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ABSTRACT

Imitation is a powerful mechanism the human brain applies
to extend its repertoire of solutions and behaviors suitable
to solve problems of various kinds. From an abstract point
of view, the major advantage of this strategy is that it re-
duces the search space of apropriate solutions. In this con-
tribution, we discuss if and how the principle of imitation
learning can facilitate the programing of life-like computer
game charecters. We present different algorithms that learn
from human generated training data and we show that ma-
chine learning can be applied on different levels of cognitive
abstraction.

Introduction

Considering the past two decades, we can clearly observe
a coevolution of commercial computer games, computer
graphics and networking. However, for the time being,
this dynamic between game industry and academic research
seems rather an exception than the rule. Although the poten-
tial for another coevolution is obvious, behaviour program-
ming for game characters and artificial intelligence (AI) or
machine learning (ML) research hardly inspired each other.

Of course, ideas from academia have entered game Al pro-
gramming. But it is striking, though, that the two most preva-
lent Al techniques in game programming, i.e. the A* algo-
rithm and finite state machines, are somewhat old-fashioned.
A*-search for pathfinding was introduced more than three
decades ago (Hart et al. 1968) and finite state machines with
outputs even date back to the 1950s (Mealy 1955, Moore
1956)

The main reason why more recent results just merely in-
fluence game character programming is that algorithms that
would produce the versatility and flexibility of human play-
ers are still not available. So far, research on autonomous
agents mainly focused on robots that navigate through the
physical world. And even though roboticists recognise the
importance of learning from demonstration in order to con-
strain the search space spanned by this task (Schaal 1999),
it’s fair to say that uncontrollable environmental dynam-
ics and sensor noise still consume more intellectual efforts
than techniques for behaviour representation and learning.

Christian Bauckhage
Centre for Vision Research
York University
4700 Keele Street, Toronto M3J 1P3, Canada
bauckhag@cs.yorku.ca

However, this situation is about to change as the Al and
ML communities are beginning to discover the merits of
computer games (Amir & Doyle 2002, Laird 2001, Le Hy
et al. 2004, Nareyek 2004, Sklar et al. 1999, Yannakakis &
Hallam 2004, Spronck et al. 2002)

In this paper, we will discuss the possible impact of imi-
tation learning techniques for computer games. To this end,
we will briefly summerise behavioural, neurobiological and
Al and ML perspectives on imitation learning. Then we
will identify different levels of human behaviour that occur
in computer games and consequently will require algorith-
mic solutions. Following an idea discussed in (Bauckhage
et al. 2003), we will thus report on different techniques of
analysing the network traffic of multiplayer games in order to
realize game agents that exert human-like behaviour learned
from examples.

Imitation Learning for Games

Numerous behavioural science experiments document that
infants endeavour to produce a behaviour previously demon-
strated to them. Some psychological studies on imitation
learning even suggest that infants devote most of their time to
the imitation of observed behaviours (Rao & Meltzoff 2003).

Obviously, imitation requires a mechanism to map per-
cepts onto actions. And indeed, neurophysiological examina-
tions indicate that there are particular brain areas specialised
in imitation (Hietanen & Perrett 1996). After finding neurons
that were specific to the execution of goal related limb move-
ments, a connection to imitation came with the discovery of
mirror neurons (at least in the brain of macaque monkeys)
which are active during the observation as well as the execu-
tion of a task (Kohler et al. 2002).

Backed by these results from behavioural science and neu-
robiology it is no surprise that the idea of imitation learn-
ing is getting ever more popular in Al and robotics. Cur-
rent robotics research on imitation learning mainly concen-
trates on sub-symbolic techniques like neural networks and
fuzzy control. However, it is well known that such low-level
approaches do not scale well to situations of many degrees
of freedom. As a consequence, the concept of movement
primitives was introduced to encode complete temporal be-
haviours (Fod et al. 2002, Schaal et al. 2003). In fact, there



Figure 1: Training sample generation at a “lan-party”

is evidence that the human brain uses movement primitives
to produce goal oriented actions since using such primitives
considerably reduces the number of parameters that must
be learned (Thoroughman & Shadmehr 2000). Movement
primitives are thus closely related to mirror neurons some
of which are believed to be high-level representations of be-
haviour.

The capabilities of the human brain of course extend to
virtual worlds and learning how to play a computer game is a
process of training and imitating experienced players. In the
following, we will thus argue that —similar to robotics— learn-
ing from demonstration can provide an avenue to behaviour
programming for computer game characters. Unlike present
day robotics, however, computer games provide an excellent
testbed for the learning of complex behaviours. For most
genres, the behaviour of game characters will be composed
of reactive, tactical and strategic decisions. While the latter,
higher cognitive aspects are still widely neglected in robotics
(since the problem of sensor noise is so predominant), com-
puter games allow to study them rather effortlessly.

To substantiate our arguments, we will base the discussion
on the example of ID software’s game QUAKE II® . First,
we shall describe what kind of percepts this game provides
as input for imitation learning. Then, we will present algo-
rithmic solutions for different kinds of behaviour.

Why Quake ?

QUAKE II®is a so called Ego or First-Person-Shooter. Fig-
ure 2 shows a typical game situation the way a human player
views the gaming world, from a first-person perspective.

The main goal of the game is to get the most points in a
fixed time span. Points are gained by shooting enemy play-
ers (so far we are not using team based game modifications,
therefore all other players are opponents).

The game takes place in a 3D gameworld which is loosely
based on the real world. The human players can move around
freely, their actions are bound to the game physics, which
are also based on the real world, not all places are always

reachable.

Different types of items (weapons, armor, health pack-
ages) are distributed at fixed positions around the map. If
an item is picked up, it reappears about thirty seconds later
at the same position. From these item positions arises one
strategical component of the game. Winning is a lot easier by
smart item control, get the best items for yourself and only
allow the most weak weapons and armors to be picked up by
your enemies. But there are of course endless possibilities
of different strategies, which all might lead to a successful
gameplay.

Winning a game does not only depends on good aiming,
smart playing is often a better way to success - maybe that
is the reason why even game bots playing with superhuman
aiming are still beaten by good, experienced human players
1

So why would we want to use such a complex game for im-
itating human controlled game agents? Simpler games, more
focused onto one aspect of human acting could maybe pro-
vide better results with less effort, besides, by using a home-
made game we could avoid the troubles of interacting with
someone else’s (mostly closed source) software.

There are basically two answers to that question. First,
imitating humans wandering around a 3D virtual world and
performing tasks of different complexity is not only of in-
terest for the gaming community and might provide further
insights on the modeling of human behaviours in general.
The level of abstraction compared to the real world is a lot
lower than in Chess, Tetris or PacMan. In addition, unlike
in the real world, we have perfect sensor data. The second
point is, that by using a commercially successful game, we
have access to an incredible huge database of records of hu-
mans playing the game — these so called demo files can be
recorded by ourselves (Figure 1 shows a possible location
for demo recording) or just downloaded from numerous sites
on the internet. Having an almost unlimited amount of train-
ing samples, showing nothing less than humans performing
complex tasks in complex environments is a unique (so far
almost unrecognized) setting.

The training data or demo files we are dealing with are
records of the network traffic. They contain information
about the exact locations (z, y, 2) the player assumed, nearby
items and other players. Temporary entities like sounds, and
flying projectiles are also included. There is no need for a
visual analysis of a game scene, since all necessary infor-
mation is already available on a cognitive higher level. The
same applies to the player actions, they are included as sim-
ple velocity and position vectors.

Categories of Behavior

Our current model for the imitation of a human player’s be-
haviour in QUAKE II® consists of three separate layers as

"http://botchallenge.com offers a competition on who is the
fastest human player in beating nightmare (which is somehow equal to su-
perhuman) skilled game-agents in the game QUAKE m®
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Figure 2: A typical situation in the FPS QUAKE II® | augmented by some entity descriptions.
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Figure 3: A model for generation of human-like game agents by imitating human play styles.

visualized in Figure 3 (since the model is rather abstract,
it’s transfer to other games is straightforward). The decision
for this design was based on observations as well as on a
widely believed psychological hierachy of human behaviour
(Hollnagel 1994).

On top-most level, there are strategic behaviours which
are used to achieve long term goals. In our case, besides the
obvious goal of winning the game, several other (sub)goals
were identified. Most strategies are targeted at securing im-
portant areas and important items. Still there is a constant
change in specicific subgoals which depends on the current
game-state (e.g. if a player is low on health, health refill-
ing items might be more attractive than the most powerful
weapon). The player who manages to control the important
places of the map, with the most valuable items, will greatly
enhance his chances to win the game.

The second layer represents factical behaviours. Tactics
usually are defined by a smart, localized situation handling.
While the strategy tells the player about the next important
region on a map, the tactics are responsible for evading pos-

sible threats on the way. Since tactics highly depend on an-
ticipation of an enemy player’s movement, a broader under-
standing of a scene is necessary. Prominent examples include
the laying of traps or securing of areas by putting it under
constant fire.

The most basic layer is given by reactive behaviours. Here
we find simple reactions to audio-visual percepts. This in-
cludes movement, jumps, but also aiming and shooting on an
enemy player as well as the prediction shots based on audible
cues.

Although this discrimination of behaviours is rather strict
and suggests a selection of one active layer of behaviours,
they are to be understood as concurrent sets of behaviour.
However, unexperienced players are more likely to concen-
trate on only one aspect. They will either engage in combat
or look for better items, whereas experienced players have no
problems in improving their strategic position while being in
combat (often combat itself holds many tactical parts as well,
e.g. taking cover or avoiding small passages). A classifica-
tion of behaviours into categories makes the whole problem
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Figure 5: The left figure shows an observed movement pat-
tern of a human player in the topological map representation,
the right figure shows the corresponding computed potential
field forces.

of imitating humans a lot easier and finally manageable.

Apart from behaviour learning we discovered that the
problem of motion modeling is another integral part for im-
itation learning. In early experiments, we noticed that, al-
though the actions seemed reasonable, the motion of our arti-
ficial agent looked jerky and were more robot- than life-like.
Moreover there is a strong coupling between the actions a
human player performs and the actions he is motion-wise ca-
pable of doing. Artifical agent’s usually do not have such
restrictions, they can instantly turn and even aim perfect on
long ranges. Therefore the imitation of a human controlled
agent’s motion is necessary and poses another challenge.

On the one hand, we thus need to find approaches for
learning by observation what to do in a given game situation.
On the other hand, we have to find the appropiate, life-like
motion for doing so. An integration into a consistent frame-
work would be desirable.

Learning Strategies

In (Thurau et al. 2004a), we presented an approach for learn-
ing strategic behaviours. It realized goal oriented movement
in 3D, including situation dependent item pickups and area
control.

The approach consists of two parts. First, a topologi-
cal representation of the 3D gaming world is learned by
means of applying a Neural Gas Algorithm to the positions
P = [z,y, 2] a human player held during a match. Neural
Gasses extended the popular k-means clustering algorithm
and are especially suited for building topological represen-
tations (Martinez & Schulten 1991). In our case, the result
is similar to the widely used waypoint-maps. But since it is
data-driven, it provides an elegant and accurate way of gen-
erating waypoint maps corresponding to human gameplay.
Figure 4 shows an exemplary topological representation.

In a second step, Artificial Potential Fields are placed into
the topological map. These potential fields then guide the
game-bot. Since strategies change according to game-states,
the training samples are clustered in the state space of the
agent yielding prototypical game states. Here the game-state
includes information about the current items of the player
and his health and armor values.

For each such state a potential field force distribution
is computed which recreates movement patterns typically
observed in that state, Figure 5 shows a simple example.
Changes in the internal state of the agent cause switches
among the field forces and thus will lead the agent to other,
more attractive locations and items, thereby implicitly defin-
ing situative sequential item pickups as long-term goals.

To cope with known flaws of potential field approaches,
namely local minima and weak potential field forces on cer-
tain parts of the map, we make use of Avoiding the Past
Pheromone Trails (cf. (Balch & Arkin 1993)). These trails
reinforce a chosen direction and drive the agent out of lo-
cal minima. The obtained results were convincing. Strategic
behaviours, situation dependent item-pickups or preferences
for certain map areas could be learned and convincingly re-
produced.

Learning Tactics

Tactical behaviours were described as a smart localized be-
haviour. However, learning or imitating such behaviours is
not an easy task. It requires a broader understanding of a sit-
uation. For example, the observation of a human player am-
bushing an enemy player is itself a rather simple sequence of
actions. But in order to imitate it, it wouldn’t be enough
to copy the action sequence. Instead, underlying contex-
tual prerequisites to activate tactical behaviour have to be ex-
tracted. In the given example the enemy player might have
been entering a room with only one exit, thereby giving the
opportunity to ambush him. But learning such an understand-
ing for situations provides a great challenge.

Right now we are searching for an appropriate represen-
tation of such more abstract scene understanding. Unfor-
tunately, up to now there are only little known techniques
of how to approach that topic. Moreover, since we prefer a
data-driven approach to the imitation of tactical behaviours,
we do not want to label sample sequences or rely on com-
mon game Al methods like finite-state machines or scripting.
Recent work thus examined the application of Mixture of Ex-
perts architecture (Jordan & Jacobs 1994). In particular, we
studied the context dependent handling of different weapon
types. First results are encouraging, i.e. Mixture of Experts
architectures were observed to learn the handling of different
weapons; further experiments are necessary though.

Learning Reactive Behaviors

In (Thurau et al. 2003), we presented an approach for learn-
ing purely reactive behaviours (note that potential fields are
often referred to as reactive behaviours, but since we ef-
fectively model long-term goals with them, we discussed
them above). In QUAKE II®, reactive behaviours can be
characterized as a direct functional mapping of game states
8¢, 8:—1 ... 8;_p onto player reactions a. Typical reactive be-
haviours include aiming, shooting or dodging projectiles.

At first the training sample set is separated by letting a Self
Organizing Map (SOM) (Ritter et al. 1992) unfold itself into



Figure 4: A 3D map and its topological representation as an outcome of a Neural Gas algorithm

the game-state space (in (Thurau et al. 2003), the game-state
space consisted of the agent’s position and an enemy’s posi-
tion). Training samples are then assigned to a corresponding
SOM Neuron thus separating the data into different clusters.
In a second step, we trained Multi Layer Perceptrons (MLP)
for each cluster. Figure 6 provides a graphical presentation
of the described approach.

For each new game situation, the most similar prototypical
game-state from the SOM-Neurons is selected and its corre-
sponding MLP used for behaviour generation.Thereby sim-
ple reactive behaviours, aiming or movement in 3D, could
be learned. However, even after introducing time-dependent
Time-Delayed-Neural-Networks the approach is limited to
ad-hoc reactions to game-states. Long-term goals and plan-
ning of actions should be taken care of by strategical or tac-
tical behaviour models.

Motion Modeling

Although the approaches presented so far reproduce human
behaviours, the game agent’s motion often appears jerky and
can be easily distinguished from the smooth motions of a
human player. An artifical game agents motion is thus an
integral part of its appearance, for a realistic impression it
should be as human-like as possible.

Our approach to motion modeling from imitation is based
on movement-primitives (Fod et al. 2002). Movement-
primitives, as the basic building blocks of movement, can be
derived from a game agent’s motion vectors using Principal
component analysis (PCA). Thereby individual movement-
primitives for individual players are obtained. To discretize
a player’s motion, prototypical motion vectors are extracted
from the projections of the training-sample motion vectors
onto the eigenvectors (or movement-primitives), using a k-
means algorithm. Every single training sample motion vector
can now be described by a more general action primitive v
Usually a number of up to 800 action primitives is sufficient
and covers the set of possible motions very well. Choosing

less action primitives results in a more choppy movement,
however, larger numbers of action primitives didn’t lead to
an observable smoother recreation of movements.

Complex movements result from sequencing action prim-
itives. Since the right sequencing of action primitives, for
imitating a human controlled game agent’s motion, is given
in the training sample set, probabilities for the execution of
an action primitive can be extracted. Two transition matrices
are computed. One expresses interdependencies between ac-
tion primitives, the other expresses localized dependencies,
based on the position of the player in the topological repre-
sentation.

Given these matrices, the next action primitive to execute
is chosen according to a roulette wheel selection over the
probabilities for all action primitives. The probability for the
execution of a single primitive ¥; can be denoted as:

P - P0i| o, we)
S P(U|0, wy)

P(]7) P |wy,)
w1 P(0|0) P (0 |w)

where P(¥;|wy) denotes the probability of executing ac-
tion primitive v; for topological node graph node wy, and
P(v;|v7) denotes the probability of executing action primi-
tive ¥; as a successor of action primitive ©;. These prob-
abilities can be extracted from the training samples by in-
specting the observed action primitive sequence. Since
all probabilities can be computed in advance, the ap-
proach is computationally rather inexpensive, managing
to execute up to 20-30 action primtives a second in our
MATLAB® QUAKE II® client. A detailed analysis can be
found in (Thurau et al. 2004b).

Using this approach, we managed to imitate (or recreate)
complex sequences of motion. This includes not only sim-
ple movements, but also jumps over ledges and the infamous
rocket jump (a maneuver, where a player fires a rocket on
the ground and jumps at the same time, thereby reaching
otherwise unreachable places — considered an experienced
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Figure 7: Game-agent performing a long jump by means of movement primitives

player’s move). Figure 7 shows the artificial agent perform-
ing a long jump to an otherwise not reachable region. The
created movements appeared smooth and payed attention to
the observed human player’s style of movement, creating in-
deed life-like motion.

Conclusion

In order to create more human-like computer game agents,
we proposed the usage of imitation learning. Thereby fol-
lowing a general trend in robotics towards imitation learning
and following evidences in psychology on the importance
of imitation for behaviour development in infants. Unlike
other approaches in the field of machine learning in games,
we concentrate on the highly complex genre of Ego or First-
Person-Shooter games. These game types provide us with
an incredibly huge amount of training samples - records of

human player’s, being downloadable from the Internet. We
presented a comprehensive approach for the imitation of a
human controlled game agent for a FPS game.

First, we identified different behavioural layers, namely
strategic, tactical and reactive behaviours. Besides the be-
haviour learning, we clarified the importance and influence
of motion modeling on a life-like appearance of an artifi-
cial game character. Finally, we outlined suited approaches
for behavioural learning in each of the mentioned layers and
sketched our recent work on the topic of motion modeling.

Since human behaviour during a game is very complex and
rich of problems when it comes to machine learning, an arti-
ficial player that integrates all the techniques presented above
was not yet realized. However, from the results discussed in
this paper, it is reasonable to conclude that imitation learning
is a well suited method for behaviour generation of artifi-
cial game characters. Concerning individual aspects of game



play, our game-bots outperform conventional bots which are
driven by finite state machines or similar architectures. Bots
that learned by imitation definitely stay closer to what a hu-
man player is doing since they consequently rely on obser-
vations of human players. Therefore, we are convinced it is
worthwhile to further pursue this topic in order to see how
far imitation learning will bring game characters.
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