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Abstract—The game that is the focus for this study is a simple
turn-based strategy game used for competition in an AI class
at Innopolis University for two years. In this study, we continue
to investigate the game with evolved game-playing agents. The
space of the moose competition games is expanded and the
hypothesis that changing the resource profiles of the game will
lead to the evolution of different types of agents is tested. The
fields that the moose forage in may have enhanced rate of plant
growth or enhanced richness of plant biomass. Increasing these
parameters is found to decrease conflict between moose, after
a minimum level is passed, and enhancing richness is found
to modify moose behavior in intuitive ways. In some parts of
the resource model space, the agents exhibit negative density-
dependent selection that increases the rate of confrontation.
This study demonstrates that the family of moose games
provides a rich palette of different games for testing students
and agent AIs.

I. INTRODUCTION

Moose can be quite aggressive, though the bulk of this
aggression is targeted towards their own species; While living
in the wild, moose make use of their horns in order to fight
over potential mates and also ward away other moose from
what the moose considers to be their territory [10]. The game
that is used as the focus of this study places two moose in
competition for the resources available in three foraging areas
referred to as fields; each moose attempts to graze as much
as they can while behaving without regard for the needs of
the other moose. The game occurs over discrete time steps;
at a time step, each moose is given the option to choose one
of the three forage area fields and then attempt to gather the
resources that have accrued there. Each forage area uses a
logistic growth model in order to determine the rate at which
they replenish resources over many time steps. Once each
moose has chosen a field, the fields that have no more than
a single moose upon them increase the amount of resource
that they contain. If the moose finds themselves to be alone,
they take all of the resource in the forage area for themselves,
reducing it down to a baseline level. In the case where the
two moose both chose the same foraging area, they threaten
one another, tear up the area, waste some of the resource, and
gain none of it for themselves. Since untouched fields accrue
extra resources, this game creates a type of competition that
contains the potential for cooperation. Should the moose
forage in separate areas, then they gain access to forage
resources without wasting any of them. The most amicable
version of this competition would have each moose remain
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within one forage area – this totally avoids competition, but
also ensures that each moose gains the minimum single time
step value from the logistic growth model; the moose can add
these minimal values to their fitness while leaving the third
forage area alone. This third area forms a strong strategic
temptation over time as it continues to compile more and
more vegetation upon its field. Since the moose that attain the
most forage are the ones with the best reproductive success in
our model, the strategy of picking a field and sticking with it
is a poor one. That third forage area calls out to be exploited.
In this aspect, the moose game is similar to the classic
prisoner’s dilemma [11]; the similarity is drawn as mutual
exploitation of the third field ends up being detrimental to
both moose as they waste a time step fighting and ruin the
resource rich field. Meanwhile, exploitation committed only
by one moose grants them a considerable fitness advantage
over the other moose.

The moose game simulates interactions between two
moose. The environment in which the moose live contains
three fields in which they can forage. In these fields, various
vegetation grows in a sigmoid fashion, using a logistic curve
[16] given by Equation 1.

f(x) =
Cex

1 + ex
(1)

Where C is a parameter that creates an upper bound on
the amount of resource that can be contained within a field
should it remain undisturbed indefinitely. If the field has no
accessible vegetation at all, then the value of the vegetation is
given by f(0). It is assumed that the initial value of x for all
fields is x = 1 as each field has some vegetation prior to the
arrival of the moose. If no more than a single moose visits a
field, its vegetation continues to grow; if one moose is in the
field, then they harvest the available vegetation, immediately
resetting x to zero. When a moose harvests the resource of
field k, the moose eats the vegetation based on the amount
available and adds f(xk) − f(0) to its fitness values; the
vertical shift of −f(0) is used so that grazing upon an empty
field does nothing to benefit a moose’s fitness. If two moose
visit a field, then they will fight. Fighting is exhausting,
prevents either moose from eating, and damages the local
area. Neither moose adds any value to their fitness and x is
decremented by one for that field, down to a minimum of
zero. Since a field replenishes at the start of a time step, a
moose never has to graze upon an empty field.

Fig. 1 demonstrates how time steps of the moose foraging
game play out based on the decisions made by each moose;
Each row in the figure shows the state of each field at the end
of a single time step. The top row of fields shows the fifth
time step of the game; the two moose have been continually
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Fig. 1. A sequence of time steps which show two moose being in
competition upon the same field of resources and then splitting apart so
that they can both successfully forage.

fighting over the first field and, as a result, the other two
fields have become rich with resources. At the sixth time step,
both moose attempt to migrate to field three which is most
rife with resources; by doing this, the moose enter conflict
at field three. Neither moose gains any score to add to their
fitness and x3 is decremented. The other two fields that were
left undisturbed then increment their x values. At the seventh
time step, the moose cooperate as moose one and two migrate
to fields one and two respectively. Because they each have
their foraging field, the fitness of moose one and two are
increased by f(2)− f(0) and f(5)− f(0) respectively. The
lone field three increments x3 and once again becomes the
most desirable field for the moose to travel to during the next
time step.

The original work [1] contains the results of the contest
between student agents conducted for the Game Theory
course at Innopolis University. The students of 2020 and
2021 have participated in the contest, the average results of
the latter outperformed the first ones. It was claimed that the
communication limitations caused by COVID-19 could be
one of the reasons for this. Each pair of student agents have
fought between each other for 100 rounds. The payouts of
each moose for each game were summarized and compared
to others. It was found out that for a given set of agents the
most successful strategy assumes the application of farming
and resting fields to maximize the payoffs. The farming field
is required for eating vegetation; the resting field is required
for waiting when the farming field will become sufficiently
abundant in fodder. The students have demonstrated that the
most optimal field value for eating is 5 or 6. In case of strife
between moose, the winning agents were applying different
forms of greedy algorithms.

For the experiments within our study, we have not put any
limitations on the memory of the moose. The only limitation
was that a moose can only see the value of the current
field at the current move and know which field his opponent
attempted to forage at last time. The moose agents used in
this study play an iterated game, conditioning their choice
of which field to attempt to forage in on the field chosen by
their opponent previously chose and their own internal state.

This study investigates the result of making variations
to the base scenario of the moose game. These variations
include:

• altering the richness capacity C to Ck where k ∈
{1, 2, 3} so that it is different for each of the three fields.

• changing the growth rate so that x increments by more
than one when a field is left untouched.

With these variations, it has been investigated whether the
moose cooperate and conflict differently under these varia-
tions or if their behavior is indifferent to the settings of these
parameters.

The goal of the study is to finish characterizing the moose
game (MG) sufficiently so that it can be employed as a family
of games for use in evaluating the adaptability of different
sorts of AI. It is also anticipated that the MG can be used
as a suitable problem for the teaching of AI techniques.

The remainder of this study is structured as follows.
Section II gives background information. Section III specifies
the agent representation used to simulate the moose. Section
IV gives the experimental design while Section V gives and
discusses results. Finally, Section VI draws conclusions and
discusses next steps.

II. BACKGROUND

The MG is a turn-based strategy game, albeit a very simple
one, that involves resource management, in the form of the
logistic growth model for the plants. The first study on the
MG [1] demonstrated that there are a variety of strategies
that arise under the influence of evolution. Since the MG is
competitive, the fitness function used – total forage acquired
– does not have optima per se. Rather, for a given strategy
there are effective and ineffective opponents. The fact that
the MG has embedded conflict arising from the fact that the
field not chosen by either player in the last time step is the
most valuable property means that there is likely to be a rich
strategy space, something confirmed in the earlier study.

While an obvious generalization of the MG is to change
the number of fields or moose, in this study we will examine
the effect on the evolution of agents of changing the feature
of the simulation that has three identical fields as well as
varying the growth rate of the plants. The MG can be thought
of as simulating the emergence of instincts that can support
survival in a species that is territorial. In Moose, territoriality
arises from the animals need for large amounts of fodder to
support its substantial size. An adult, male moose is shown
in Fig. 2.



Fig. 2. An adult, male moose: credit Wikimedia Commons

III. REPRESENTATION

We employ a finite state representation for the moose
foraging behavior. An example of a 4-state machine is shown
in Fig. 3. The agents are represented as a linear list of
states with each state containing a response and transition
destination for all three possible actions, forage in fields 1-3.
The initial action is stored with the first state of the finite state
machine. The variation operators are two point crossover of
the list of states – with the initial action attached to the
first state – together with mutation [21]. The point mutation
generates a new, random, transition for one opponent action
on a randomly selected state. The number of mutations is
selected uniformly at random in the range 1-MNM . The
maximum number of mutations (MNM ) is set to 1 and
the number of states is set to 8 for this study, based on a
parameter study done in [1].

For games with a discrete set of moves, finite stare agents
are a common choice, [2] and, in this case, permit direct
comparison with the earlier study [1] where they were
also used. Other natural choices, deferred to the future, are
artificial neural nets [23], genetic programming systems [7],
or lookup tables [6].

IV. EXPERIMENTAL DESIGN

This study varies the growth rate of the plants in the
fields visited by the moose and C: the maximum amount
of forage that the model approaches, its richness capacity.
Faster growing plants may make staying in the same field a
more acceptable choice by decreasing the difference between
available forage. The logistic growth model means that a field
slows its growth the more forage there is in it, approaching
the richness capacity, but never reaching it; f(x) approaches
C as x → ∞, so C

2 is the largest amount of fitness that
can be gained from single grazing. Varying the capacity of

Fig. 3. An example of an evolved 4-state finite state machine. The
agent’s initial action appears on the sourceless arrow. Subsequent actions are
generated by transitions of the form A/R where A denotes the opponent’s
most recent action and R the agent’s response.

the fields simply means that there are better fields and worse
fields as the minimal value obtained by a better field will
be better than the minimal value of a worse field based
on f(x) − f(0). Making some of the fields more desirable
changes the strategic equation. Table I specifies the choices
made for each parameter in each experiment of this study.

TABLE I
PLANT GROWTH RATES AND FIELD CAPACITIES USED IN THE

EXPERIMENTS IN THIS STUDY

Experiment Growth Field
Number Rate Capacities
1 1.0 10 10 10
2 2.0 10 10 10
3 3.0 10 10 10
4 1.0 10 10 20
5 1.0 10 10 30
6 1.0 10 20 20
7 2.0 10 20 20

A. The Evolutionary Algorithm

The experiments with the finite state moose agents used
a population of 36 agents. Fitness evaluation consisted of
a round-robin tournament with each pair of moose playing
fifty rounds of the MG. The fitness of a single agent is equal
to the average score they achieved against all opponents and
games so that the units of fitness are the same as they would
be for one play of the game.

Using the representation and variation operators described
in Section III, agents were evolved for 250 generations with
30 replicates of the evolutionary algorithm in each exper-
iment. The evolutionary algorithm updates the population
of 36 agents by preserving the 24 most fit, the elite. The
remaining 12 agents are then replaced via fitness proportional



selection of pairs of parents from the elite. The parents are
copied, and the copies undergo crossover and mutation to
generate children. This evolutionary algorithm has been used
in numerous past experiments with game-playing agents, e.g.
[2], [3].

B. Reporting Statistics

The reporting statistics used are the total fitness of the
evolving population and the fraction of plays of each possible
type x : y with the x and y being the fields chosen by
the two moose playing. The total fitness is the area under
the curve traced out by average fitness over the course of
evolution, shown in Fig. 4. Total fitness provides a single-
statistic estimation of the efficiency of the moose agents at
extracting bio-energy from their environment, though it will
also reflect the result of increasing plant growth rate and field
capacity.

V. RESULTS AND DISCUSSION

Fig. 5 shows the distribution of total fitness for each of
the experiments. The first three experiments increase the
growth rate of the plants. As this parameter is increased, the
average fitness (acquired forage) for the moose increases.
Experiments four and five increase the capacity for a single
rich field; this leaves the moose in Experiment four in
slightly worse shape than the somewhat faster-growing plants
in Experiment two, yet still well above base example in
Experiment one. Increasing the maximum vegetation of the
rich field from 20 to 30 between Experiments 4 and 5
has a substantial effect, yet it also proved to be the wild
and varying in total fitness results. Experiment six has two
richer fields, as does Experiment seven which also ties in a
higher growth rate for the plants. These experiments show
an increase in the rate at which the moose acquire forage, a
substantial and significant one for Experiment 7.

The distributions of fitnesses shown in Fig. 5 demonstrate
that the moose are responding to the availability of forage

Fig. 4. Shown is a graph of the population average fitness of evolving
moose agents in one run of the evolutionary algorithm. The shaded area
under the curve is the total fitness for the experiment.

in a plausible manner. The serves as a check that the agent
training algorithm is functioning nominally. With this check
on the system accomplished it is time to turn to the conflict
statistics.

Fig. 6 shows the fraction of encounters between moose
that occurred in the same field. Experiments 1-3 test the
hypothesis that faster-growing plants will decrease conflict.
Between Experiment 1 and Experiment 2 the average level of
conflict increased, but became much less variable. The level
of conflict in Experiment 3, with the fastest-growing plants,
was significantly lower. At the higher end with Experiment 7,
faster-growing plants do decrease conflict. With Experiment
4-6 where the fields were given different capacity values,
there was no clear trend regarding whether incidents of
conflict increased or decreased. It ought to be noted that
Experiment 5 had the highest number of conflict incidents;
this is presumably due to the one field being so much more
valuable and the moose repeating competing over harvesting
from it.

Fig. 7 shows the fraction of all moves made that are in
fields one, two, and three for each of the experiments. The
first three experiments have all the fields of equal richness
and so, nominally, should have roughly one-third of all plays
in each field. This is, in fact what happens, certifying that
the system is behaving well. This lets us turn to the four
experiments with fields that have enhanced richness.

Experiments four and five increase field three to have an
upper limit on plant growth of 20 and 30, up from 10. The
statistics from these two runs are very close. This means that
fraction of moves on the enriched field changes by about the
same amount in spite of the greater richness of the field
in Experiment 5. Looking back at Fig. 6, however, we see
that the variability of conflict between the runs increases
substantially between Experiments four and five. This means
that the fraction of coordinated moves in which both moose
try for field three has increased substantially. This may also
explain why the increase in total fitness in Fig. 5 between the
fourth and fifth experiments did not increase in proportion
to the increase in the richness of the enhanced field.

Experiments six and seven increase the richness of fields
two and three to 20. Experiment six left plant growth rates
at the minimum level, while Experiment seven doubled the
growth rate of the plants. First of all, the use of the field
without enhanced richness was low in Experiment six and
very low in experiment seven. Recall that the source of the
conflict among the moose is the third, unexploited field.
Considering field one as the least desirable and hence “third”
field, the sharp decrease in conflict (Fig. 6) in Experiment
means that the strategy of each moose sticking to a field is
made practical by the lowered desirability of the third field.

Experiments one through three tested the hypothesis that
increasing the growth rate of plants will decrease conflict
and found that the hypothesis has support after a threshold is
passed. Experiments six and seven provide additional support
for this hypothesis – conflict dropped sharply between growth
rates of 1.0 and 2.0 – and the threshold appears to be in



Fig. 5. Shown are the distribution of total fitness values for each of the experiments.

Fig. 6. Shown are the distribution, across experiments, of the fraction of
plays that involved conflict. The nominal rate is 1/3, so the moose always
managed to avoid one another somewhat.

a different place when there are two fields with enhanced
richness. This is a matter that could be profitable to studies
done at greater resolution.

A. Pattern of Conflict During Evolution

The experiment with the highest rate of conflict was
Experiment five, performed with a single field with richness
enhanced to 30. We examined the trajectory of both fitness
and percent of encounters involving conflict over the course

Fig. 7. Shown are the distribution, across experiments, of the fraction of
plays of each type. The blue bar is the fraction of moves made to field 1,
red bar for field 2, and green bar for field 3.

of evolution. Three examples of such traces appear in Fig. 8.
The high conflict runs were those like that in the middle of
the figure – a pattern of sawing back and forth – which turns
out to have a simple cause.

Negative density-dependent selection [15] is a situation
in which the rarer of two species is more fit, as a result
of its rarity. This causes the rarer species to have a higher



Fig. 8. Shown are the evolution of average and maximum fitness (left) and percent of encounters where moose were in conflict (right) for three of the
evolutionary runs (21, 12, and 27) in Experiment 5, which had the highest levels of conflict.



reproduction rate, setting up the kind of irregular oscillations
seen in the second population shown in Fig. 8. At least six
of the thirty populations showed this behavior.

In this case, the mechanism of fitness as the result of
rarity are two types of agents that access the enriched field at
different times during the iterated play. Possibly splitting odd
and even rounds or some more complex pattern. That means
that, of these two types, the rarer one is more often granted
untrammelled access to the enriched field as it is paired with
agents of its own type less often.

VI. CONCLUSIONS AND NEXT STEPS

This study shows that for the most part, that the MG
game responds in an intuitive way to the modification of
its resource parameters. The hypothesis that increasing the
growth rate of plants would reduce conflict turned out to be
correct for portions of the plant growth rate parameter range,
but was more complex. The increase above the nominal rate
from Experiment 1 first increased conflict and substantially
increased the variability of conflict. The additional increase
did reduce conflict, this being seen in the first three exper-
iments. Experiments six and seven also increased growth
rates, but with two enriched fields. Here, the first increase
in the plant growth rate yielded a large decrease in conflict.

Enhancing the richness of fields caused those fields to be
more valuable. When both field richness capacity and plant
growth rate were enhanced, this caused a de facto change
in the strategic equation with the one field without enhanced
richness becoming almost worthless in Experiment 7 (Fig. 7).
These two parameters – field richness given by C and the
growth rate represented by the per-time-step increment of the
parameter x create a rich collection of games with distinct
strategic landscapes.

A. Classroom Use of the MG

The MG emerged as an exercise for an AI in games
class. The basic game, using the parameters in Experiment
one, was used in contests for two years. This was part of
a greater experiment in the encouraging of active learning
techniques [18], [20], [24] due to their ability to increase
student engagement and outcomes [12], see also GAs applied
to computer art [8]. These techniques are difficult to employ
in a mathematics or science framework [9]. The broadening
of the game in this study suggests that the game can provide
a good unit in an AI class and may be usable as a challenge
for generalization in AI.

In a classroom setting, after explaining the game to the
students, the instructor can ask the students to devise and
defend strategies before having them compete in a tourna-
ment. The generalizations of the game given in this study can
be used as thought experiments where the students predict
the outcome of the modifications; the impact of increasing
growth rate is not linear. The students can then be asked to
test their hypothesis experimentally.

As seen in [1], the role of discussion of MG cannot
be overestimated. The students of the second year had
more opportunities for offline communication in comparison

with the first-year students obliged to study remotely. For
classes with many participants division into mini-groups for
discussion of agents may be useful, because students can
begin cooperating against other groups supporting their group
members by choosing some secret “handshaking”. This idea
of division into teaching groups for cooperation was used by
some students for getting a higher ranking in the contest.

B. As an AI Challenge

General game playing [13] seeks to find AI that can learn
games while playing them, allowing a single AI to be a gen-
eral game player. This is a very ambitious goal. Restricting
the scope of the games to video games [19] or mathematical
games [5] can yield a more accessible goal. The MG forms
a family of target games with a small number of moves (the
number of fields) but also with distinct strategies in different
versions of the game. This is a relatively easy test problem
in which to test AI generalization.

The generalization can be carried well beyond those in this
study by increasing the numbers of moose and fields. A game
with three fields and five moose would, for example, force
conflict. In this study, different fields could have different
richness, but all plants in the simulation had a single growth
rate. The richness of the soil, access to water, and other
natural factors make different growth rates in different fields
plausible and this is not a feature that would be difficult to
add to the simulation.

Finally, the moose could be placed in a natural area with
an entire network of fields. A moose could see the occupancy
and richness of adjacent fields, creating a strategic game
with a complex resource model that might include seasonal
variation in the plant growth. The game could be given
additional variation by introducing natural predators to the
moose that would roam between the fields. These predators
would penalize the fitness of the moose if they stop in the
same field as them.

C. The Empire Skin

The MG could be re-skinned into a more dramatic setting
by replacing moose with army units and fields with small
states or free cities on the border between two empires.
Border realms left alone increase their wealth. Armies both
trying to pillage the same border realm get no plunder and
substantially reduce the wealth by fighting a battle. This skin
may be of more interest to games researchers as it is closer
to extant games.

A historical precedent occurs in the fights between the
Guelphs and Ghibellines, especially the War of the Oaken
Bucket, between the Italian towns of Bologna and Mod-
ena. This conflict, which, with the exception the Battle of
Zappolino, was primarily small skirmishes and raids on the
borders between the city states [14]. The attacks on actual
cities would require large sieges in this time period as the
cities had massive defensive walls, hence attacks upon the
outlaying farms and villages would weaken the defending
forces without much of your own expenditures in terms of
resources while also providing resources and plunder to the



attacking forces. We see also similar themes in the comments
of Sun Tzu [22] on utilizing the provisions of the enemy1,
and on the avoiding of sieges2, hence another theme for the
MG mechanics could be the warlord periods of the Eastern
Zhou period of China.

This themeing to be made into a producible board game
would require a few changes to the mechanics, such a
simplification of the field/farm production rules over time to
whole values in order to allow for a token representation, and
a method of ensuring a hidden deployment of forces; hidden
moves are a common mechanic in a number of existing
games and this should not pose a hard implementation issue.

D. Representation of Moose Agents

In [4] it was found that the collection of strategies that
arise under evolution in the iterated prisoner’s dilemma is
substantially controlled by the representation, finite state
machine, neural net, etc., chosen by the researcher. In [17] it
was found that computational or informational resources, like
the number of neurons or depth of reporting of past plays,
could also substantially influence which strategies arose.

Prisoner’s dilemma is a very simple game. A hypothesis
that the authors do not think is true is that in a more complex
game, representation and resources would have less of an
impact on the outcome. The family of moose games is a
more complex environment in which this hypothesis could
be tested.
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