜋𝑎𝑔(𝑎𝑡
𝑎𝑔

|𝑠𝑡), 𝑎𝑡
𝑜𝑝

~𝜋𝑜𝑝(𝑎𝑡
𝑜𝑝

|𝑠𝑡)

Then, the environment makes a state transition by consid-

ering those two actions jointly.

𝑠𝑡+1~𝑃(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡
𝑎𝑔

, 𝑎𝑡
𝑜𝑝

), 𝑟𝑡+1 = 𝑅(𝑠𝑡 , 𝑎𝑡
𝑎𝑔

, 𝑎𝑡
𝑜𝑝

)

 Here, the MDP can be expressed as {S, 𝐴𝑎𝑔, 𝐴𝑜𝑝, 𝑃, 𝑅, 𝛾}.

If 𝜋𝑜𝑝 is fixed, then we can regard the opponent as a part of

the environment by marginalizing the policy of the opponent.

This way, we can obtain 𝑃′ and 𝑅′:

𝑃′(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡
𝑎𝑔

)

= ∑ 𝜋𝑜𝑝(𝑎𝑡
𝑜𝑝

|𝑠𝑡) ∗ 𝑃(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡
𝑎𝑔

, 𝑎𝑡
𝑜𝑝

)

𝑎𝑡
𝑜𝑝

𝑅′(𝑠𝑡 , 𝑎𝑡
𝑎𝑔

) = ∑ 𝜋𝑜𝑝(𝑎𝑡
𝑜𝑝

|𝑠𝑡) ∗ 𝑅(𝑠𝑡 , 𝑎𝑡
𝑎𝑔

, 𝑎𝑡
𝑜𝑝

)

𝑎𝑡
𝑜𝑝

Then, the MDP expression turns into a simpler form with

𝑃′ and 𝑅′ : {S, 𝐴𝑎𝑔, 𝑃′, 𝑅′, 𝛾} . This expression is coherent

with the one player MDP. Therefore, any methods for the

original MDP work in this form as well.

C. BAB as MDP

 If we assume 𝜋𝑜𝑝 or the pool of 𝜋𝑜𝑝 is fixed, BAB can be

expressed as an MDP [34]. Figure 2 illustrates the agent-

environment framework in BAB. LSTM [6] based agents

interact with the BAB simulator, which acts as the environ-

ment. For every time step with 0.1 sec intervals, state 𝑠𝑡 is

constructed from the history of observations 𝐻𝑡 =
{𝑜1, 𝑜2, … , 𝑜𝑡}. To be specific, 𝑠𝑡 is composed of any infor-

mation that a human can access during a game, such as HP,

SP, distance from opponent, distance from the arena wall,

current position, remaining game time, remaining cooldown

times for all 44 skills, an agent’s status info (midair, stun,

down, kneel, etc.), and so on. Then, the agent decides on an

action 𝑎𝑡 = (𝑎𝑡
𝑠𝑘𝑖𝑙𝑙 , 𝑎𝑡

𝑚𝑜𝑣𝑒,𝑡𝑎𝑟𝑔𝑒𝑡
) for every time step. Note

that the targeting action (i.e., orientation) space was origi-

nally continuous. We discretized the space into two actions

– facing the opponent and facing away from the opponent –

and jointly considered it along with the quantized move de-

cision. Following this, the action is then sent to the environ-

ment and a state transition occurs accordingly.

Here, exact rewards should also be determined. Rewards

are closely related to high performance in BAB. We pro-

vided 𝑟𝑡
𝑊𝐼𝑁 , which is the reward for winning a game, and

𝑟𝑡
𝐻𝑃 , the reward for the changes in HP margin. These re-

wards are designed based on the assumption that the more a

player wins, and with more remaining HP, the better that

player’s performance is. 𝑟𝑡
𝑊𝐼𝑁 is given at the terminal step

of each episode with +10 for a win and -10 for a loss. 𝑟𝑡
𝐻𝑃

may occur at every time step when the agent deals damage

to the opponent and vice versa. Since HP is normalized to

[0, 10], 𝑟𝑡
𝑊𝐼𝑁 and 𝑟𝑡

𝐻𝑃 have the same scale.

𝑟𝑡 = 𝑟𝑡
𝑊𝐼𝑁 + 𝑟𝑡

𝐻𝑃 + 𝑟𝑡
𝐸𝑋𝑇𝑅𝐴

𝑟𝑡
𝐻𝑃 = (𝐻𝑃𝑡

𝑎𝑔
− 𝐻𝑃𝑡−1

𝑎𝑔
) − (𝐻𝑃𝑡

𝑜𝑝
− 𝐻𝑃𝑡−1

𝑜𝑝
)

𝑟𝑡
𝐸𝑋𝑇𝑅𝐴 = −(𝑟𝑡

𝑡𝑖𝑚𝑒 + 𝑟𝑡
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)

𝑟𝑡
𝐸𝑋𝑇𝑅𝐴 is an additional reward for guiding battle styles.

It is the sum of the time penalty and the distance penalty.

𝑟𝑡
𝑡𝑖𝑚𝑒 is a reward based on the game length, and 𝑟𝑡

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

is a reward based on the distance between agents. These

additional rewards are described in further detail in the next

section. The value of γ is set to 0.995, which is close to 1.0,

since all episodes in BAB are forced to terminate after

1,800 time steps (= 3 min).

III. SELF-PLAY CURRICULUM WITH DIVERSE STYLES

 𝜋𝑜𝑝 needs to be fixed to formalize BAB as an MDP.

However, 𝜋𝑜𝑝 is not fixed in general and our agent does not

know which 𝜋𝑜𝑝 it is going to face. We propose a self-play

curriculum with a diversified pool of 𝜋𝑜𝑝 to solve this issue.

Existing self-play methods ([21], [22]) generally use oppo-

nent pools for training. Parameters of a network are stored

at regular intervals during training to create a pool of past

selves. Opponents are then sampled from this pool.

 Although the self-play method of RL offers a way to learn

the Nash equilibrium strategy [4], high coverage of strategy

space is essential to efficiently find one. Vanilla self-play

alone does not guarantee enough coverage for games with

large problem spaces. To tackle this problem, AlphaStar [25]

Figure 2. Agent-environment plot in BAB

Authorized licensed use limited to: Aizu University. Downloaded on December 11,2021 at 08:53:24 UTC from IEEE Xplore. Restrictions apply.

2475-1502 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2021.3049539, IEEE
Transactions on Games

diversified the opponent pool by imitating different human

strategy and introducing three types of agents with different

match making scheme. The Poker AI, Pluribus [1], hand-

tuned three different strategies on top of basic blueprint

strategy. The three strategies are biased toward raising, call-

ing, and folding respectively.

 Concurrently, we devised a novel self-play curriculum.

We enforced diversity of agents’ strategies by introducing a

range of different battle styles, and agents of different styles

were made to compete against each other.

A. Guiding Battle Styles through Reward Shaping

One of the most noticeable fighting styles to invest with

is the degree of aggressiveness. We used three dimensions

of rewards to control the degree of aggressiveness. The first

dimension is the “time penalty”. The aggressive agent re-

ceives larger penalties per time step, and this motivates it to

finish the match in a shorter period of time. The second di-

mension is the relative importance of the agent’s HP to the

opponent’s HP. Aggressive players will try to reduce the op-

ponent's HP rather than preserving their own HP, while de-

fensive players tend to act the opposite way. The final di-

mension is the “distance penalty”. Defensive players tend to

ensure a certain distance from their opponents to respond

appropriately against attacks, while aggressive players tend

to approach their opponents and attack relentlessly. To real-

ize these properties, the aggressive agent received larger

penalties in proportion compared to the distance between it-

self and its opponent. The specific reward weights used for

each style are shown in Table 2. Note that each of these three

dimensions can take continuous values. This means that it is

possible to create a spectrum of different fighting styles with

varying degrees of aggressiveness. However, to effectively

demonstrate the viability of this method, we limited the

number of fighting styles to three. By using any type of ad-

ditional reward signals along with 𝑟𝑡
𝑊𝐼𝑁 and 𝑟𝑡

𝐻𝑃 , this

method could be applied to other fighting games in general

to create agents with various fighting styles.

B. Our Self-Play Curriculum

 Figure 3 shows an overview of the proposed self-play cur-

riculum with three different types of agents. Agents of each

style have their own learning process, and all three agent

types were trained in a concurrent manner.

 Each learning process consists of a learner and multiple

simulators. The learner and the simulators work asynchro-

nously. In the simulators, an agent constantly plays matches

against randomly sampled opponents from the shared pool.

The most recent k models of each style are uniformly se-

lected with total probability mass of p, while other models

are chosen uniformly with probability 1-p. As training goes

on, p is linearly annealed from 0.8 to 0.1. A higher p assists

in swift adaptation to the latest opponents, while a lower p

stabilizes the learning process by alleviating catastrophic

forgetting. Each simulator sends a match log to the learner

 Aggressive Balanced Defensive

Time penalty 0.008 0.004 0.0

HP ratio 5:5 5:5 6:4

Distance penalty 0.002 0.0002 0.0

Table 2: Reward details of each style

Figure 3. Overview of self-play curriculum with three different styles

Authorized licensed use limited to: Aizu University. Downloaded on December 11,2021 at 08:53:24 UTC from IEEE Xplore. Restrictions apply.

2475-1502 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2021.3049539, IEEE
Transactions on Games

at the end of every match and updates its agent with the lat-

est parameters received from the learner. The same proce-

dure continues to be used through subsequent games.

 The learner trains its agents in an off-policy manner using

logs gathered from multiple simulators and sends the latest

network parameters to the simulators on request. In addition,

the learner sends its network parameters to the shared pool

every C steps (e.g. C=10,000) of update. Thus, the pool has

varying policies that come from the different learning pro-

cesses of the different styles. These sets of model parameters

are provided as opponents to each learning process. By shar-

ing a pool, every learning agent encounters opponents of

every style during training and learns how to deal with them.

Therefore, agents trained via our self-play curriculum can

ultimately learn how to face opponents with varying fighting

styles while maintaining their own battle styles.

IV. DATA SKIPPING TECHNIQUES

 In this section, we detail two data skipping techniques:

“no-op” and “maintain move decision”. Data skipping tech-

niques refer to the process of dropping certain data during

training and evaluation procedures.

A. Discarding Passive “No-op”

 In fighting games, using skills generally consumes re-

sources, such as SP and cooldown time. Therefore, if a

player overuses a certain skill, it will not be available for use

during actual times of need. Thus, players should strategi-

cally use and retain their skills to ensure their availability

when needed. To take this aspect into account, we concate-

nated a “no-op” action to the output of the policy network,

allowing the agent to choose “no-op” and do nothing for a

certain period if necessary. This means that our action space

has 44 skills, plus an additional “no-op” action. This is sig-

nificant because human play logs of BAB show that “no-op”

actions take up the largest portion of skill usage among hu-

man players.

 “No-op” decisions can be categorized as passive and ac-

tive use cases. The passive use of “no-op” implies that an

agent chooses “no-op” because there is no skill available for

use. For example, when an agent is out of resources or is hit

by an opponent’s CC skill, an agent has no option but to

choose “no-op”. The active use of “no-op” means that an

agent selects “no-op” strategically, even though other skills

are available for use.

We discarded passive “no-op” data from both the training

and evaluation phases because passive “no-ops” are not used

deliberately by an agent. In addition, the method enables

LSTM to reflect representations of longer time horizons be-

cause the data is not provided to the network. We show in

the experiment section that skipping passive “no-ops”

greatly improves learning efficiency. Note that this method-

ology is generally applicable to other domains where a set

of available skills changes constantly and the “no-op” action

is a valid option to choose.

B. “Maintain Move Decision”

 Although a single skill decision can have a substantial in-

fluence on the subsequent states, the effect of a single move

decision is relatively limited. The reason is that the distance

a character moves in a single time step (0.1 s) is very short

considering its speed. In order for any moving decision to

have a meaningful effect, the agent should make the same

moving decision consecutively for several ticks in a row.

This allows the agent to literally “move” and leads to

changes in subsequent states and rewards. Therefore, it is

difficult to train a move policy from the initial policy with

random move decisions. Since the chance of a random pol-

icy making the same decision consecutively is very low, ex-

ploration is extremely limited. We therefore propose main-

taining the move decision for a fixed number of time steps.

Figure 4 shows how “maintain move decision” works

with an example. If the agent selects a move action, it skips

the move decision for the following n-1 time steps. This

means that the agent maintains the same move decision for

n steps in total. Note that our method has different purpose

from frame skip technique [15] in Atari domain. Frame skip

technique was introduced for simulator's efficiency. How-

ever, we cannot just skip the frames because skill decisions

must still be made. Although we could not enjoy advantage

in the simulator's efficiency, “maintain move decision” still

facilitates training and this is solely because maintaining the

move decision increases the influence of a single move de-

cision, as we will confirm with experiments. In this sense,

“maintain move decision” rather can be viewed as ‘amplify-

ing advantage’ from [14].

V. EXPERIMENTS

A. Implementation Details

1) Network

 The network is composed of LSTM-based architecture

which has four heads with a shared state representation layer.

Each head consists of 𝜋𝑠𝑘𝑖𝑙𝑙 , 𝑄𝑠𝑘𝑖𝑙𝑙 , 𝜋𝑚𝑜𝑣𝑒,𝑡𝑎𝑟𝑔𝑒𝑡 and

𝑄𝑚𝑜𝑣𝑒,𝑡𝑎𝑟𝑔𝑒𝑡 . 𝑄𝑠𝑘𝑖𝑙𝑙 and 𝑄𝑚𝑜𝑣𝑒,𝑡𝑎𝑟𝑔𝑒𝑡 are used for the gradi-

ent update of 𝜋𝑠𝑘𝑖𝑙𝑙 and 𝜋𝑚𝑜𝑣𝑒,𝑡𝑎𝑟𝑔𝑒𝑡 , respectively. Before

Figure 4. Examples of (a) regular move decisions and (b) main-

taining decisions for 1 second

Authorized licensed use limited to: Aizu University. Downloaded on December 11,2021 at 08:53:24 UTC from IEEE Xplore. Restrictions apply.

2475-1502 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2021.3049539, IEEE
Transactions on Games

the network output goes into the softmax layer, a Boolean

vector indicating the availability of each skill operates to

make the output of unavailable skill to negative infinity.

2) Algorithm

 We used actor-critic off-policy learning algorithm [26]. It

enables us to deal with policy lag between the simulators

and learner through truncated importance sampling. Moreo-

ver, we could also use the advantages of stochastic policy,

which responds more stably to changes in the environment

due to smooth policy updates and works well in the domain

of games like rock-paper-scissors where deterministic pol-

icy is vulnerable to exploitation. For this specific algorithm,

both 𝜋𝑠𝑘𝑖𝑙𝑙 and 𝜋𝑚𝑜𝑣𝑒,𝑡𝑎𝑟𝑔𝑒𝑡 are updated in an alternating

manner with following gradient:

𝑔𝑡
𝑎𝑐𝑒𝑟 = 𝜌�̅�∇𝜃𝑙𝑜𝑔𝜋𝜃(𝑎𝑡|𝑥𝑡)[𝑄𝑟𝑒𝑡(𝑥𝑡 , 𝑎𝑡) − 𝑉𝜃𝑣

(𝑥𝑡)] +

𝔼𝑎~𝜋 ([
𝜌𝑡(𝑎) − 𝑐

𝜌𝑡(𝑎)
]

+

∇𝜃𝑙𝑜𝑔𝜋𝜃(𝑎|𝑥𝑡)[𝑄𝜃𝑣
(𝑥𝑡, 𝑎) − 𝑉𝜃𝑣

(𝑥𝑡)]),

where 𝜌�̅� = min{𝑐, 𝜌𝑡} with behavior policy 𝜇 and im-

portance sampling ratio 𝜌𝑡 =
𝜋(𝑎𝑡|𝑥𝑡)

𝜇(𝑎𝑡|𝑥𝑡)
. [𝑥]+ = 𝑥 𝑖𝑓 𝑥 >

0 and zero otherwise.

3) Learning System

 In total, there are three learning processes with each learn-

ing process consisting of a learner and 100 simulators. Each

learning process is largely similar to that proposed by [7].

The final agent is trained for two weeks, which is equivalent

to four years of game play.

B. Effect of Self-Play Curriculum with Three Styles

 To demonstrate the effects of the proposed self-play cur-

riculum, we trained agents with and without the proposed

curriculum. A baseline agent was trained with the vanilla

self-play curriculum without any style-related rewards (only

win reward and HP reward were included) and a pool of past

selves was used. Meanwhile, three agents with different

styles were trained with the self-play curriculum using the

shared pool that we proposed. Our aggressive, balanced and

defensive agents2 then played 1,000 matches each against

the baseline agent to measure the performance. As shown in

Table 3, the agents that followed the learnings from our cur-

riculum outperformed the baseline agent.

Next, we conducted an ablation study to observe how the

shared pool helps generalization. We wanted to confirm

whether an agent would be able to deal with opponents of

unseen style, when it experienced only a limited range of

opponents during training. Thus, we created three styles of

agents trained in exactly the same manner, except that they

had their own independent opponent pools. We denote the

three types of agents using shared pools as 𝜋𝑠ℎ
𝑎𝑔𝑔

, 𝜋𝑠ℎ
𝑏𝑎𝑙, and

𝜋𝑠ℎ
𝑑𝑒𝑓

, and three type of agents using independent pools as

2 We measured how the average game length differs for each style because
game length is a good proxy for assessing the degree of defensiveness of

𝜋𝑖𝑛𝑑
𝑎𝑔𝑔

, 𝜋𝑖𝑛𝑑
𝑏𝑎𝑙, and 𝜋𝑖𝑛𝑑

𝑑𝑒𝑓
. All of six agents were trained for 5M

steps (equivalent to 6 days) each.

Our assumption is that the agent trained with the shared

pool is more robust when it faces opponents it has never en-

countered. Thus, we compared the winning rate of 𝜋𝑠ℎ
𝑎𝑔𝑔

 vs.

{𝜋𝑖𝑛𝑑
𝑏𝑎𝑙 , 𝜋𝑖𝑛𝑑

𝑑𝑒𝑓
} and 𝜋𝑖𝑛𝑑

𝑎𝑔𝑔
 vs. {𝜋𝑖𝑛𝑑

𝑏𝑎𝑙 , 𝜋𝑖𝑛𝑑
𝑑𝑒𝑓

}. This experimental

setting is based on three key ideas. First, 𝜋𝑠ℎ
𝑎𝑔𝑔

 and 𝜋𝑖𝑛𝑑
𝑎𝑔𝑔

have the same training settings except for sharing the pool.

Second, 𝜋𝑠ℎ
𝑎𝑔𝑔

 and 𝜋𝑖𝑛𝑑
𝑎𝑔𝑔

 are evaluated against the same op-

ponents. Finally, although 𝜋𝑠ℎ
𝑎𝑔𝑔

 has encountered other

styles from its pool, it has not confronted {𝜋𝑖𝑛𝑑
𝑏𝑎𝑙 , 𝜋𝑖𝑛𝑑

𝑑𝑒𝑓
}, for

they were trained using independent opponent pools. If our

assumption is correct, 𝜋𝑠ℎ
𝑎𝑔𝑔

 should have a higher winning

rate. It is to be noted that 𝜋𝑖𝑛𝑑
𝑏𝑎𝑙 and 𝜋𝑖𝑛𝑑

𝑑𝑒𝑓
 are not a single

model, but 10 models each sampled at the same fixed inter-

vals from their pools. We then conducted the same experi-

ments for the remaining two styles; the results are presented

in Table 4. As shown in the table, agents trained with shared

pool outperform their counterparts.

Based on the data in Table 4, the effect of using a shared

pool is marginal in the case of aggressive agents. It indicates

that the strategy spaces in which trainings take place are

similar whether or not various opponents are provided. This

is related to the nature of fighting games in which one side

should fight back if the other side approaches and initiates a

brawl. Thus, in the case of an aggressive agent that attacks

consistently, there is a little difference in the experience re-

gardless of the diversity of the opponent’s fighting style.

C. Effect of Discarding Passive “No-op”

 As discussed in the previous section, the “no-op” decision

may be either active or passive. We conducted an experi-

ment to investigate the effect of discarding such passive “no-

op” data from learning. The sparring partner for the experi-

ment was the built-in BAB AI, with a performance compa-

rable to the top 20% of the players. We measured how fast

an agent’s game play. The results were as follows: 66.6 sec for the aggres-
sive, 91.7 sec for the balanced, and 179.9 sec for the defensive agent.

 Aggressive Balanced Defensive Average

Shared 64.8% 79.6% 75.3% 73.6%

Ind. 64.7% 72.1% 56.5% 64.4%

Table 4: Generalization performance of three styles of agents

for both with and without shared pool (7,000 games each)

 Aggressive Balanced Defensive Average

Vs.

Baseline
59.5% 63.8% 63.2% 62.2%

Table 3: Winning rate of three style of agents against baseline

(1,000 games each)

Authorized licensed use limited to: Aizu University. Downloaded on December 11,2021 at 08:53:24 UTC from IEEE Xplore. Restrictions apply.

2475-1502 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2021.3049539, IEEE
Transactions on Games

agents learned to defeat it, and the results are shown in Fig-

ure 5 (a). If “no-op” ticks are discarded from the learning

data, the winning rate reaches 80% after 70k steps, whereas

170k steps are required when “no-op” ticks are included.

The amount of time steps required to reach 90% winning

rate was reduced to half when passive “no-op” data was

skipped. This experiment confirms that the training perfor-

mance is improved by discarding passive “no-op” from the

learning data.

D. Effects of the “Maintain Move Decision”

 To examine the effects of the “maintain move decision”,

we developed two learning processes, with both processes

involving learning on a self-play basis. One process makes

a moving decision at every time step, while the other makes

a moving decision and sends the same decision for 9 more

times in a row. We measured the entropy of the move policy

to observe the effects. Entropy of the move policy for a

given state 𝑠𝑡 is as follows.

H(𝑠𝑡) = − ∑ 𝜋𝑚𝑜𝑣𝑒(𝑠𝑡) ∗ log 𝜋𝑚𝑜𝑣𝑒(𝑠𝑡)

Generally, entropy gradually decreases as learning pro-

gresses. Figure 5 (b) shows that the entropy declines faster

if the technique is applied. A noticeable difference was also

observed in the quality of movement which the agent

learned. Before the technique was applied, the agent did not

make any improvement from random motion, but it learned

to approach and retreat with data skip. In addition, Figure 5

(c) shows that the relative winning rate of the built-in BAB

AI is made higher by applying “maintain move decision”.

The longer the decision was repeated, the agent’s reaction

became less immediate, but the agent moved more consist-

ently. In this case, we tested 1, 3, 5, 10 ticks for maintaining

time. 10 ticks (equivalent to 1 s) yielded the best perfor-

mance.

VI. PRO-GAMER EVALUATION

 This section will address the results of both the pre-test

and the Blind Match, and conditions to ensure fairness for

human players.

A. Conditions for Fairness

1) Reaction Time

 When humans confront an AI in a real-time fighting game,

the most important factor that affects the result is the reac-

tion time. Humans require some time to recognize the skill

used by the opponent and to press a button by moving

his/her hand. Therefore, we applied 230 ms of delay time on

average to the AI’s decision-making process to add fairness

against human players. The average response time of a hu-

man is approximately 270ms [31]. However, a skilled pro-

gamer’s response time will be shorter than the average. This

amount of delay corresponds to the average reaction time of

professional players in BAB.

2) Classes and Skill Set

 There are 11 classes in B&S, and each class has unique

characteristics. Since there exists relative superiority among

classes, we fixed the class of both AI and pro-gamer as “De-

stroyer” for all matches, training, and experiments con-

ducted in section V. Destroyer is a class that has an in-

fighting style and steadily appears in the B&S world cham-

pionship. Additionally, AI’s and pro-player’s skill trees

were set as identical to ensure a fair match. The skill tree

was chosen to match what the majority of users selected,

based on the BAB user statistics.

3) Evaluation Results

 We invited two prominent pro-gamers, Yuntae Son (GC

Busan, Winner of 2017 B&S World Championship), and

Shingyeom Kim (GC Busan, Winner of 2015 and 2016 B&S

World Championship), to test our agents before the Blind

(c) Winning rates of built-in BAB AIs with and without “maintain

move decision”

Figure 5. Results of data skipping experiments

 Aggressive Balanced Defensive

Pro-Gamer 1 5-1 2-1 1-2

Pro-Gamer 2 4-0 2-4 4-1

Blind Match 2-0 1-2 0-2

Total
11-1

(92%)

5-7

(42%)

5-5

(50%)

Table 5: Final score of AI vs. Human

Authorized licensed use limited to: Aizu University. Downloaded on December 11,2021 at 08:53:24 UTC from IEEE Xplore. Restrictions apply.

2475-1502 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2021.3049539, IEEE
Transactions on Games

Match. Note that the total number of games played is differ-

ent for each style because the testers can play as many games

as they want for each style. After the pre-test, we went for

the Blind Match of 2018 World Championship. Our agents

had matches against three pro-gamers: Nicholas Parkinson

(EU), Shen Haoran (CHN), and Sungjin Choi (KOR). The

video recording of the game highlights can be found at

https://goo.gl/7VUTzV.

The results of both the pre-test and the Blind Match are

provided in Table 5. As can be seen from the table, the ag-

gressive agent dominated the game, while the other two

types of agents had rather intense games. Based on our in-

terviews of pro-gamers, we concluded that the reason why

the aggressive agent showed the best performance against a

human player was because the aggressive agent delivered

continuous attacks preventing the human player from taking

short breaks in between moves required for decision-making;

the AI, on the other hand, does not require these breaks.

VII. CONCLUSION

 Using deep reinforcement learning, we created AI agents

that competed evenly with professional players in a 3D real-

time fighting game. To accomplish this, we proposed a

method to guide the fighting style with reward shaping.

With three styles of agents, we introduced a novel self-play

curriculum to enhance generalization performance. Our

self-play curriculum with three styles is effective against

general or unknown opponents or when self-play training

converges into an equilibrium that is not optimal. Agents

will likely end up exploring only a small portion of the vast

BAB space when they are limited to self-play. Thus, training

with different styles obtained through reward shaping can be

an effective way to find the optimal policy. We also pro-

posed data-skipping techniques to improve data efficiency

and enable efficient exploration. Consequently, our agents

were able to compete with the best BAB pro-gamers in the

world. The proposed training methods are generally appli-

cable to other fighting games.

REFERENCES

[1] Brown, N., and Sandholm, T. 2019. Superhuman AI for multi-

player poker. Science, 365(6456), 885-890.

[2] Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V.,

Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning, I., Legg,

S., and Kavukcuoglu, K. 2018. IMPALA: Scalable Distributed

Deep-RL with Importance Weighted Actor-Learner Architec-

tures. In Proceedings of the 35th International Conference on

Machine Learning, 80:1407-1416.

[3] Firoiu, V., Whitney, W. F., and Tenenbaum, J. B. 2017. Beating

the world's best at Super Smash Bros. with deep reinforcement

learning. arXiv preprint arXiv:1702.06230.

[4] Heinrich, J., and Silver, D. 2016. Deep reinforcement learning

from self-play in imperfect-information games. arXiv preprint

arXiv:1603.01121.

[5] Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski,

G., Dabney, et al. 2018. Rainbow: Combining improvements in

deep reinforcement learning. In Thirty-Second AAAI Confer-

ence on Artificial Intelligence.

[6] Hochreiter, S., and Schmidhuber, J. 1997. Long short-term

memory. Neural computation, 9(8):1735-1780.

[7] Horgan, D., Quan, J., Budden, D., Barth-Maron, G., Hessel, M.,

Van Hasselt, H., and Silver, D. 2018. Distributed prioritized ex-

perience replay. arXiv preprint arXiv:1803.00933.

[8] Howard, R.A. 1960. Dynamic programming and markov pro-

cesses. MIT Press.

[9] Ishihara, M., Ito, S., Ishii, R., Harada, T., and Thawonmas, R.

2018. Monte-Carlo Tree Search for Implementation of Dynamic

Difficulty Adjustment Fighting Game AIs Having Believable

Behaviors. In 2018 IEEE Conference on Computational Intelli-

gence and Games: 1-8.

[10] Jaderberg, M., Czarnecki, W. M., Dunning, I., Marris, L., Lever,

G., Castaneda, A. G., et al. 2018. Human-level performance in

first-person multiplayer games with population-based deep

rein-forcement learning. arXiv preprint arXiv:1807.01281.

[11] Kim, M. J., and Kim, K. J. 2017. Opponent modeling based on

action table for MCTS-based fighting game AI. In 2017 IEEE

Conference on Computational Intelligence and Games

(CIG):178-180.

[12] Li, Y. J., Chang, H. Y., Lin, Y. J., Wu, P. W., and FrankWang,

Y. C. 2018. Deep Reinforcement Learning for Playing 2.5 D

Fighting Games. In 2018 25th IEEE International Conference

on Image Processing (ICIP):3778-3782.

[13] Lu, F., Yamamoto, K., Nomura, L. H., Mizuno, S., Lee, Y., and

Thawonmas, R. 2013. Fighting game artificial intelligence com-

petition platform. In IEEE 2nd Global Conference on Consumer

Electronics: 320-323.

[14] Mladenov, M., Meshi, O., Ooi, J., Schuurmans, D., and Bou-

tilier, C. 2019. Advantage amplification in slowly evolving la-

tent-state environments. arXiv preprint arXiv:1905.13559.

[15] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J.,

Bellemare, M. G., et al. 2015. Human-level control through

deep reinforcement learning. Nature, 518(7540), 529.

[16] Mnih, V., Badia, A. P., Mirza, M., Graves, A., Harley, T., Lil-

licrap, T. P., et al. 2016. Asynchronous methods for deep rein-

forcement learning. In Proceedings of the 33rd International

Conference on International Conference on Machine Learning-

Volume 48:1928-1937.

[17] Ng, A. Y., Harada, D., and Russell, S. 1999. Policy invariance

under reward transformations: Theory and application to reward

shaping. In ICML Vol. 99: 278-287.

[18] OpenAI. 2018. OpenAI five, https://blog.openai.com/openai-

five.

[19] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov,

O. 2017. Proximal policy optimization algorithms. arXiv pre-

print arXiv:1707.06347.

[20] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van

Den Driessche, G., et al. 2016. Mastering the game of Go with

deep neural networks and tree search. nature, 529(7587), 484.

[21] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I.,

Huang, A., Guez, A., et al. 2017. Mastering the game of go with-

out human knowledge. Nature, 550(7676), 354.

[22] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M.,

Guez, A., et al. 2017. Mastering chess and shogi by self-play

Authorized licensed use limited to: Aizu University. Downloaded on December 11,2021 at 08:53:24 UTC from IEEE Xplore. Restrictions apply.

2475-1502 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2021.3049539, IEEE
Transactions on Games

with a general reinforcement learning algorithm. arXiv preprint

arXiv:1712.01815.

[23] Sutton, R. S., and Barto, A. G. 2018. Reinforcement learning:

An introduction. MIT press.

[24] Vinyals, O., Ewalds, T., Bartunov, S., Georgiev, P., Vezhnevets,

A. S., Yeo, M., et al. 2017. Starcraft II: A new challenge for

reinforcement learning. arXiv preprint arXiv:1708.04782.

[25] Vinyals, O., Babuschkin, I., Chung, J., Mathieu, M., Jaderberg,

M., Czarnecki, W. M., et al. 2019. Alphastar: Mastering the

real-time strategy game starcraft ii. DeepMind blog, 2.

[26] Wang, Z., Bapst, V., Heess, N., Mnih, V., Munos, R., Kavuk-

cuoglu, K., and Freitas, N. 2017. Sample efficient actor-critic

with experience replay. In International Conference on Learn-

ing Representations (ICLR).

[27] Yoshida, S., Ishihara, M., Miyazaki, T., Nakagawa, Y., Harada,

T., and Thawonmas, R. 2016. Application of Monte-Carlo tree

search in a fighting game AI. In IEEE 5th Global Conference on

Consumer Electronics:1-2.
[28] Li, J., Koyamada, S., Ye, Q., Liu, G., Wang, C., Yang, R., ... &

Hon, H. W. (2020). Suphx: Mastering Mahjong with Deep Re-
inforcement Learning. arXiv preprint arXiv:2003.13590.

[29] Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M.,
Dudzik, A., Chung, J., ... & Oh, J. et al. (2019). Grandmaster
level in StarCraft II using multi-agent reinforcement learning.
Nature, 575(7782), 350-354.

[30] Gibbons, R. (1992). A primer in game theory, 56.

[31] Reaction Time Statistics. Available online: https://humanbench-
mark.com/tests/reactiontime/statistics (accessed on 07 Decem-
ber 2020).

[32] https://en.wikipedia.org/wiki/Crowd_control_(video_games)

[33] Harrington, J. 2009. Games, strategies and decision mak-
ing. Macmillan. 28.

[34] Heinrich, J., Lanctot, M. and Silver, D., 2015, June. Fictitious
self-play in extensive-form games. In International Conference
on Machine Learning. 805-813.

[35] Sukhbaatar, S., Lin, Z., Kostrikov, I., Synnaeve, G., Szlam, A.,
& Fergus, R., “Intrinsic motivation and automatic curricula via
asymmetric self-play,” in International Conference on Learning
Representations, 2018. [Online]. Available: https://open-
review.net/forum?id=SkT5Yg-RZ

APPENDIX

A. State Space

 A state input is a feature vector of length 606, rather than

an image. Features include the following agent information:

health point, skill point, distance from the opponent, dis-

tance from the arena wall in 16 directions, position and ori-

entation, relative position from the opponent, remaining

game time, remaining cooldown time and availability of

each skill, abnormal condition (such as midair, stun, down,

or kneel), etc. Abnormal condition refers to a state where the

character’s actions are restricted. All such information is

also available to human players. And all inputs are normal-

ized into a value between 0 and 1.

B. Feature Discretization

In the BAB environment, the current distance between

oneself and the opponent determines whether some non-tar-

geting skills (i.e., skills that can be implemented regardless

of the distance between oneself and the opponent) can suc-

cessfully hit the opponent. For example, the Destroyer’s

“axe sweep” skill can only hit the opponent if one’s charac-

ter is less than or equal to 5 m from the opponent. Because

the distance between oneself and the opponent is a feature

that consists of a continuous value, the network has diffi-

culty learning whether these non-targeting skills will be suc-

cessful. Thus, in order to speed up the process, we used prior

knowledge to discretize the following 4 crucial features:

1) Distance between oneself and the opponent: 5 levels

(0-3 m, 3-5 m, 5-8 m, 8-16 m, over 16 m)

2) Skill state: 3 levels (skill has been recently used, skill

has been used but not recently, skill has not been used)

3) Final six remaining ticks before crowd control loses ef-

fect: 6 levels (1 tick, 2 ticks, 3 ticks, 4 ticks, 5 ticks, 6 ticks)

4) Elapsed time upon using “retreat” skill: 6 levels (1 tick,

2 ticks, 3 ticks, 4 ticks, 5 ticks, 6 ticks)

To test the effectiveness of the feature discretization

method, we designed an experiment comparing the success

rates of counter attacks made against the “retreat” skill de-

pending on the use of this technique. The “retreat” skill ren-

ders the player invincible for a certain amount of time at the

cost of being unable to implement any kind of action for a

slightly longer period which places them at a vulnerable po-

sition for a short time space. To be successful against BAB

pro-gamers, an agent must learn how to seize this moment

to apply crowd control against the opponent.

 The agents were trained for 1M steps and tested for 20

games. Success rates were 75.0% and 13.9% with and with-

out feature discretization respectively. These results show

that attacks against retreat skills became 5.4 times more suc-

cessful by employing feature discretization.

Authorized licensed use limited to: Aizu University. Downloaded on December 11,2021 at 08:53:24 UTC from IEEE Xplore. Restrictions apply.

https://humanbenchmark.com/tests/reactiontime/statistics
https://humanbenchmark.com/tests/reactiontime/statistics
https://en.wikipedia.org/wiki/Crowd_control_(video_games)
https://openreview.net/forum?id=SkT5Yg-RZ
https://openreview.net/forum?id=SkT5Yg-RZ

2475-1502 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2021.3049539, IEEE
Transactions on Games

C. Action Space

1) Skill

 “Skills” refer to a number of unique actions defined in

the game of BAB. They can be used separately or in a series

to develop a myriad of strategies. The Destroyer class has

44 skills; every skill has its own function such as dealing

damage, applying crowd control, escaping, dashing, resist-

ing, etc. Our agents make a skill decision out of 45 options

including “no-op”.

2) Move and Target

 “Move and target” refer to changing a player’s position

and orientation. Although human players can move in 8 car-

dinal directions and have 360-degree vision, not all combi-

nations are necessary to achieve pro-level play. We reduced

the action space into the following 6 options by combining

move and target decisions: 1) hold position and orientation,

2) move forward facing the opponent, 3) move to the right

facing the opponent, 4) move to the left facing the opponent,

5) move backward facing the opponent (results in slower

movement but the player can react to the opponent’s attack),

6) move forward facing away from the opponent (faster re-

treat but unable to react to the opponent’s attack).

D. Hyperparameters

Name Value

start learning rate 1e-4

decay steps 33,000

decay rates 0.96

end learning rate 2e-5

optimizer Adam

batch size
8 (240 transi-

tions)

LSTM sequence length 30

send model to shared pool every C

step
15,000

recent k models 10

replay size 800,000

entropy bonus coefficient 0.01

gradient clipping 20

Total HP reward weight 10

Win reward weight 10

Time reward weight per tick -0.008~0.0

Distance reward weight per tick -0.002~0.0

Table 6: Hyperparameter settings

E. Network Architecture

The network architecture employed in the BAB training process is
described in Figure 6. Rectified linear unit (ReLU) is used as the
activation function in all Multilayer perceptrons (MLPs) except the

final MLP. The agent selects a skill by sampling from the pointwise
multiplication result of (the Destroyer's) skill probability vector
and skill availability vector. The discretized features are con-
structed as shown in Appendix B and are concatenated with the
LSTM output.

Figure 6. Network architecture

Authorized licensed use limited to: Aizu University. Downloaded on December 11,2021 at 08:53:24 UTC from IEEE Xplore. Restrictions apply.

