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ABSTRACT
Gameplay is often an emotionally charged activity, in particu-
lar when streaming in front of a live audience. From a games
user research perspective, it would be beneficial to automati-
cally detect and recognize players’ and streamers’ emotional
expression, as this data can be used for identifying gameplay
highlights, computing emotion metrics or to select parts of the
videos for further analysis, e.g., through assisted recall. We
contribute the first automatic game stream emotion annotation
system that combines neural network analysis of facial expres-
sions, video transcript sentiment, voice emotion, and low-level
audio features (pitch, loudness). Using human-annotated emo-
tional expression data as the ground truth, we reach accuracies
of up to 70.7%, on par with the inter-rater agreement of the
human annotators. In detecting the 5 most intense events of
each video, we reach a higher accuracy of 80.4%. Our system
is particularly accurate in detecting clearly positive emotions
like amusement and excitement, but more limited with subtle
emotions like puzzlement.

CCS Concepts
•Human-centered computing → HCI design and evalu-
ation methods; •Computing methodologies → Machine
learning;

Author Keywords
Facial Expression; Games; Player Experience; Emotion;
Neural Network; Sentiment Analysis

INTRODUCTION
Modern game development makes extensive use of large-scale
online game testing through services like PlayTestCloud and
Usertesting.com. This poses a need for better tools for sum-
marizing and exploring the large quantities of playtest videos.
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A related and yet underexplored data trove is provided by
game streaming videos publicly available through services
like YouTube and Twitch. Automatic analysis of such video
data, e.g., recognizing player emotions based on facial expres-
sions and voice, has potential in providing valuable insights
for both game development and player experience research
(e.g., [25, 27, 29]).

To advance automated analysis of player emotion from video,
we investigate the following research question: Can one repli-
cate how humans annotate game stream videos, when they are
asked to detect and label moments with emotion, and identify
the most emotional events of each video? If human annota-
tions can be predicted by an automated system, such a system
should have applications in stream and gameplay highlight
detection and in player experience research, e.g., in selecting
gameplay videos or video segments for closer inspection after
a playtest session. We assume that similar analysis methods
may work for both streams and playtest videos, especially if
playtesters are asked to think aloud or otherwise narrate their
experience.

Our contribution is twofold:

• We present a new dataset of human-annotated emotional
expression in game streams, including a total of 17 videos,
11 hours, and 2015 emotional events. Each video was an-
notated by two different persons to allow assessing the
consistency of human annotations. On average, the dataset
has approximately one annotated event for each 40 seconds
of video.

• We propose a novel neural network system trained to mimic
the human annotation behavior, illustrated in Figure 1. Our
system is multimodal, combining four input types: facial
expressions, video transcript sentiment analysis, voice emo-
tion analysis, and additional voice features like loudness
and pitch. Previous automatic gameplay emotion analy-
sis approaches primarily focus on a single modality like
facial expressions and compute emotion changes at pre-
determined events [29] or implement highlight detection
with hand-tuned parameters without a dataset for assessing
model accuracy [27].
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Figure 1. Our analysis pipeline. The video, audio, and sentiment analysis modules output time series signals such as subtitle sentiment positivity and
emotion class probabilities for facial expressions. These are collected together from each analysis window and fed through a temporal convolutional
neural network trained to output the probabilities of the emotional event labels of our dataset, also including "no event".

Our evaluation indicates that the proposed system is well
suited for detecting emotional moments, in particular the most
intense ones, but more work is needed in more fine-grained
emotion analysis. On the other hand, the annotation task
appears likewise difficult for humans. Based on inter-rater
agreement scores, our annotators are fairly consistent in what
events or moments they annotate, but disagreement grows with
more fine-grained emotion labeling.

In the most simple "no event" vs. "emotional event" detection
case, our system achieves a validation accuracy of 70.7%, on
par with the inter-rater agreement of the human annotators.

The dataset is provided as the paper’s supplementary material.
While the game streams themselves cannot be included in
the dataset because of copyright reasons, we provide timed
YouTube links for each annotated event.

RELATED WORK
Yannakakis and Paiva [37] argued that “one cannot dissociate
games from emotions” (p. 459). Indeed, many studies equate
(positive) emotions with positive player experience ([22], e.g.,
[35]) and consider them key contributors to fun [18].

A variety of methods have therefore been suggested for analyz-
ing player emotions. For example, in her observational studies
on what makes games fun, Lazzaro [18] applied Ekman and
Rosenberg’s Facial Action Coding System (FACS) [13] to link
different player experiences to specific emotional expressions.
The experience of hard fun, for example, is characterized by
players expressing “fiero”, i.e., triumph at mastering a chal-
lenge [12], where players smile and lift their arms and body
upwards. However, given the time and resources necessary to
learn and manually apply FACS, the method is not feasible for
evaluating hours of player-game interaction.

Several researchers also demonstrated the utility of biometrics
for assessing the experience of players [9, 20, 23, 35] and

streamers [28]. A major advantage of biometrics being that
they allow for the continuous, real-time assessment of players’
emotional reactions during gameplay. Of particular interest
in the context of our work is the use of facial electromyogra-
phy (EMG), which measures activation of the different facial
muscles to assess emotional valence (i.e., how pleasant or
unpleasant we experience a given event). Van den Hoogen
et al. [35], for instance, combined EMG during play with a
self-report questionnaire, where upon watching a replay par-
ticipants had to rate their experience of valence. The study
found that although participants self-reported dying in-game
to be a negative event, they expressed positively valenced emo-
tional reactions while playing. In another study, Mirza-Babaei
et al. [23] introduce the Biometric Storyboard, a games user
research tool that combines EMG with video observation and
gamelogs. This approach visualizes players’ emotional reac-
tions (as measured by biometrics) over pre-defined key game
events (i.e., events that the game designers are particularly
interested in), which can then be shown playtesters to elicit
additional feedback. Similarly, Tan et al. [34] combined dif-
ferent physiological measures (incl. EMG) with video-cued
retrospective think-aloud to analyze the player experience of
different pre-selected game events (e.g., approaching a lift
in Portal). Notably, they found that think-aloud could detect
noteworthy game events that were not discernible from the
physiological measures. Conversely, biometrics could detect
notable gameplay events, which players did not comment on
and would have gone unnoticed otherwise. For instance, EMG
revealed instances where players experienced positively va-
lenced anticipation as they explored the game level. Taken
together, the aforementioned research suggests that record-
ing players’ emotional expressions can support retrospective
think-aloud procedures through assisted recall by presenting
players with the most emotionally salient events.

However, while the aforementioned studies showcase the ben-
efits of analyzing players’ emotional expressions through bio-
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metrics, physiological measures can be disruptive to the player
experience [34], require considerable equipment and training
[9, 34], and remain difficult to reliably employ with large-scale
sample sizes, such as for online playtesting. Consequently,
a growing body of research has emerged around automated
analysis of emotional expression based on a player’s facial
expressions and voice captured on video. Automatic emotion
detection has been argued to be useful for analyzing the PX
without interrupting the play session [37], to assess whether
the intended emotional experience has been achieved and iden-
tify areas for improvement, as well as create emotionally-
adaptive games to personalize the PX [37].

Automated Emotion Analysis from Video and Audio
In this paper, we aim for an automatic system for emotion
detecting and classification suitable for large-scale online data
collection. Considering the input devices prevalent currently
and in the near future, the primary data sources of interest are
player facial video and speech audio.

With deep convolutional neural networks, analysing player
facial expressions from video is relatively robust and straight-
forward. Roohi et al. [29] showed that such visual analysis can
produce similar findings as facial EMG [35], e.g., that player
dying can elicit strong positive/happy expressions. Their net-
work was trained on a publicly available dataset of 50k faces
labeled by human annotators according to the 6 basic emo-
tions and the associated facial expressions of Ekman [11, 12].
Murray et al. [25] applied facial expression analysis to key
content events in a story-driven game, measuring engagement
and valence.

In the work above, knowledge of game events helps in emo-
tion analysis, providing anchor points around which one may
hypothesize that players experience changes in their emotions.
However, such event data may not be available, for example,
when studying data collected from a third-party game with
no instrumentation code. Although Intharah et al. [16] have
shown that game events can be recognized from gameplay
video using deep neural networks, such networks trained on
one game do not necessarily generalize to other games.

An alternative research approach to investigating the emotions
elicited by game events is attempting to predict post-game
player experience measures from in-game behavior. Tan et al.
[33] showed a relation between facial expressions and Game
Experience Questionnaire dimensions. Shaker and Shaker
[30] have also shown that post-game engagement measures
can be predicted from players’ in-game non-verbal behavior,
especially when analysing behavior near the end of the game.

This paper utilizes video game streams as the data source.
Streams are relevant to game emotion research because stream-
ers are often emotionally expressive and even narrate their
emotions aloud to the spectators. In contrast, the data of Roohi
et al. [29] shows that for most game events, non-streamer
players may not express any emotion, the expressionlessness
possibly due to high concentration. Recently, Ringer et al.
[27] demonstrated the potential of combined facial expression
and audio analysis of game streamers in automated highlight
recognition. In this paper, we extend this study with sentiment

analysis of video transcripts and by collecting and publishing
a human-annotated ground truth dataset.

Beyond automatic emotion analysis, there naturally exists
other types of research about the motivations and emotions
of game streaming. For example, Sjöblom et al. [32] studied
game spectating motivations using questionnaire measures,
and Robinson et al. [28] designed technology for revealing
the streamers’ biometric data to the audience.

DATASET
This section describes the preparation of our dataset. We
use the data for training and testing the automatic emotional
event detection and classification system described in the next
section. We also provide the dataset for other researchers as
supplementary material.

Game and Video Selection
For our analysis we chose streams of the games Unravel [14]
and its sequel, Unravel Two [15], developed by Swedish stu-
dio Coldwood Interactive and published by Electronic Arts
for PC, PlayStation 4 and Xbox One. Both games are puzzle-
platformers, where the player controls a humanoid figure made
of yarn through different levels, overcoming obstacles and
solving puzzles along the way. We chose these games for
three reasons: First, they were recently released and readily
featured on several Youtube channels. Second, the level design
is largely linear, where all players experience game events in
the same sequence. This ensured a certain consistency be-
tween streams and made for easier comparison. Third, and of
particular interest for our analysis, both Unravel and Unravel
Two were praised for being emotionally engaging [1, 2].

We browsed YouTube for streaming videos searching for “Un-
ravel”, “Unravel 2”, and “Unravel Two”. Videos were included
in our analysis if they fulfilled the following criteria: (1) The
streamer’s face had to be visible throughout the video (e.g.,
not obstructed by a microphone). (2) The streamer provided
commentary in English. (3) Only one person was playing and
present during the stream. Hence, videos featuring local co-op
(in Unravel Two) or where a person other than the streamer
provided commentary were excluded. (4) Subtitle transcripts
from automatic captioning had to be available for the video.
Following this procedure, we selected 17 videos by 9 different
streamers (2 women, 7 men), which encompass over 11 hours
of video material. We only included videos that covered the
first two levels of each game (i.e., “Thistle and Weeds” and
“The Sea” in Unravel; “Foreign Shores” and “Hideaway” in
Unravel Two). Refer to the supplementary material for the
complete list of streams.

Emotion Expression Annotation
To establish ground truth, one of the authors first conducted
an open coding of events depicting streamers’ emotional ex-
pressions, where they reviewed all of the videos before man-
ually developing a set of 18 initial research codes. Example
event codes include “triumphant”, “delighted when finding
a collectable”, “confused” and “insight/about to figure out a
puzzle”. We opted for a bottom-up open coding approach
rather than applying a top-down coding framework, such as

Paper Session 5: Emotions, Traits and Player Experiences  CHI PLAY'19, October 22–25, 2019, Barcelona, Spain

303



Ekman’s basic emotions [11, 12], because players’ emotional
expressions often go beyond basic emotions [18] and are not
always clear-cut [29, 35]. In the Unravel videos, for instance,
streamers often reacted emotionally to the “cuteness” of the
main character(s), which has recently been argued to con-
stitute its own distinct emotion [5]. Nevertheless, building
upon previous work on emotional expression [11, 12, 18], the
same author then manually collated the initial codes into a
final set of 13 event codes, which were subsequently refined
through discussion among the authors. Examples of the final
event codes include streamers being “startled”, “happy” or
expressing “surprise”, where each code was accompanied by
a description of expressive features (e.g., streamers’ eyes and
mouth widening in surprise, as described by Ekman [12]). Full
descriptions and examples of each event code are provided
in the supplementary material. Note also that we included an
event code “Not Applicable” (NA) for coding events that did
not readily match any of the specified codes. This was done to
take into account instances of emotional expression that were
only rarely featured in the videos (e.g., the streamer wincing
in pain as the main character crashes into a tree).

To ensure inter-rater reliability, four authors annotated the
videos applying the final set of codes to identify emotionally
salient events, whereby each video was coded by two authors.
The reliability analysis is described in detail in the next sec-
tion. Based on previous work on facial expression analysis in
games [25, 29], we anticipated that accuracy of the automated
expression annotation might be compromised for less expres-
sive emotional responses. Hence, each annotator additionally
flagged the Top 5 most intensely emotional events among all
coded instances for each video, where we expected intense
emotional events to also be accompanied by more pronounced
emotional expression.

Data Windowing, Reliability, and Analysis Granularity
For formulating the automated emotion analysis as a standard
classification problem, the data needs to be in the form of
input feature vectors associated with output labels. To enable
this, the data was divided into time windows with one second
overlap, each window constituting a single data point. The
input features for each window comprise various time series
signals extracted from the video and audio. The output label
of a window is either "no event" or the event category or
categories found within the window.

In this paper, we perform all analyses with four different levels
of granularity:

• 2 classes, either "no event" or "event". The latter class
groups together all annotated events.

• 2 classes, only including the most intense 5 events each
annotator identified for each video.

• 4 classes, including "no event", "pleasant event", "unpleas-
ant event", and "neutral event". The latter three each corre-
spond to a subset of the full 13 event codes.

• 14 classes, including "no event" and the full set of 13 codes.

As shown in Table 1, we tested different window lengths,
which produce different inter-rater agreements, computed as

Figure 2. Histogram of distances between two consecutive events logged
by the same annotator.

the percentage of windows where both annotators either did
not find any events or found an event and coded it to the same
category. As short windows produce a large number of "no
event" data points, we balanced the classes by weighting the
data points to simulate equal data amounts for each class.

As one would expect, larger windows produce better inter-rater
agreement, but also start to result in congestion, i.e., the same
annotator logging multiple events per window. This signals
insufficient temporal resolution. To minimize congestion to
approximately 1% of windows, we limit our analysis to win-
dow lengths below 5 seconds. As shown in Figure 2, there are
quite many events only a few seconds apart from each other,
even though the average temporal distance between events is
much higher.

Inter-rater agreement also decreases with finer granularity.
Based on Table 1, it is clear that the 14-class data is not very
reliable. On the other hand, inter-rater agreement is substan-
tial in the 2-class case, ranging from 59.6% to 68.7% with
windows from 1 to 5 seconds.

Finally, different annotators appear to have different sensitivity,
some annotators logging more frequent events. In our data, the
average distances between two consecutive events for different
annotators range from 17 to 57 seconds. Although the selec-
tion of videos for each annotator also affects the annotation
frequency, – where certain streamers were more expressive
than others, – the variance is so high that individual differences
in sensitivity probably play a role.

AUTOMATED MULTIMODAL EMOTION EXPRESSION AN-
NOTATION
This section describes our multimodal framework for auto-
mated emotion expression annotation. The system was im-
plemented using the Keras deep learning framework [8]. As
illustrated in Figure 1, our system comprises the following
components:

• A facial expression analysis neural network that outputs
probabilities of emotions such as "happy" or "surprised"
based on each video frame.
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Window length Congestion Inter-rater agreement
2-class 2-class-top events 4-class 14-class

1 0.0 59.6 53.4 34.9 18.8
2 0.1 64.3 56.8 39.3 24.0
3 0.3 67.0 59.1 41.8 27.3
4 0.5 68.3 61.0 43.1 29.4
5 1.1 68.7 60.3 43.7 30.8

Table 1. Inter-rater agreement and congestion with respect to different window lengths and levels of granularity

• An audio analysis module. We utilize a neural network
that outputs similar emotional expression probabilities as
the facial analysis, and we also extract additional low-level
audio features such as loudness.

• A speech sentiment analysis neural network based on subti-
tle (speech transcription) data obtained from YouTube.

• A temporal convolutional neural network that receives win-
dowed segments of the time series outputs of the modules
above. This network is trained with our human-annotated
dataset to output emotional event label probabilities. The
training was done with four different levels of granularity,
as explained in the previous section.

Obviously, as we have a fairly small dataset, we cannot train a
single network end-to-end with raw video and audio as input
and our annotations as training targets. Instead, we train the
separate modules with existing datasets to extract relevant
emotionally salient features. These features are combined by
the final convolutional neural network trained with our own
dataset.

In the subsections below, we give more detail of each module.

Facial Expression Analysis
We used the well-known VGG16 [31] convolutional neural
network for predicting facial expression probabilities. The neu-
ral network is trained on Affectnet dataset [24]. This dataset
contains around 500K manually annotated facial images la-
beled with emotions such as surprise, happy, and sad. Input
images are resized to 48×48 pixels and normalized between
zero and one. The last layer of the neural network uses the
softmax activation function to map each image to emotion
class. Data is downsampled to mitigate class imbalances; the
downsampled training dataset contains 73806 images and the
validation dataset has 18440 images. Validation accuracy was
60%. Figure 3 shows The confusion matrix.

Game streams usually include both gameplay video and facial
video of the streamer. We used OpenCV [4] library for detect-
ing faces in video frames. Detected faces are cropped, resized
to 48×48 pixels, and pixel intensities are normalized to the
range [0,1]. Sometimes, the face detection algorithm cannot
find the face; the data in these frames is reconstructed using
linear interpolation of the neighboring frames.

Audio Expression Analysis
For audio expression recognition, we again use a VGG16
image classification network, which is possible because we
preprocess audio segments into 2D spectrogram images. We

Figure 3. Confusion matrix of our VGG16 facial expression classification
network.

resample the audio signals at 16 KHz and compute power spec-
tra using Short-time Fourier transform (STFT) with window
size of 512 and stride 128. Power spectra are converted to
decibel units, downsampled by a factor of 4, and normalized
between zero and one. The Librosa library [21] was used
for audio preprocessing. The power spectra of 3 seconds seg-
ments are concatenated to as a 64x94 pixel spectrogram image,
which the VGG16 network maps to 7 classes of emotions. We
used combination of different datasets ([6, 7, 10, 17, 19]) to
train the network. In total, the number of training and valida-
tion data points is 9538 and 2384, respectively. The validation
accuracy was 68%. Figure 4 shows the confusion matrix of
the trained neural network.

A big problem with audio expression analysis is that game
stream audio usually includes game music and sound effects
in addition to the streamer’s voice. This can cause errors
especially when the player is not speaking. We mitigated this
by detecting and discarding windows with no speech. This is
done using the Librosa library [21] to remove the harmonic
parts of the audio, which usually removes most of the music.
We then discard the window if less than 30% of the remaining
audio signal exceeds a magnitude threshold. The missing
output values were reconstructed using linear interpolation.
We also tried applying the audio emotion recognition to the
signals with harmonic parts removed, but that yielded a lower
classification accuracy.
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Figure 4. Confusion matrix of the audio expression analysis VGG16 net-
work.

Audio features
The loudness and pitch of a streamers’ voice often changes
when they confront emotional events [27]. Therefore, we de-
cided to also include pitch and loudness as additional features.
The Librosa library was used to calculate root-mean-square
audio signal power, pitch, and perceptually weighted loudness
at each video frame.

Speech Transcript Sentiment Analysis
YouTube provides subtitles (transcripts based on speech recog-
nition) which we use to analyze the streamers’ speech. We use
a convolutional neural network to process 3 second segments
of the transcript data and predict the probability of positivity of
what is said. We extract the segments around each video frame
to output speech sentiment signals at the same frame rate as
the facial expression probabilities. Naturally, a streamer does
not speak all the time, in which case the sentiment output is
linearly interpolated between nearest valid outputs.

The sentiment analysis neural network uses a combination
of word embedding, temporal convolution, and a dense out-
put layers (Table 2). A Kaggle dataset of Amazon reviews1

is used for training. Sequences of 1000 words are used as
training data. Longer sequences are truncated, and the ones
with smaller length are padded with zero values. The neural
network is trained on 3600k data and validated on 400k data.
The validation accuracy is 94%.

Mapping Features to Emotional Events
Finally, we employ a temporal 1D convolutional neural net-
work that combines all the audio, video, and transcript features,
processing them as multichannel time series data extracted
from each analysis window. The network is trained to output
the probabilities of our event codes. We use standard softmax
cross-entropy classification loss function in the training. If
an input data window contains multiple annotations, we add
1https://www.kaggle.com/bittlingmayer/amazonreviews/discussion/3-
3444

Layer Output shape
InputLayer (batch size, 1000)
Embedding (batch size, 1000, 100)

Conv1D (batch size, 996, 128)
MaxPooling1D (batch size, 199, 128)

Conv1D (batch size, 195, 128)
MaxPooling1D (batch size, 39, 128)

Conv1D (batch size, 35, 128)
GlobalMaxPooling1D (batch size, 128)

Dense (batch size, 128)
Dense (batch size, 2)

Table 2. The neural network architecture of speech sentiment analysis.

Layer Output shape
InputLayer (batch size, 300, 18)

Conv1D (batch size, 298, 32)
MaxPooling1D (batch size, 99, 32)

Conv1D (batch size, 97, 32)
MaxPooling1D (batch size, 32, 32)

Conv1D (batch size, 30, 32)
MaxPooling1D (batch size, 10, 32)

Conv1D (batch size, 8, 32)
GlobalMaxPooling1D (batch size, 32)

Dropout (batch size, 32)
Dense (batch size, n. of classes)

Table 3. The architecture of our final emotional event detection and clas-
sification network.

the window to the training data multiple times, once for each
annotated label.

The network architecture is shown in Table 3. To achieve
event detection invariant to temporal displacement of signals
within the analysis windows, we employ a standard stack of
1D-convolution and max-pooling layers. As the receptive field
of the neurons grows with the successive convolutions and
max-poolings, the network is also better equipped to deal with
possible delays between different input signals. The signals
are normalized to have zero mean and unit standard deviation
over each video. The normalization makes the network more
invariant to the individual differences in emotional expressive-
ness of the streamers. Figure 5 shows an example of the input
signals for the network within a 5 second window.

EVALUATION
As explained earlier, we carry out all analyses with four levels
of granularity, ranging from 1 to 13 possible events in addition
to "no event". All the granularities are handled similarly,
except for the 5 most emotionally intense events recognition.
In this case, there is very little training data, and we first
trained with binary data (no event vs. event) and then froze all
layers except the output layer, and finetuned the output layer
with the top 5 event data. To investigate the effect of including
multimodal input signals, we also tested the accuracy of our
system both with all input types and with some input types
disabled. Table 4 shows the validation accuracies and F1-
scores with different analysis window lengths and input signal
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Figure 5. An example of the multimodal input signals of a 5 second window that the final network of our analysis pipeline maps to the annotated event
probabilities, including the probability of no event. For clarity, only a subset of the signals are displayed. The figure also shows the annotations in our
dataset. One sees how two annotators may disagree on the event codes such as "startle" and "surprise" and may log the event at slightly different
times. Using large enough windows gets around the temporal inaccuracy, but increases the chance of congestion, i.e., multiple events logged in the same
window by the same annotator.

Figure 6. Percentage of missed events for each event category when using
the best-performing 2-class (event vs. no event) classification based on
facial expressions, speech sentiment and audio features.

combinations, with best scores for each window length shown
in boldface. A randomly selected 20% subset of the data
was used as the validation set. For increased reliability, the
results were averaged over 5 independent training runs with
different random seeds. Similar to the inter-rater agreements,
the accuracies were computed with class imbalances corrected
through training sample weighting. Due to the high number
of data windows with no annotated events, the non-balance-
corrected accuracies would be artificially high even if our
system never detected any events. Likewise, F1-scores were
calculated using class weights to reduce the class imbalance
bias.

The accuracy scores indicate that our system is the most useful
for the binary classification case, i.e., detection of emotional
events. Figure 6 shows the false negative rates for each of our
13 codes, i.e., how many events of each type one would miss in
such a detection task, if using the best performing network that
uses facial expressions, transcript sentiment analysis and audio
features as the input. The figure indicates that the network
is the most robust in detecting clearly positive emotions like

amusement and happiness, but misses a large portion of puz-
zlement, moved, and wonder. The total numbers of validation
set events used for creating Figure 6 are: cuteness: 37, startle:
84, surprise: 67, frustration: 78, happiness: 70, excitement:
59, relief: 14, wonder: 20, amusement: 70, insight/fiero: 132,
moved: 9, puzzlement: 96, NA: 40.

DISCUSSION
The main insights that can be gained from investigating both
our dataset and the evaluation results can be summarized as
follows:

• Emotional event annotations can be temporally inaccurate
and increasingly unreliable with more fine-grained clas-
sification. However, both our inter-rater reliability and
automatic detection accuracy is reasonably good in basic
detection of emotional events.

• With a limited number of classes, automated emotional
event detection and classification is feasible and can pro-
duce human-level performance, i.e., accuracy similar to the
inter-rater agreement. This is an encouraging result that
should enable use cases like automated stream highlight
recognition and pre-screening playtest videos for further
analysis.

• At least in our case, facial expressions and audio features
are the most informative signals, and audio expressions
provide only limited improvement. However, this may be
due to game music and sound effects corrupting the audio
analysis. As a positive result that encourages future work,
the confusion matrices of Figures 3 and 4 indicate that
audio and facial expression analysis have complementary
strengths.

Below, we further elaborate on these findings.
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Granularity
Window
length

Accuracy (%) F1-score (%)

FE FE+S FE+S+AE FE+S+AF Full FE FE+S FE+S+AE FE+S+AF Full

2-class

1 63.0 63.5 63.6 64.9 64.9 60.0 60.3 61.4 63.0 62.3
2 68.5 68.7 68.3 70.7 69.8 66.5 66.9 66.8 69.9 68.4
3 67.9 67.5 67.0 68.6 67.5 65.8 65.2 64.3 66.3 64.3
4 67.6 67.0 66.8 68.7 68.0 65.0 64.5 64.0 66.4 65.3
5 68.1 67.6 67.1 68.7 68.0 65.1 65.0 64.0 66.9 65.1

2-class/
top events

1 70.2 68.7 67.3 72.5 71.3 69.1 66.8 64.6 71.5 69.3
2 74.9 76.3 75.9 80.4 77.6 74.4 76.0 75.9 80.7 77.4
3 74.3 73.4 73.4 75.6 76.6 73.2 71.7 71.6 74.1 75.3
4 73.1 71.6 71.5 77.2 78.0 72.2 70.3 70.4 76.5 78.0
5 71.2 69.0 71.3 74.2 76.3 69.0 65.8 69.1 72.6 75.3

4-class

1 41.9 42.9 42.2 40.3 39.5 51.8 52.4 51.9 49.5 49.1
2 42.7 43.9 43.0 44.5 43.2 53.4 54.5 53.5 55.4 54.0
3 42.8 42.3 40.3 42.5 41.6 53.4 53.1 50.6 53.3 52.1
4 44.5 44.0 43.5 45.4 43.5 54.9 54.0 53.6 55.5 53.8
5 41.0 41.7 41.9 42.1 41.7 51.1 51.8 52.1 52.0 51.8

14-class

1 19.8 21.6 21.0 19.4 20.7 29.5 34.0 33.1 29.2 32.0
2 24.0 22.6 23.5 26.4 25.1 35.9 34.1 35.4 39.4 38.1
3 18.3 22.7 21.3 21.7 21.3 28.1 34.1 32.2 32.9 31.6
4 19.6 21.2 20.5 23.8 22.8 30.1 32.6 31.7 34.9 33.6
5 19.7 19.1 19.7 22.7 20.8 29.5 29.3 30.7 34.4 32.2

Table 4. Accuracy and F1-score of classification with different window lengths and levels of granularity. In each column, the final neural network has
different inputs enabled. FE, S, AE, and AF denote facial expressions, speech (transcript) sentiment, audio expression analysis, and audio features,
respectively. In the "full" column, all 4 types of inputs are used.

Human Annotation Accuracy
As shown in Figure 5, two annotators may log the same event
with different emotion codes and timestamps. Naturally, there
is more disagreement with more similar emotions such as
being startled and surprised, in contrast to clearly distinct
emotions like "angry" and "happy". Moreover, people tend to
recognize intense emotional expressions more accurately than
more subtle expressions [36]. Table 1 further reveals that the
inter-rater agreement grows with window size, but at least in
our data, windows of several seconds increase the chance of
congestion. We have limited our analysis to congestion levels
below 1%, which with our data translates to using windows
of roughly 5 seconds or less. Please note also that if we had
chiefly focused on human annotation (e.g., in the context of
a qualitative study, where significant game events are defined
and manually coded by the researchers [23, 33]), window size
and congestion would not have been as relevant, and likely
resulted in a higher inter-rater agreement.

Automated Analysis Accuracy
As shown in Figure 6, our system is most accurate at recog-
nizing positive emotional expressions (cuteness, happiness,
excitement, amusement, surprise). False negatives were more
prevalent for subtle emotional expressions (e.g., puzzlement,
moved, wonder), which may be due to lower intensity ex-
pressions being more difficult to recognize [36]. Moreover,
expressions of frustration or being startled were frequently
accompanied by immediate positive expressions (e.g., smil-

ing), which may explain the relatively high amount of false
negatives. This may be due to streamers expressing amuse-
ment after being startled, or as observed by previous work
employing facial EMG [35] or automated facial expression
analysis [29], players laughing off instances of failure (e.g.,
when missing a jump).

Table 4 shows that the accuracy of our system decreases with
shorter time windows (better temporal resolution) and more
fine-grained class detection. However, the detection and clas-
sification task is non-trivial for humans as well, and our ac-
curacies are well in line with the inter-rater agreements. One
notable difference is that with the automatic analysis accuracy,
the relation to window length is not as pronounced. 1 second
windows consistently produce worse results, but there appears
to be no outstanding differences between the longer windows.

We find it interesting that our accuracy is particularly good
in the top 5 most intense events detection. As such, even
the 2-class/top events approach helps automate the detection
of emotionally intense game events to some extent. For in-
stance, our approach could be used to automatically sum-
marize game stream highlights [27]. Alternatively, the sys-
tem could be adapted for automatic identification of events
in playtest videos, especially if the players are asked to think
aloud while playing. These video highlights can then be shown
to players to elicit additional feedback, as well as reduce un-
necessary burden that might result from having players sit
through an entire playtest recording. In contrast to previous
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work [23, 34, 35], however, our approach does not require
specialized equipment or training in biometrics, which makes
it more feasible for small and independent game developer
studios [26].

Importance of Player Video vs. Audio
Based on Table 4, and in particular the best-performing 2-class
cases, using multiple signals improves the results, compared
to only analyzing facial expressions. However, the improve-
ment is only a few percentages, and using all four input types
only rarely leads to best results. Considering the fairly limited
amount of training data, this may be due to the network over-
fitting to more high-dimensional data. To reduce overfitting,
all added input variables should provide substantial additional
information. Looking at Table 4, the low-level audio pitch and
loudness features (AF) are such signals, as adding them often
provides the best results.

From the point of view of analyzing the player’s voice, the
stream videos are corrupted by game music and sound effects.
Table 4 suggests that in detecting the most emotional events,
the audio emotion analysis (AE) is not very useful, whereas
including the audio features (AF) does consistently improve
the results.

On the other hand, we find it remarkable that with proper
data, the same VGG16 neural network architecture provides
almost similar accuracy in analyzing emotions from both au-
dio spectrograms and images of a player’s face. Comparing
the confusion matrices in Figures 3 and 4, one sees that the
networks have complementary strengths. Facial expression
analysis is particularly good at recognizing happy expressions,
whereas this is the primary weakness of the audio network. On
the other hand, the audio network makes considerably fewer
misclassifications of disgust, fear, and sadness. Thus, with
non-corrupted data, audio and video could well complement
each other and help disambiguate between emotion categories.
Fortunately, recording only player speech without game audio
can be easily done in non-streaming contexts by the player
wearing headphones.

Limitations
In contrast to previous work analyzing players’ emotional ex-
pressions (e.g., [23, 29, 34, 35]), we did not systematically
take game events into consideration. First, this would have
required a laborious and lengthy manual coding process, as
the videos are not accompanied by logged and time-stamped
game events (such as in [30]), or would require videos aug-
mented with logged game event data (as in [16]). Second, we
found that in our video sample, the same streamer’s emotional
reaction to the same event could vary substantially (e.g., due
to being "distracted" by social interaction). On the other hand,
not having to depend on knowledge on game events can also
be considered a strength of our system. That said, adding au-
tomatic annotation of gameplay events from video (see [16])
as a complementary modality is a promising avenue for future
work.

Another limitation is that we employed automatic captions for
the text sentiment analysis. This was a necessary trade-off, as
were interested in testing the utility of incorporating automatic

modalities only, which allow for a relatively time-efficient and
easy analysis. While text sentiment analysis would have likely
been more accurate if we had manually transcribed streamers’
utterances, it would have required a greater time investment.

Note also that we employed a fairly small dataset compared
to previous work employing similar approaches (e.g., [29]).
However, our results show that our approach reaches a satisfac-
tory accuracy even with a limited dataset. This showcases its
utility and generalizability for analyzing playtest video record-
ings and streams of a variety of games. As such, our approach
is also suitable for small and independent game developer
communities [26], who might otherwise not have access to
games user research resources.

It should also be noted that our inter-rater agreement and
validation accuracy scores are only approximately comparable.
The inter-rater agreement would be more akin to the validation
accuracy if only one annotator’s data for each video was used
for training and the other annotator’s data was reserved for
validation. However, this would mean that the exact same
input features would be included in both the training and
validation sets, making the validation accuracy not descriptive
of overfitting. The approach would also discard a considerable
amount of information about the variance of human annotator
behavior. As we have relatively little data to start with, we
instead used a random 80%-20% training and validation split.

Finally, our sample of streamers was rather homogeneous. All
were Caucasian, based in Western Europe or North America,
and likely aged in their twenties or early thirties. It remains to
be seen whether our approach accounts for potential gender,
age or cultural differences with regards to players’ emotional
expression. Given the limited number of streamers in our
sample (2 women, 7 men), our analysis would not have yielded
meaningful or reliable findings. However, seeing how previous
work on automated emotion recognition has, for instance,
observed culture-specific and cross-cultural nuances in facial
emotion expressions [3], it is important for future work to
account for the diversity of people who enjoy gaming and
streaming.

CONCLUSION
We have presented a new dataset and automated detection
and classification system for emotionally salient events in
game stream videos. Our results indicate that identifying and
classifying emotional events is a task that is hard for both
humans and artificial neural networks. On the other hand, sim-
plifying the task to only detecting the events yields a decent
inter-rater agreement of 68.7%. Furthermore, our automated
annotation system trained with the human annotations reaches
a validation accuracy on par with the inter-rater agreement.
Our system appears in particular usable for detecting the most
intense emotional events, with accuracy of 80.4%, which sug-
gests applications in automatic detection and summarization
of video highlights or pre-selecting videos for further analysis
after large-scale game testing.

The main technical novelty of our approach is that we utilize
four different types of inputs and analyses: facial expression
analysis, video transcript sentiment analysis, audio emotion
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analysis, and low-level audio feature extraction (pitch, loud-
ness). Our evaluation indicates that it is indeed feasible to
build such a multimodal neural network architecture with face,
voice, and text analysis modules trained on existing large
datasets, and finally combine the outputs of the modules using
a network trained with a smaller custom dataset. Interestingly,
our application of a VGG16 convolutional image classification
network yields similar emotion recognition performance with
both player facial images and voice spectrograms, with the
face and voice classifications having complementary strengths.
For example, fear is easily confused with other emotions based
on the face, whereas it is the most robustly recognized emotion
based on voice. On the other hand, this encouraging result
based on the original voice emotion datasets does not necessar-
ily generalize to game streams, where the audio is corrupted
by game music and sound effects. This is probably one of
the main reasons why we only see minor improvements when
combining multiple input signals. In the future, we aim to
test our approach with playtest videos recorded without game
audio, with the players wearing headphones.
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