
Monte-Carlo Tree Search Implementation
of Fighting Game AIs Having Personas

Ryota Ishii
Graduate School of Information

Science and Engineering
Ritsumeikan University

Shiga, Japan
is0245ve@ed.ritsumei.ac.jp

Suguru Ito
Graduate School of Information

Science and Engineering
Ritsumeikan University

Shiga, Japan
is0202iv@ed.ritsumei.ac.jp

Makoto Ishihara
Graduate School of Information

Science and Engineering
Ritsumeikan University

Shiga, Japan
is0153hx@ed.ritsumei.ac.jp

Tomohiro Harada
College of Information Science

and Engineering
Ritsumeikan University

Shiga, Japan
harada@is.ritsumei.ac.jp

Ruck Thawonmas
College of Information Science

and Engineering
Ritsumeikan University

Shiga, Japan
ruck@is.ritsumei.ac.jp

Abstract—In this paper, we propose a method for implementing
a game AI with a persona using Monte-Carlo Tree Search
(MCTS). Video games are now a powerful entertainment media
not just for players but spectators as well. Since each spectator
has personal preferences, customized spectator-specific gameplay
is arguably a promising option to increase the entertainment
value of video games streaming. In this paper, we focus on
personas, which represent playstyles in the game, in particular
fighting games. In order to create an AI player (character) with
a given persona, we use a recently developed variant of MCTS
called Puppet-Master MCTS, which controls all characters in
the game, and introduce a new evaluation function, which makes
each character take their actions according to the given persona,
and roulette selection-based simulation to this MCTS. The results
of a conducted experiment using FightingICE, a fighting game
platform used in a game AI competition at CIG since 2014, show
that the proposed method can make both characters successfully
behave according to given personas, which were identified by
participants – spectators – in the experiment.

Index Terms—Monte-Carlo tree search, persona, play style,
fighting game AI, FightingICE

I. INTRODUCTION

In recent years, more than 100 million spectators watch
gameplay videos (GPV) every month using streaming plat-
forms such as Twitch and YouTube. This phenomenon sug-
gests video games are a powerful entertainment media not just
for players but spectators as well. Spectators can be divided
into three groups. “Let’s Play” (LP) is one of them where
spectators enjoy watching GPVs streamed by live stream-
ers [1]. Such spectators often look for GPVs that entertain
themselves by judging GPVs according to not only how well
the players play them but also how entertaining those GPVs
are. As a result, it is desirable that game streamers must
be able to generate customized spectator-specific GPVs that
match their spectators’ preferences. Due to a wide variety of

spectators’ preferences, it is, however, challenging for stream-
ers to provide such GPVs. Recently, Thawonmas and Harada
proposed a novel concept of called procedural play generation
(PPG) [2]. Their goal is to generate GPVs automatically and
recommend those GPVs to spectators according to their prefer-
ences. To realize this concept, one needs artificial intelligence
(AI) methods for automatically generating GPVs with various
contents and recommender systems for recommending GPVs
to spectators according to their preferences. In this paper, we
cope with the AI part.

In particular, we propose a method that can automati-
cally generate various GPVs using Monte-Carlo Tree Search
(MCTS) [3], [4]. We target fighting games, one of the game
genres whose GPVs are often streamed by streamers and
adopted as competitions in eSports. In addition, we focus on
playstyles in fighting games; such styles are called personas
[5]. In order to generate GPVs where each AI player (char-
acter) has a specific persona, we adopt a recently proposed
MCTS called Puppet-Master MCTS (PM-MCTS) [6] that
controls all characters in the game as a base method and
introduce a new evaluation function that is based on the
distance between both characters and their actions. We also
introduce roulette selection to the simulation part in PM-
MCTS to improve the simulation accuracy. We verify whether
our proposed method can generate GPVs where the characters
have personas by a subjective experiment using FightingICE,
a fighting game platform used in a game AI competition at
CIG since 2014 [7].

II. RELATED WORK

A. Persona

According to Tychsen and Canossa [5], persona in the game
context is the playstyle of a player. They analyzed playstyles

978-1-5386-4359-4/18/$31.00 ©2018 IEEE CIG’18

Authorized licensed use limited to: Aizu University. Downloaded on July 28,2021 at 14:18:58 UTC from IEEE Xplore. Restrictions apply.

of various game players, and those playstyles were used for
testing game designs. Following this definition of persona,
Holmgård et al. [8] proposed a method for implementing
AIs that behave according to specified personas using MCTS.
They classified five personas in “MiniDungeons 2”, which
is a turn-based rogue-like game. They also introduced an
evaluation function for each persona to MCTS to make the
AI behave according to the given persona. From their exper-
imental results, they showed that their proposed AIs could
play “MiniDungeons 2” according to the specified personas in
terms of the AIs’ action frequcies and differences in decision
making. However, they did not quantitatively verify whether
spectators could subjectively recognize and identify the AIs’
personas.

B. Puppet-Master MCTS

PM-MCTS is a variant of MCTS, proposed by Ito et al. [6],
that controls all characters in the game using only a single
game tree. An open loop approach [9] is adopted in PM-
MCTS. Figure 1 shows an overview of PM-MCTS applied to
a two-player fighting game, such as FightingICE. In this tree,
according to the open loop approach, each node represents an
action choice for either of the character (circle: P1; square:
P2) that can execute a new action. PM-MCTS builds such a
tree starting from an initial state, defined by information such
as the Hit-Point (HP), energy, coordinates, and action of each
character and the game remaining time. Each edge represents
the ongoing execution of two actions: one just started from the
parent node and the other started earlier by the other character.
Note that the branching factor at a given node in PM-MCTS
is the number of actions of the respective character, not the
combination of all possible actions from all characters. In
addition, it is more straight-forward and efficient to build the
opponent models for PM-MCTS than for multiple MCTs, one
for each character.

PM-MCTS comprises five steps: selection, expansion, sim-
ulation, backpropagation, and decision making, the first four
of which are the usual steps in MCTS algorithms. These five
steps are described individually in the following subsections.

1) Selection: Nodes are selected from the root node until a
leaf node is reached according to the given selection criterion.
In our work, we use Upper Confidence Bounds (UCB1)
value [10], which is widely used in this step of MCTS, defined
by the following formula:

UCB1pli = X
pl

i + C

√
2 lnN

Ni
, (1)

where Ni is the number of times node (action) i was visited,
N is the sum of Ni for node i and its sibling nodes, and
C is a constant. X

pl

i defined in formula (2) is the average
evaluation value of node i from the perspective of character
pl, the one who can start executing an action at this node. It
is worth reminding that every node of the tree contains the
UCB1 values from the perspective of both characters, as well
as a counter on how many times the node has been visited.

When the AI selects a child node, it uses the UCB1 value of
the character who can start the next action at its parent node.

X
pl

i =
1

Ni

Ni∑
j=1

Evalplj , (2)

where Evalplj is the reward value gained in the jth simulation
from the perspective of character pl.

In this work, the AI selects the nodes with the highest
UCB1 value from the root node until a leaf node is reached.

2) Expansion: After a leaf node is reached in the Selection
step, if the number of times the leaf node has been explored
exceeds a threshold Nmax and the depth of the tree is lower
than a threshold Dmax, all possible child nodes are created
at once from the leaf node. If the root node is the only node
in the tree, PM-MCTS creates all of its child nodes, ignoring
above conditions. Each newly created child node represents
the game state when either of the characters can start a new
action after the character at the parent node has finished its
action. Note that if both characters can start their action at a
leaf node of interest, PM-MCTS creates child nodes for P1
first, and when this situation happens again it creates child
nodes for P2, and this alternation is continued.

3) Simulation: A simulation is carried out for Tsim sec-
onds, sequentially using all actions of both characters in the
path from the root node to the current leaf node. If Tsim has
not passed yet after those actions have been executed, a rollout
will be carried out until Tsim runs out using randomly selected
actions; in other words, Tsim limits the rollout depth in this
case. Each character’s Evalj is then calculated using formula
(2).

4) Backpropagation: Each character’s Evalj obtained in
the Simulation step is backpropagated from the leaf node
to the root node. Each character’s UCB1 value at each node
along the path is updated as well.

5) Decision Making: PM-MCTS repeats the above four
steps until the character who will be executing an action at
the root node becomes available to do so ,i.e., the character’s
previous action has finished. The AI then chooses the char-
acter’s action according to a given recommendation policy. In
this work, it selects the edge (action) connected to the direct
child node that has the highest X

pl

i from the root node as the
next action. That child node will be used as the next root node
and its sibling nodes will be pruned. This step is explicitly
described here and shown in Fig. 1 to emphasize the reuse of
tree structures, as often done in the open-loop approach.

III. PERSONAS IN FIGHTING GAMES

In this section, we give the definition of personas in fighting
games. In this work, we define two fighting-game personas,
i.e., RushDown and Zoning, and individually assign them a set
of actions. Both action sets do not overlap and are fixed during
gameplay. The details of them are described in the following
subsections.

Authorized licensed use limited to: Aizu University. Downloaded on July 28,2021 at 14:18:58 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: An overview of PM-MCTS for a two-player game

A. RushDown

RushDown is a playstyle in fighting games where the player
prefers to fight in close ranges. The behavioral tendency of
RushDown is that the player often uses moving actions such as
step forward to approach the opponent and close-range attacks
such as punch or kick. In FightingICE, described in Section V,
the actions shown in Table I are defined as actions belonging
to RushDown.

B. Zoning

Zoning is a playstyle in fighting games where the player
prefers to fight while keeping a certain distance with the
opponent. The behavioral tendency of Zoning is that the player
often uses moving actions such as back step to move away
from the opponent, and long-range attacks such as fire-ball
shoots. In FightingICE, the actions shown in Table II are
defined as actions belonging to Zoning.

IV. PROPOSED METHOD

In this section, we describe the proposed method for au-
tomatically generating GPVs where each character behaves
according to the given persona. PM-MCTS is used as a
base method, but we introduce a new evaluation function
and roulette selection-based simulation. The details of our
proposed method are given in the following subsections.

A. Evaluation function

The proposed evaluation function for character pl in the jth
simulation is defined as follows:

Evalplj = ePersonaplj × eHP pl
j , (3)

where ePersonaplj is the evaluation value regarding how much
the character’s persona could be realized at a node of interest
and is defined as

ePersonaplj =
actplPersonaj

+ distplPersonaj

3
(4)

TABLE I: All actions belonging to RushDown

Skill name Skill content Damage
STAND A Simple punch 5
STAND B Simple kick 10
CROUCH A Crouch punch 5
CROUCH B Crouch kick 10
STAND D DB BA Jumping punch 10
STAND D DB BB Sliding kick 20
FORWARD WALK Walk forward 0
DASH Dash forward 0

TABLE II: All actions belonging to Zoning
Skill name Skill content Damage
STAND D DF FA Shoot projectile forward 10
STAND D DF FB Shoot strong projectile forward 40
THROW A Throw the opponent 10
THROW B Strongly throw the opponent 20
BACK STEP Step back 0
BACK JUMP Jump backward 0
FOR JUMP Jump forward 0

In the above formula, actplPersonaj
is the term that evaluates

whether character pl conducts an action belonging to the
given persona, Persona ∈ {RushDown,Zoning}, in this
simulation and is defined as

actplPersonaj
=

{
1 (belongs to Persona)
−1 (otherwise)

(5)

If the character conducts an action belonging to Persona, it
will obtain a positive evaluation; otherwise, a negative one.

The term distplPersonaj
considers the distance between both

characters. In our work, according to our experience and
preliminary experiments, we define distplPersonaj

when the
persona of character pl is RushDown (formula (6)) and Zoning
(formula (7)), respectively, as follows:

Authorized licensed use limited to: Aizu University. Downloaded on July 28,2021 at 14:18:58 UTC from IEEE Xplore. Restrictions apply.

distplRushDownj
=

{
2 (distance < 130)
2− (distancewidth × 4) (otherwise)

(6)

distplzoningj =

−2 (distance < 240)
2 (240 ≤ distance < 450)
2− (distancewidth × 4) (otherwise)

(7)

In formulas (6) and (7), distance represents the distance
between the characters, and width is the number of pixels
indicating the width of the game screen. When a character
is within the distance range suitable for realization of the
given persona, the highest evaluation value is obtained. In our
work, we define the distance that a short-range attack hits
the opponent as a suitable distance for RushDown while the
distance that a long-range attack hits the opponent and that
a character can avoid the opponent’s close-range attacks as a
suitable distance for Zoning.

In addition, in formula (3), eHP pl
j is the term that evaluates

how much the HP of the opponent of character pl has
decreased and is defined as follows:

eHP pl
j = oppHProot − oppHProllout (6)

where oppHProot and oppHProllout stand for the HP of the
opponent at the root node and after the rollout, respectively. If
character pl gives a high amount of damage to the opponent,
eHP will have a high value. The main role of this term is
to keep the believability of character pl: if there was only
ePersona in our evaluation function, for example, a character
might conduct unnatural actions such as repeating punch or
dash only to realize RushDown, its persona.

The proposed evaluation function makes the character select
actions by considering not only how to realize its persona but
also always how to defeat the opponent, which is the main
purpose of players in fighting games.

B. Roulette selection applied to rollout

The original PM-MCTS uses randomly selected actions for
both characters in the rollout. However, if this was adopted in
our work, actions not appropriate for each character’s persona
might be conducted. This may cause inaccurate evaluation of
all nodes in the current path if the random-based rollout is still
used.

In order to solve this issue, we introduce roulette selection,
where the actions belonging to the persona of a character of
interest have higher weights, to the rollout. The algorithm of
roulette selection is shown in Algorithm 1. As the variables
in this algorithm, actionList is a list containing all actions,
actF it is an array containing all actions’ fitness values, dart is
a threshold, and totalF it is a sum of all actions’ fitness values
in actF it. The function initialize() initializes the fitness values
of all actions passed to it as the argument actionList. In our

Algorithm 1 Algorithm of roulette selection

// initializes all actions’ fitness values
actF it← initialize(actionList)
dart← random(0,1)
wheel← actF it[0]/totalF it
count← 0
while dart > wheel do

count← count+ 1
wheel← wheel + actF it[count]/totalF it

end while
//Returns the action selected by roulette selection
return ActionList.get(count)

Algorithm 2 Algorithm of the proposed method

state← getNowState() //Gets the current game state
root← Initialize(state) //Initializes the root node
while !isGameEnd do

activeP layer ← root.activeP layer
//Runs PM-MCTS until activeP layer can execute its
next action
bestAct← TreeSearch(root, state, activeP layer)
runAction(bestAct, activeP layer)
root← nextRoot(root, bestAct) //Changes the root node
state← getNowState() //Gets the current game state

end while

work, the fitness value of each action is set to 3 if it belongs to
the action set defined in the persona of a character of interest;
otherwise, 1, not 0 in order to allow actions not belonging to
this persona but with a strong damage value to be also chosen.

This mechanism makes a character of interest use actions
that belong to its persona in a rollout more and hence increases
the accuracy of the simulation.

C. Algorithm of the proposed method

Algorithm 2 shows the algorithm of the proposed method.
As the variables in this algorithm, state represents the cur-
rent game state, root is the root node, activeP layer is
the character who will be executing the next action in the
game, and bestAct is the selected action by PM-MCTS.
The function getNowState() is for obtaining the current game
state, initialize() is for initializing a node passed to it as the
argument, TreeSearch() is for running PM-MCTS, runAction()
is for conducting an action passed to it as the argument, and
nextRoot() is for changing the root node.

V. EXPERIMENT

In this section, we describe the conducted experiment to
verify the performance of the proposed method (P-AI).

A. FightingICE

FightingICE (Fig. 2) is a real-time 2D fighting game plat-
form used in a game AI competition (FTGAIC)1 at CIG since

1http://www.ice.ci.ritsumei.ac.jp/˜ftgaic/
https://github.com/TeamFightingICE/FightingICE

Authorized licensed use limited to: Aizu University. Downloaded on July 28,2021 at 14:18:58 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Screenshot of FightingICE

2014 [7] and for research [6, 11-23]. Because FightingICE has
been originally developed from scratch without using a ROM
emulator and publicly made available, there are no legal issues
to be concerned. In FightingICE, one game consists of three
60-second rounds, and one frame lasts 1/60 seconds. Each
character has to decide and input an action in one frame.
The HP for both characters is initially set to HPmax and
it decreases when the corresponding character is hit. When
the play is conducted for 60 seconds or either of the two
characters’ HP becomes 0, the game will proceed to the next
round unless the current round is the 3rd one, after which
each character’s HP will be reset to HPmax. The character
with the larger remaining HP at the end of a round is the
round’s winner. In our experiment, the value of HPmax is set
to 400 according to the rule of Standard Track of FTGAIC.

One of the limitations, from our work’s perspective, of
FightingICE used in FTGAIC is that each character must be
individually controlled. To remove this limitation, we modified
some functions in FightingICE so that PPM-MCTS can control
both characters. Another limitation is that the characters can
only obtain each time a game state delayed by 15 frames (0.25
s), taking into account the delay of human perception. How-
ever, since our work is focused on the generation of GPVs,
not on the development of a character for fighting against
another AI opponent or a human opponent in competitions,
we also removed the delay from the FightingICE platform in
our experiment.

B. AIs and parameters in use

In the experiment, we compared the proposed AI (P-AI)
and another MCTS-based AI (M-AI) that controls only one
character [18] using the same evaluation function and roulette
selection described in Section IV. The parameters used in
both AIs are shown in Table III. These parameters were set
empirically through pre-experiments.

C. Details

Our experiment consists of 35 participants (average age:
22.8± 2.6).

TABLE III: Parameters used in the experiment

Notation Meaning Value
C Balancing parameter 0.025

Nmax Threshold of the number of visits 10
Dmax Threshold of the tree depth 10
Tsim Simulation-time budget 60 frames
width Width of the game screen 960 pixels

TABLE IV: Persona of each character in a fight

P1 P2
RushDown RushDown
Zoning Zoning
RushDown Zoning
Zoning RushDown

1) Generation of GPVs: A 60-second GPV for each com-
bination of two personas shown in Table IV was generated by
each AI, leading to eight GPVs2 in total. For generation of
GPVs, the P-AI controlled both characters. However, since an
M-AI can control only one character, two M-AIs (2M-AIs),
each assigned a persona accordingly, were used to generate a
GPV; at the simulation step, the opponent’s actions are selected
by roulette selection using its persona.

2) Procedure: The procedure of our experiment is as fol-
lows:

1) Explain the concept of each of the two personas,
RushDown and Zoning, and show sample GPVs to a
participant.

2) Ask each participant to watch one of the generated
GPVs.

3) Ask each participant to choose the persona for P1
and that for P2, among “RushDown”, “Zoning”, and
“Other”.

4) Repeat Steps 2) and 3) for all generated GPVs.
Note that at Step 2), a GPV was displayed in random order.

VI. RESULTS AND DISCUSSIONS

In this section, we show the experimental results and our
discussions in terms of whether the participants were able to
identify each character’s persona in GPVs. The summarization
tables of the correctly answering participants and incorrectly
answering participants for both characters (a), P1 (b), and
P2 (c) in each GPV are shown in Tables V–IX, in a 2×2
contingency table style often used in the McNemar’s test
conducted below. In these tables, P, M, T, F, and S are P-AI,
2M-AIs, the number of participants who correctly answered,
the number of people who incorrectly answered, and the sum
of numbers in the corresponding row or column, respectively.
Note that in each table (a), we counted the number of partici-
pants who correctly answered the personas of both characters
as T; otherwise, F. We describe the result of each persona
combination in the following subsections.

A. RushDown vs RushDown

Table V shows the summarization of the numbers of correct
participants and incorrect participants for the RushDown vs

2http://www.ice.ci.ritsumei.ac.jp/˜ruck/personaGPVs-cig2018.htm

Authorized licensed use limited to: Aizu University. Downloaded on July 28,2021 at 14:18:58 UTC from IEEE Xplore. Restrictions apply.

RushDown GPVs generated by P-AI and 2M-AIs. In Ta-
bles Va and Vb, we can see that the participants could correctly
answer the personas of both P1&P2 and P1 alone in the
GPV generated by P-AI (33/35 or 94.3% in both cases) more
than those in the one generated by 2M-AIs (P1&P2: 17/35 or
48.6%, P1: 18/35 or 51.4%). From the results of McNemar’s
tests, there are significant differences at 1% between P-AI and
2M-AIs in both cases. However, from Table Vc, both AIs
obtain a high accuracy. From our observation, P2, controlled
by either P-AI or 2M-AIs, aggressively shortened the distance
between the characters even than P1 in the GPV generated
by P-AI. Due to this behavior, P2’s persona was judged as
RushDown by most of the participants.

B. Zoning vs Zoning
Table VI shows the summarization of the numbers of

correct participants and incorrect participants for the Zoning
vs Zoning GPVs generated by P-AI and 2M-AIs. We can see
that the participants could correctly answer the personas in
the GPV generated by P-AI (P1&P2: 16/35 or 45.7%, P1:
31/35 or 88.6%, and P2: 20/35 or 57.1%) more than those
in the one generated by 2M-AIs (P1&P2: 1/35 or 2.9%, P1:
4/35 or 11.4%, and P2: 12/35 or 34.3%). From the results
of McNemar’s tests, there are significant differences at 1%
between P-AI and 2M-AIs for P1&P2 and P1, and at 10% for
P2. However, there are fewer people who correctly answered
both characters’ personas than those who did not. This is due
to the specification of attacks belonging to Zoning. All of the
attacks in Zoning given in Table II need energy to conduct
them, and this makes zoning characters select moving actions
such as a jump forward. In addition, when both characters
approach each other due to such moving actions, they often
conduct actions that give damage to their opponent according
to the term eHP in formula (6). Due to these behaviors, both
characters’ personas were judged as RushDown by a number
of participants, especially in the GPV generated by 2M-AIs.

C. RushDown vs Zoning
Table VIII shows the numbers of correct participants and

incorrect participants for the RushDown vs Zoning GPVs
generated by P-AI and 2M-AIs. From these tables, we can
see that the participants could correctly answer the personas
in the GPV generated by P-AI more than those in the one
generated by 2M-AIs for all cases, especially P1&P2 and P2.
From the results of McNemar’s tests, there are significant
differences at 1% between P-AI and 2M-AIs for the three
cases. This is because each M-AI individually decides actions
according to its own evaluation function, without considering
the opponent’s next action, which is different from P-AI. This
often caused mismatched fighting such as approaching each
other, which looks like RushDown vs RushDown. Due to these
behaviors, many participants answered wrong personas in the
GPV generated by 2M-AIs.

D. Zoning vs RushDown
Table IX shows the summarization of the numbers of

correct participants and incorrect participants for the Zoning vs

TABLE V: The numbers of correct participants and incorrect
participants for the RushDown vs RushDown GPVs generated
by P-AI and 2M-AIs

(a) P1 & P2

H
HHHP

M T F S

T 17 16 33
F 0 2 2
S 17 18 35

(b) P1

HH
HHP
M T F S

T 18 15 33
F 0 2 2
S 18 17 35

(c) P2

HH
HHP
M T F S

T 33 1 34
F 1 0 1
S 34 1 35

TABLE VI: The numbers of correct participants and incorrect
participants for the Zoning vs Zoning GPVs generated by P-AI
and 2M-AIs

(a) P1 & P2
HHHHP

M T F S

T 1 15 16
F 0 19 19
S 1 34 35

(b) P1
H
HHHP

M T F S

T 4 27 31
F 0 4 4
S 4 31 35

(c) P2
H

HHHP
M T F S

T 7 13 20
F 5 10 15
S 12 23 35

RushDown GPVs generated by P-AI and 2M-AIs. In Tables Xa
and Xb, we can see that the participants could correctly answer
the personas of P1&P2 and P1 in the GPV generated by
P-AI (P1&P2: 22/35 or 62.9%, P1: 31/35 or 88.6%) more
than those in the one generated by 2M-AIs (P1&P2: 1/35
or 2.9%, P1: 2/35 or 5.7%). From the results of McNemar’s
tests, there is a significant difference at 1% between P-AI and
2M-AIs for each of the aforementioned two cases. However,
from Table Xc, there are fewer correct participants for P2’s
persona in the GPV generated by P-AI than that by 2M-AIs,
with a significant difference at 10%. From our observation,
in the GPV generated by P-AI, P2 sometimes used projectile
attacks belonging to Zoning. This is because such attacks, if
used, can give more damage than simple close-range attacks
belonging to RushDown, causing the term eHP for P-AI to
obtain a much higher evaluation value than ePersona and
hence making rushdown characters behave like Zoning rather
than RushDown.

E. Summary of the results

In summary, we can conclude that the participants could
better identify both characters’ personas in the GPVs generated
by P-AI than those in the GPVs generated by 2M-AIs. As

Authorized licensed use limited to: Aizu University. Downloaded on July 28,2021 at 14:18:58 UTC from IEEE Xplore. Restrictions apply.

TABLE VIII: The numbers of correct participants and incor-
rect participants for the RushDown vs Zoning GPVs generated
by P-AI and 2M-AIs

(a) P1 & P2

H
HHHP

M T F S

T 4 28 32
F 1 2 3
S 5 30 35

(b) P1

HH
HHP
M T F S

T 20 12 32
F 1 2 3
S 21 14 35

(c) P2

HH
HHP
M T F S

T 8 25 33
F 1 1 2
S 9 26 35

TABLE IX: The numbers of correct participants and incorrect
participants for the Zoning vs RushDown GPVs generated by
P-AI and 2M-AIs

(a) P1 & P2
HHHHP

M T F S

T 1 21 22
F 0 13 13
S 1 34 35

(b) P1
H
HHHP

M T F S

T 2 29 31
F 0 4 4
S 2 33 35

(c) P2
H
HHHP

M T F S

T 21 3 24
F 10 1 11
S 31 4 35

mentioned earlier, P-AI controls both characters based on the
information on their future actions. Due to this mechanism,
P-AI can select the next action for each character that well
expresses its persona.

VII. CONCLUSIONS AND FUTURE WORK

Video games are now an attractive entertainment media not
just for players but also spectators. To provide customized
spectator-specific GPVs that match various kinds of spectators’
preferences, AIs that can automatically generate GPVs with
a variety of contents are needed. In this paper, we focused
on personas, which represent playstyles, in fighting games. In
order to generate GVPs where each character plays according
to a given persona, we adopted a recently developed variant
of MCTS called Puppet-Master MCTS, which controls all
characters in the game, and introduced a new evaluation
function and roulette selection-based simulation to this MCTS.

The results of the conducted experiment confirmed that the
proposed AI can make both characters successfully behave
according to their personas, which were identified by the
participants or spectators in the experiment. However, the pro-
posed AI still has an issue when controlling characters having
the persona of Zoning. For future work, we plan to develop

new evaluation functions and mechanisms to realize given
personas more accurately. In addition, we plan to introduce
more personas besides RushDown and Zoning for generating a
higher variety of GPVs. It might also be interesting to consider
believability [23] and human-play emulation [24] aspects or
to analyze generated gameplay with action metrics recently
proposed by Zook and Riedl [25]. We also plan to verify
whether GPVs generated by our proposed AI can entertain
spectators through extensive user studies.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their helpful comments. They would also like to thank their
lab members, in particular, the FightingICE team members for
their fruitful discussions. This research was partially supported
by Strategic Research Foundation Grant-aided Project for
Private Universities (S1511026), Japan.

REFERENCES

[1] T. Smith, M. Obrist and P. Wright, “Changes the (Video) Game,” in
Proc. 11th European Conference on Interactive TV and Video (Live-
Streaming), ACM, pp. 131-138, 2013.

[2] R. Thawonmas and T. Harada, “AI for Game Spectators: Rise of PPG,”
in Proc. AAAI 2017 Workshop on What’s next for AI in games, San
Francisco, USA, pp. 1032-1033, 2017.

[3] R. Coulom, “Efficient selectivity and backup operators in monte-carlo
tree search,” in Proc. International Conference on Computers and
Games, pp. 72-83, 2006.

[4] C.B. Browne, E. Powley, D. Whitehouse, S.M. Lucas, P.I. Cowling, P.
Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A
Survey of Monte Carlo Tree Search Methods,” IEEE Transactions on
Computational Intelligence and AI in Games, vol. 4, no. 1, pp. 1-43,
2012.

[5] A. Tychsen and A. Canossa, “Defining personas in games using metrics,”
in Proc. 2008 Conference on Future Play: Research, Play, Share, ACM,
pp. 73-80, 2008.

[6] S. Ito, M. Ishihara, M. Tamassia, T. Harada, R. Thawonmas and F.
Zambetta, “Procedural Play Generation According to Play Arcs Using
Monte-Carlo Tree Search,” in Proc. 18th International Conference on
Intelligent Games and Simulation, pp. 67-71, 2017.

[7] F. Lu, K. Yamamoto, L. H. Nomura, S. Mizuno, Y. Lee and R. Thawon-
mas, “Fighting Game Artificial Intelligence Competition Platform,” in
Proc. IEEE 2nd Global Conference on Consumer Electronics (GCCE),
pp. 320-323, 2013.

[8] C. Holmgård, A. Liapis, J. Togelius, and G. Yannakakis, “Monte-
Carlo Tree Search for Persona Based Player Modeling,” in Proc. AIIDE
workshop on Player Modeling, 7 pages, 2015.

[9] D.P. Liebana, J. Dieskau, M. Hunermund, S. Mostaghim, S. Lucas,
“Open Loop Search for General Video Game Playing,” in Proc. the 2015
Annual Conference on Genetic and Evolutionary Computation (GECCO’
15), pp. 337-344, 2015.

[10] P. Auer, N. Cesa-Bianchi, P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine Learning, vol. 47, no. 2-3, pp.
235-256, 2002.

[11] X. Neufeld, S. Mostaghim, and D. Perez-Liebana, “HTN fighter: Plan-
ning in a highly-dynamic game,” in Proc. 2017 Computer Science and
Electronic Engineering (CEEC 2017), Colchester, pp. 189-194, Sep.
2017.

[12] S. Demediuk, M. Tamassia, Wi. Raffe, F. Zambetta, X. Li and F.F.
Mueller, “Monte Carlo Tree Search Based Algorithms for Dynamic Dif-
ficulty Adjustment,” in Proc. 2017 IEEE Conference on Computational
Intelligence and Games (CIG 2017), 2017.

[13] S. Yoon and K.-J. Kim, “Deep Q Networks for Visual Fighting Game
AI,” in Proc. 2017 IEEE Conference on Computational Intelligence and
Games (CIG 2017), 2017.

[14] M.-J. Kim and K.-J. Kim, “Opponent Modeling based on Action Table
for MCTS-based Fighting Game AI,” in Proc. 2017 IEEE Conference
on Computational Intelligence and Games (CIG 2017), 2017.

Authorized licensed use limited to: Aizu University. Downloaded on July 28,2021 at 14:18:58 UTC from IEEE Xplore. Restrictions apply.

[15] D.T.T Nguyen, V. Quang and K. Ikeda, “Optimized Non-visual In-
formation for Deep Neural Network in Fighting Game,” in Proc. 9th
International Conference on Agents and Artificial Intelligence (ICAART
2017), pp. 676-680, 2017.

[16] M. Ishihara, T. Miyazaki, Y. Chu, T. Harada, R. Thawonmas, “Applying
and Improving Monte-Carlo Tree Search in a Fighting Game AI,” in
Proc. 13th International Conference on Advances in Computer Enter-
tainment Technology, ACM, no. 27, 2016.

[17] T. Kristo, N.U. Maulidevi, “Deduction of fighting game countermea-
sures using Neuroevolution of Augmenting Topologies,” in Proc. 2016
International Conference on Data and Software Engineering (ICoDSE),
2016. DOI:10.1109/ICODSE.2016.7936127

[18] S. Yoshida, M. Ishihara, T. Miyazaki, Y. Nakagawa, T. Harada and R.
Thawonmas, “Application of Monte-Carlo Tree Search in a Fighting
Game AI,” in Proc. IEEE 5th Global Conference on Consumer Elec-
tronics (GCCE), pp. 623-624, 2016.

[19] K. Majchrzak, J. Quadflieg, and G. Rudolph, “Advanced Dynamic
Scripting for Fighting Game AI,” in Proc. Entertainment Computing
(ICEC 2015), pp. 86-99, 2015.

[20] K. Asayama, K. Moriyama, K. Fukui, and M. Numao, “Prediction as
Faster Perception in a Real-time Fighting Video Game,” in Proc. 2015
IEEE Conference on Computational Intelligence and Games (CIG 2015),
pp. 517-522, 2015.

[21] N. Sato, S. Temsiririkkul, S. Sone. and K. Ikeda, “Adaptive Fighting
Game Computer Player by Switching Multiple Rule-based Controllers,”
in Proc. 3rd International Conference on Applied Computing and
Information Technology (ACIT 2015), pp. 52-59, 2015.

[22] H. Park and K.J. Kim, “Learning to Play Fighting Game using Massive
Play Data,” in Proc. 2014 IEEE Conference on Computational Intelli-
gence and Games (CIG 2014), pp. 458-459, 2014.

[23] M. Ishihara, S. Ito, R. Ishii, T. Harada and R. Thawonmas, “Monte-
Carlo Tree Search for Implementation of Dynamic Difficulty Adjustment
Fighting Game AIs Having Believable Behaviors,” in Proc. 2018 IEEE
Conference on Computational Intelligence and Games (CIG 2018),
2018.

[24] S. Devlin, A. Anspoka, N. Sephton, P.I. Cowling, “Combining Gameplay
Data with Monte Carlo Tree Search to Emulate Human Play,” in Proc.
Twelfth Artificial Intelligence and Interactive Digital Entertainment
Conference (AIIDE 2016), pp. 16-22, 2016.

[25] A. Zook and M.O. Riedl, “Learning How Design Choices Impact
Gameplay Behavior,” IEEE Transactions on Games, Mar, 2018. (Early
Access)

Authorized licensed use limited to: Aizu University. Downloaded on July 28,2021 at 14:18:58 UTC from IEEE Xplore. Restrictions apply.

		2018-10-10T16:11:40-0400
	Preflight Ticket Signature

