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Abstract—In this work, an autonomous agent based on rein-
forcement learning is implemented in a digital fighting game.
The implemented agent uses Fusion Architecture for Learning,
COgnition, and Navigation (FALCON) and Associative Resonance
Map (ARAM) neural networks. The experimental results show
that the autonomous agent is able to develop game strategies
using the experience acquired in the matches, and achieves a
winning rate of up to 90% against an agent with fixed behavior.

Index Terms—fighting game AI, game AI, reinforcement learn-
ing, neural networks

I. INTRODUCTION

Electronic games are a form of entertainment that has

been gaining more and more consumers, especially with the

increasing ease of access to electronic devices worldwide.

With the introduction of the possibility to play with others

over the internet, competitive games have gained more space

in the market [1].

Currently, the behavior of computer-controlled agents

in commercial games is usually fixed, with scripted pre-

programmed strategies. This makes playing against these

agents increasingly distant from the experience of playing

against a human opponent. For competitive players, this fixed

behavior causes them to acquire bad playing habits when

training against the machine. In addition, as the machine starts

to have predictable reactions, the gameplay becomes repetitive

and predictable [2]. The developer, responsible for creating

these scripts, needs to anticipate about every kind of situation

possible in the game environment, which requires effort [3].

The development of this work is motivated by the possibility

of implementation of an artificial intelligence technique that

makes the machine capable of learning and developing game

strategies with certain autonomy. In this way, it can adapt to

Identify applicable funding agency here. If none, delete this.

the way players play the game. This machine behavior has

a positive impact on the game’s gameplay by iterating over

players’ input — which is constantly changing — to offer

new tactics and new challenges for the player to overcome

and improve their skills [4].

The objective of this work is to develop an autonomous

agent based on reinforcement learning for a digital fighting

game. It is implemented using Fusion Architecture for Learn-
ing, COgnition, and Navigation(FALCON) and neural net-

works Associative Resonance Map(ARAM). The experimental

results show that the autonomous agent is able to develop game

strategies using the experience acquired in the matches, and

achieves a winning rate of up to 90% against a fixed behavior

agent.

In section 2, work related to the proposal of the present

study is discussed. Section 3 presents the theoretical frame-

work used. In section 4, the game used in this work, Fighters
Arena is presented. In section 5, the implementation of the

proposed agent is detailed. In section 6, the experimental

methodology is presented. In section 7, the experimental

results are presented. Section 8 presents the conclusion.

II. RELATED WORK

In this section, related work from the technical literature

on the topics involved in this work are presented: machine

learning and its use in digital games.

In the work of P. G. Patel, N. Carver, and S. Rahimi

[5], the authors discuss the implementation of artificial in-

telligence techniques in commercial digital game agents and

point out that generally the logic of simple routines is used.

Considering that the challenges and requirements for digital

game developers are similar to those of the academic artificial

intelligence community, the authors develop an abstraction of

the game Counter Strike with agents that simulate players
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using artificial intelligence based on Q-learning. With test runs

performed using these agents, it was possible to note that

their performance is superior to that of fixed-behavior agents,

and that using Q-learning, agents were able to learn various

behaviors based on the reward they get from their actions.

In the work of M. R. F. Mendonça, H. S. Bernardino, and

R. F. Neto [4], the authors implement two forms of machine

learning in a fighting game using Neural Networks — with and

without Q-learning — for game agents to simulate a human

player. The methods are assigned a reward function proposed

by the authors and the results are compared with two other

forms of machine learning. The results of the experiments

indicate that the methods using Q-learning achieve better

performance with human players when compared to other

existing methods.

The authors S. Saini, P. Chung, and C. W. Dawson [1]

have developed a way for an avatar to learn and replicate a

player’s playing style. Their method is to analyze the data

and separate it as tactical and strategic data. A Naı̈ve Bayes

classifier is used to classify tactics for specific states, and a

finite state based data machine to dictate when certain tactics

are used. Implementation results were positive, but limitations

were noted as to the number of variables that can be analyzed

due to the use of a finite state machine. It is concluded that

facing this avatar may seem repetitive in relation to a human

player due to the indiscriminate way in which actions are

chosen, regardless of errors and preferences.

In the work of G. Andrade, G. Ramalho, H. Santana, and V.

Corruble [6], the authors implement an agent using artificial

intelligence for a fighting game using Q-learning, and justify

its use for simplicity and good results. The implementation

proposed in the work uses a difficulty balancing system in

which, given a situation, instead of using the best known

option or a random option for learning, it uses actions that

match the skill level of the player it faces.

In the work of A. Carpenter, S. Grossberg, and D. B. Rosen

[7], a variation of the fuzzy Q-learning algorithm for training

an intelligent agent to play Ms. Pac Man. In the strategy used,

the agent analyzes the current situation of the game, considers

variables that contribute to the situation in which he finds

himself, and makes decisions based on these values.

In the work of D. Wang and A. H. Tan [8], the FALCON

architecture (Fusion Architecture for Learning COgnition and
Navigation) is used to implement agents in the game Unreal
Tournament in real time, using fuzzy ARAM neural networks

and combinatorial operations for comparison between the

two methods. The implemented agents are able to develop

strategies and explore the effectiveness of different combat

tools in the game without any human intervention. With the

knowledge absorbed by the agent, he is able to adapt to a new

opponent or a map unknown to him in a short period of time.

In the work of A. R. da Silva and L. F. W. Goes [3],

a FALCON network is used to implement an agent capable

of playing the digital card game Heartstone using machine

learning. The agent is trained in matches against agents using

AI based on Monte Carlo Tree Search. The agent develops

the ability to achieve an average 80% winning rate in matches

against the same agents used in his training.

The work presented in this section, as well as the present

study proposes, explore the use of artificial intelligence in

digital games. Most of the work cited study competitive games

or specifically fighting games, with the purpose of presenting

the player with diversified and adaptive experiences, instead

of the predictable ones widely used commercially. As in

this article, the proposed work involve the development of

adaptive gaming experiences. However, in the present study,

a strategy closer to the work of [8] is used, in which the

proposed agent performs actions that describe a behavior, and

the neural network specializes in deciding which action is most

appropriate given the current situation in that the agent is in

the game.

III. THEORETICAL FRAMEWORK

A. Machine learning

The reinforcement learning method consists of an artificial

intelligence technique in which the agent learns to solve a

given problem from his experiences of previous actions. As

illustrated in Fig. 1, from the perceptions of external stimuli

(s) of the environment, the selected actions generate signs of

reward (R (s, a)), which can be positive or negative. negative

depending on the results of the action performed [4] [5].

Fig. 1. Standard reinforcement learning model.

B. Q-Learning

Q-Learning is a reinforcement learning technique in which,

based on a set of states, a set of actions and a reward

function, it is possible to obtain a quality metric for each action

performed in each state. States are sets of actions possible by

the agent. Actions act as transitions between states, while the

reward function is a quality metric of the result of the chosen

action. This metric is Q-Value. The Q-Values are stored in

a table called Q-Table. When making a change of state, the

reward obtained changes the weight of this transition between

states in the Q-Table, which, with training, becomes more

accurate in predicting the result of each transition between

states. The equation used to update the Q-Value is shown in

(1). The γ parameter is the discount factor (0<γ <1), used

to give preference to more recent rewards; The α parameter

is the learning rate. The variable (t) is the current time, (s) is

the external stimulus, and (a) is the selected action [4] [9].
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Q(st, at) = (1−α)×Q(st, at)+α×(rt+γ×max
a

Q(st+1, a))

(1)

C. Artificial Neural Networks for Reinforcement Learning

An Artificial Neural Network (ANN) is a model composed

of interconnected elements (neurons). Each neuron receives a

series of input stimuli that result in an output value, a process

based on the weights associated with the input values of the

stimuli. ANN works in two modes: training and execution.

In training, several input values are presented for the ANN,

as well as the desired output. For each situation presented,

ANN modifies its internal weights to obtain the desired output.

With this mechanism, the ANN finds a relationship between

the input values and the output variables, and becomes able to

predict the output values from a given input based on modeling

the internal relationships between neurons. In execution mode,

the internal weights aren’t modified by the outcome [4].

1) ARAM networks: Adaptive neural networks, such as the

fuzzy Associative Resonance Map (ARAM) and the fuzzy

Adaptative Resonance Theory Map (ARTMAP), are used in a

variety of applications, from computer vision to game agent

control. These networks allow the agent to adapt to various

scenarios according to their needs. This behavior can be useful

if the environment that interacts with the agent is not known

or is partially known. They are based on Adaptive Resonance

Theory (ART) modules that communicate with each other to

form an associative memory, thus allowing the mapping of the

environment. ART fuzzy networks that describe feature fields

that interact between layers are known as multi-channel fuzzy

Feature Field System (FFS). In general, the multi-channel FFS

fuzzy networks have two layers: F1 and F2, as can be seen in

Fig. 2.

Fig. 2. ARAM architecture. Source: [10]

As seen in Fig. 2, the F1 layer (features), is where features

are extracted from the environment and arranged in a coherent

way. The F2 layer (categories), maintains a multidimensional

pattern that has the function of connecting all fields of features

of F1 in F2 using neurons. The network receives stimulus

signals from the environment as input. These signals are then

transformed into a feature vector, which is transferred to the

elements of F1 [3] [11].

2) FALCON architecture: The FALCON architecture (Fu-

sion Architecture for Learning, COgnition, and Navigation) is

proposed in [10]. It employs a 3-channel architecture, compris-

ing a sensory field, which represents states of the environment;

a motor field, which represents the possible actions; and a

feedback field representing reinforcement values. FALCON is

a self-organized neural network based on ART, which means

that it is able to evolve systematically to incorporate new

information [3].

There are two main processes for using FALCON networks:

retrieving knowledge and updating knowledge. When it is nec-

essary to retrieve knowledge, we insert the vectors currently

known from the input fields to retrieve the corresponding

winning code. The winning code is the one with the highest

activation value among all the codes that fill the network.

When it is necessary to learn knowledge, we present all vectors

of the three input fields and execute the knowledge retrieval

process to find the winning code. The information presented

is used to update the weights of the winning code. If there

is no code on the network that meets the vigilance criteria,

FALCON automatically creates a new code for future use.

Thus, FALCON dynamically expands its network architecture

in response to new entry standards in progress [8] [3] [10].

A FALCON network has 7 sets of meta-parameters. These

parameters are: i) vigilance standards, {ρ 1, ρ 2, ρ 3 }; ii)

Learning rate parameters, {β 1, β 2, β 3 }; iii) Contributing

factors, {γ 1, γ 2, γ 3 }; iv) Choice parameters {α 1, α 2,

α 3 }; v) Learning rate parameter α; vi) Learning discount

parameter γ; vii) Selection policy threshold ε [8] [3] [10].

IV. FIGHTERS ARENA

For this work, the competitive fighting game in development

by the author called Fighters Arena is used. In this game,

matches involving 2 to 4 players - human or machine con-

trolled - are carried out in three-dimensional arenas with top-

down view as illustrated in Fig. 3. The player can select one

of several characters available. These characters share basic

actions, such as walking and defending, but have different

characteristics, such as: size, speed, attack animations, attack

damage, etc. In a match, the players face each other in a fight

in which the objective is to hit the opponent until their health

bar depletes, which causes the player to be eliminated from

the competition. A player is declared the winner when they

are the last fighter remaining.

The game used in this work has an implementation of

an avatar with fixed behavior for players controlled by the

machine. In this work, it was proposed to implement a new

methodology for the behavior of these players controlled

by the machine using neural networks in order to make a

comparative analysis of these two methodologies.

V. AGENT DEPLOYMENT

An agent in the game Fighthers Arena needs to perform a

three-step process to be functional: i)It must be able to perceive

the game environment; ii)It must process this information to
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Fig. 3. Example of a match in the game Fighters Arena.

analyze what action should be taken; iii)It must perform the

chosen action.

A. Neural Network Architecture

For the implementation of the agent, a neural network

with FALCON architecture was used. The agent chooses an

opponent at random, and the game environment variables

analyzed by the network are:

1) The action the opponent is currently performing.

2) If the agent’s special bar is full.

3) If the opponent’s special bar is full.

4) If the opponent is in a state that allows interruption into

another action.

5) The remaining time of the opponent’s current animation.

6) If the opponent is defending.

7) The distance to the opponent.

8) The difference between the agent’s rotation and the

direction the opponent is in relation to them.

9) If the agent is in a state that grants invincibility.

10) If the opponent is in a state that grants invincibility.

11) Whether or not the agent is defending.

The continuous input values are all normalized in the

range [0, 1]. Logical values are 0 for false and 1 for true.

Eleven basic actions were defined, as shown in Table I, which

represent strategies that can be performed by the agent. One

more field is used for the reward, which is calculated from

the reward function at the end of each action and used in the

learning process.

The reward function returns from 0.8 to 1.0 if the agent hits

the opponent, being greater the more damage is inflicted; 0.6

if the opponent attacked and missed the agent or if the agent

defends an attack by the opponent; and 0.1 if the agent was hit

by the opponent. Any other situation results in a 0.5 reward.

No reward 0 was used, as no action is completely dependent

on the agent, so it was disregarded.

The agent is implemented in the game using the same

structure that the fixed behavior agent and the human player

use to interact with the game, making their ability to input

commands and perform actions compatible with the rules that

the game defines. In other words, the commands performed in

TABLE I
LIST OF AGENT STATES AND THEIR RESPECTIVE BEHAVIOR

State Behavior
jab Approach the opponent and use a standard sequence

of 3 light, fast, short-range attacks.
tilt Approach the opponent and use a light, fast, short-

range directional attack.
strong Approach the opponent and use a strong attack that

hits around the character and has a medium duration.
strongTilt Approach the opponent and use a strong attack that

is slow but has long range.
keepDistance Move away from the opponent and use projectile

moves from a safe distance.
punish Quickly approach the opponent with a swift attack.

roll Roll backwards, which grants intangibility from in-
coming attacks during the animation.

retreat Retreat from the opponent using defensive movement
options.

grab Approach the opponent and use a grab move, effec-
tive against a defending opponent.

shield Defend.
charge Approach the opponent and use the ”charge” attack,

which is invincible at the beginning of the animation.

the game by the network can also be carried out by a human

who makes the same decisions.

B. Agent Algorithm

The three steps of the implemented agent routine use the

following routine: starting from an initial state, the game

environment is obtained through sensors. The algorithm then

selects an action through a selection policy that, initially,

encourages the exploration of possible options, partially in-

dependent of the knowledge already acquired. The results of

these actions are used to calculate the reward for each action in

each environment setting. As more knowledge is acquired, the

network tends to choose actions that tend to result in greater

reward. The chosen action is performed until the agent hits the

opponent or is hit by the opponent. This event is then analyzed

and the reward is calculated based on the result, thus ending a

three-step routine cycle. The network interprets this sequence

and updates its internal weights, generating knowledge. The

routine is then repeated from the beginning.

VI. METHODOLOGY

In this section, the methodology used for the experiments

of this work is presented.

A. Experiment setup

The test environment was designed so that there was a focus

on the performance of the network and its learning process,

limiting the number of variables and situations. To this end, the

developed agent was picked to fight against a single opponent

using a script with fixed behavior programmed using a greedy

strategy. Both agents use the same character, which is designed

to be the most versatile and neutral in terms of abilities, with

no polarizing characteristics in their design. The arena selected

for the battles is a rectangular room completely closed and

without obstacles, unevenness of terrain or external elements
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that might interfere in the battle, to avoid interference that

could alter the results in a random fashion.

All experiments were performed on an Ubuntu Linux in-

stalled on an Intel i5-6500 with 4 threads and 8 GB of memory.

The code for the proposed agent was implemented in C# on

the Unity engine as a component of the game, which was run

at 4 times its standard speed (240 frames per second).

B. Choice of parameters

To carry out experiments in behavior modeling, it is nec-

essary to configure the FALCON parameters. The parameters

used are listed below.

Vigilance parameters {ρ1, ρ2, ρ3 } are defined as {0.9;

0.9; 0.8 }. Since most of the attributes in the state vector are

Boolean, we set ρ1 to a high value to preserve a certain level

of integrity of the knowledge learned. At the same time, ρ1 is

not defined as 1.0 to allow for the compression of knowledge

and to obtain a certain level of generalization. ρ2 was set to

0.9 for the field of action to ensure accurate combinations of

Boolean variables. The reason for defining ρ3 as a high value

for the reward field is to ensure effective learning for all similar

action-state pairs. At the same time, ρ3 is defined as a lower

value than the others in order not to completely associate the

action-state pairs with the result, since it does not depend only

on the agent.

The learning rate parameters {β1, β2, β3 } are defined as

{0.2; 0.2; 0.1 }. Since the reward is immediate, β1, β2 and

β3 are defined as low values for slower learning. Contribution

factors {γ1, γ2, γ3 } are defined as {0.5; 0.5; 0.5 }, so that

the most recent learning is always more relevant than the past

learning, meaning the agent adapts quickly to the opponent’s

strategy changes.

The choice parameters {α1, α2, α3 } are defined as {0.5;

0.5; 0.5 }. This was done to avoid any kind of invalid calcu-

lation. The learning rate parameter α = 0.5 and the learning

discount parameter γ = 0.5, which are values generally used

in the literature [8]. The selection policy threshold ε is initially

set to 1.

C. Simulations

In order to analyze agent performance and network learn-

ing, three groups of tests were performed. In each group, a

new agent was trained following the algorithm described in

Algorithm 1.

Each group was used to test the autonomous agent in

matches against the fixed behavior agent, performing 50, 100

and 200 matches, respectively. The selection policy threshold

ε was reduced linearly at the end of each match so that, in

each group, in the first half of matches it was positive and

the agent explored more options. In the second half of each

group’s matches, the agent used only the knowledge previously

acquired. At the end of each game, the values of proportion of

remaining life of the autonomous agent and number of neurons

in the network used by the autonomous agent were counted.

Algorithm 1 Agent learning

Start: Initialize the network with the defined parameters and

weights with neutral value

while Game running do
Select and perform an action using the network in accor-

dance with the selection policy;

if An attack by the autonomous agent or his opponent

hits then
Update the network’s internal weights;

end if
Decrement the value of ε

end while

VII. RESULTS

The results obtained with the simulations are shown in Fig.

4, 5 and 6.

The values of the first half of the simulations matches had a

greater standard deviation than the second half: 0.21, 0.19, and

0.20 for the first halves, 0.18, 0.17, and 0.19 for the second

halves. This behavior was expected, considering that the agent

was induced to explore more options in the first half and to act

based on his previous knowledge in the second. Despite this,

the second half of the matches is also not entirely consistent.

This is due to the fact that, although the autonomous agent

decides for actions that, from experience, would bring better

results, it depends on the fixed-behavior agent to select an

action that makes the result successful. Through observation

of the execution of the experiments, it was possible to note that

the autonomous agent was able to learn to react in a similar

way to the optimum predicted for the situations in which

he found himself during the matches. The autonomous agent

achieved a winning rate of 90%, 84% and 89%, respectively,

in the test groups. The average life remaining at the end of

group matches was 37%, 28% and 37%, respectively.

Regarding the network used in the implementation of the

agent, the number of neurons in the network of each test

group is shown in Fig. 7, 8 and 9. Through the observation of

the graphs, it is possible to notice that the progression in the

number of neurons was of as expected. In all test groups, at

first, the rate of growth of the number of neurons was high. As

more matches were performed and situations similar to those

already known to the autonomous agent were presented, this

growth rate decreased until it approached zero. The number of

neurons was higher in the test groups in which more matches

were performed because, as a result of the greater number

of matches, the agent was in contact with more different

situations.

VIII. CONCLUSION

From the results of the experiments, it can be said that it

was possible to implement the artificial intelligence technique

based on reinforcement learning that made the machine capa-

ble of learning and developing game strategies with a certain

autonomy. It was able to adapt to the fixed-behavior agent’s

strategies. The agent’s performance was satisfactory in view

51

Authorized licensed use limited to: Aizu University. Downloaded on August 07,2021 at 15:33:08 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 4. Remaining agent life x Matches. Each point on the Y axis
represents the average remaining life of the autonomous agent over 5
matches.

Fig. 5. Remaining agent life x Matches. Each point on the Y axis
represents the average remaining life of the autonomous agent over 10
matches.

Fig. 6. Remaining agent life x Matches. Each point on the Y axis
represents the average remaining life of the autonomous agent over 20
matches.

of the high rate of victories obtained by the autonomous agent

in the experiments carried out.

As for the network used, its complexity was sufficient

for there to be an efficient learning. At the same time, the

network has not become complex enough for its logic to

impact performance when run in conjunction with game logic,

in real time.

To continue this work, complementary networks can be used

for each of the states of the main network, in order to make

the agent optimize the actions it performs in each of the states.

This procedure can contribute to the results, for example, with

Fig. 7. Number of neurons in the network used by the agent x Matches,
for 50 matches.

Fig. 8. Number of neurons in the network used by the agent x Matches,
for 100 matches.

Fig. 9. Number of neurons in the network used by the agent x Matches,
for 200 matches.

the optimization of the attacks executed by the agent at a time

when it selects an offensive action.
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