
1 
 

University of Aizu, Graduation Thesis. March, 2025 s1290042 

Abstract 
Offline RL has garnered significant attention for its 
stability and sampling efficiency in various fields 
including the gaming industry.  While methods such as 
DT and CQL excel in deterministic environments, their 
applicability to stochastic settings remains limited.  To 
address this, ESPER method was introduced, 
demonstrating superior performance in stochastic 
environments.  However, it is not investigated in 
deterministic settings.  This study compares the 
performance of ESPER, DT and CQL in a deterministic 
environment using MinAtar’s Breakout.  Models were 
trained using datasets generated by a DQN agent and 
evaluated over one million steps.  Results show that 
ESPER outperforms DT and CQL in terms of average 
score, demonstrating its adaptability to deterministic 
environments.  However, discrepancies between target 
returns and actual scores highlight potential limitations 
in training steps and parameter settings.  These findings 
indicate that ESPER is a versatile approach capable of 
achieving robust performance in deterministic and 
stochastic environments.  Future work will focus on 
optimizing training conditions and expanding 
evaluations to diverse environments to validate its 
generalizability. 

1    Introduction 
Recently, offline machine learning methods such as 
Decision-Transformer (DT) [1], and Conservative Q-
Learning (CQL) [2] have received much attention due 
to their stability of evaluation, and efficiency of 
sampling in the game industry.  However, these 
methods can be adopted only in the deterministic 
environment and not in the stochastic environment. 

Paster et al. introduced environment-stochasticity-
independent representation (ESPER) [3].  This method 
is intended for use in environments that include 
stochasticity.  ESPER got a higher score than other 
methods such as DT and CQL in some stochastic 
environments. However, these methods have not been 
compared in a non-stochastic environment.  

The aim of this study is to compare ESPER, DT, and 
CQL by training them in a deterministic environment 

and investigate whether ESPER is capable of using a 
deterministic environment. 

2    Method 

2.1    Environments 
2.1.1    Deterministic or Stochastic [4] 
In reinforcement learning tasks, environments are often 
classified as either deterministic or stochastic, based on 
the predictability of their outcomes. 
 Deterministic environments are those where the 
outcomes of actions are entirely predictable.  If the 
same state and action are given, the resulting state and 
reward will always be identical.  For example, chess, 
puzzle solving, and so on. 
 Stochastic environments introduce uncertainty and 
randomness in outcomes.  In these environments, the 
same state-action pair can lead to different outcomes 
depending on factors beyond the agent’s control.  For 
example, stock market analysis, autonomous driving, 
and so on. 
 
2.1.2    Arcade Learning Environments 
Arcade Learning Environment (ALE), developed by 
Bellemare et al [5], is widely used for research in game 
and reinforcement learning (RL).  In this study, we 
have also attempted to use ALE, however, we noticed 
that the computation resource for it is considerably 
high in advancing research.  So, we used another 
environment, MinAtar, as a deterministic environment. 
 
2.1.3    Breakout in MinAtar 
Breakout is one of the ALE games where the player 
controls a paddle at the bottom of the screen to bounce 
a ball and break rows of bricks positioned at the top of 
the screen.  Scores are added for each brick broken, and 
the game continues with new rows of bricks added after 
clearing the existing ones.  The game terminates when 
the ball falls below the paddle and cannot be returned.  
The deterministic mechanics of Breakout, such as 
predictable ball reflection angles and consistent reward 
structures, make it an ideal environment for RL studies 
focusing on policy optimization in controlled settings. 
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In this study, we used the light version of Breakout, 
which is implemented in the MinAtar framework.  
MinAtar is a simplified testbed for RL research 
inspired by ALE, developed by Young and Tian [6].  
This environment needs lower computational resources 
than ALE in that its lower spatial dimension (10 × 10 
grid compared to 64 × 64 in ALE), its lower action 
space (6 compared to 18 in ALE), and so on.  It also 
maintains the mechanics of ALE as much as possible. 
For example, some environments in MinAtar have 
implemented a mechanism like ALE that dynamically 
adjusts the difficulty level based on the player’s skill 
level or time.  By using MinAtar’s version of Breakout, 
we leverage its efficient resource requirements while 
preserving the game’s core dynamics for our 
experimental objectives. 

In MinAtar’s Breakout, the primary optimization 
goal is to maximize the cumulative reward per episode.  
Here, an episode refers to a single game session that 
begins when the game starts and ends when the ball is 
lost, resulting in the termination of the game.  The 
player controls a paddle at the bottom of the screen and 
must bounce a ball to break 3 rows × 10 columns of 
bricks along the top of the screen.  A reward of +1 is 
given for each brick broken by the ball.  When all 
bricks are cleared another 3 rows are added. The ball 
travels only along diagonals.  When the ball hits the 
paddle, it is bounced either to the left or right 
depending on the side of the paddle hit.  When the ball 
hits a wall or brick, it is reflected.  Termination occurs 
when the ball hits the bottom of the screen.  The 
visualization is shown in Figure 1. 
 

 
 
 
 
 

2.2    Experiments 
We trained each model by a million steps. 
2.2.1    Dataset 
There are no datasets for MinAtar.  So, we created a 
dataset based on DQN Replay Dataset [7].  We adopted 
Deep Q-Network (DQN) [8] agents in MinAtar’s 
breakout for collecting data.  It is trained by about a 
million steps, and we got about 17500 episodes in this 
training.   Parameters are shown in Table 1.  We set no 
sticky action, the parameter of probability that repeats 
the agent’s previous action.  We also did not set frame 
skipping, which is the parameter to decide the number 
of steps the same action continues. 
 Figure 2 shows that DQN average returns per 100 
steps in training for collecting datasets. 
 

Hyperparameters Value 
Batch size 32 

Learning Rate 2.5e-4 
Activation Function ReLU [9] 

Optimizer RMSProp[10] 
Buffer size 100,000 

Discount factor 0.99 
Table 1 DQN hyperparameters 

 

 
 
 
2.2.2    Deep Q Network (DQN) 
Q-learning is a model-free RL algorithm that aims to 
learn an optimal policy by iteratively updating a Q-
value function.  Specifically, the Q-value is updated for 
each action, and based on its action is selected. 

Figure 2 Average returns per 100 episodes.  
Returns are the cumulative return of each episode.  
In this graph, they are averaged and plotted every 
100 episodes. 

Figure 1 The screenshot of MinAtar’s breakout 
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 In DQN, the action Q-value is estimated by a 
neural network.  For updating the network, experience 
replay buffers are used.  It is a transition (state, action, 
reward, and next state).  There are two networks, the Q 
network and the target network.  The Q network is 
updated by batch randomly selected from experience 
replay buffers.  Then the target network is updated by 
the Q network. 
 The network parameter 𝜃 is updated to minimize 
the following loss function. 

𝐿(𝜃) =	

𝔼!",$,%,"!&~( ()𝑟 + 𝛾max$)
𝑄(𝑠), 𝑎)|𝜃*) − 𝑄(𝑠, 𝑎|𝜃)6

+
7 

Here, s, a is the current state and action, respectively, r 
is a reward obtained after taking action a in state s, 𝑠′ 
is next state, 𝛾 is a discount factor and 𝜃* is a target 
network parameter. 
 
2.2.3    Conservative Q-Learning (CQL) 
CQL is a value-based offline RL algorithm.  Unlike 
standard Q-learning approaches, CQL incorporates a 
penalty term into the Q-function objective to enforce 
conservatism, which ensures that the learned policy 
avoids overestimating actions that are not well 
supported by the offline dataset. 
 In CQL, the following loss function is commonly 
used.  

𝐿,-.(𝑄) = 𝔼(",$)~([𝑄(𝑠, 𝑎)] − 𝔼(",$)~1[𝑄(𝑠, 𝑎)]
+ 𝛼𝔼(",$)~1[𝑙𝑜𝑔𝜋(𝑎|𝑠)] 

Here, D is the replay buffer of the dataset, and π is the 
learning policy. 

Our CQN architecture consisted of a single 
convolutional layer, followed by a fully connected 
hidden layer.  Our convolutional layer used 16 3*3 
convolutions with stride 1 and the fully connected layer 
had 128 units.  We decided on these conditions based 
on DQN settings in Kenny’s research [6].  Another 
parameter is shown in Table 2. 

 
Hyperparameters Value 

Batch size 128 
Learning Rate 5e-4 

Target Update Rate 1e-3 
Activation Function ReLU [9] 

Optimizer Adam [11] 
Discount Factor 0.99 

Table 2 CQL hyperparameters 
 
 
 
 
 
 

2.2.4    Decision-Transformer (DT) 
DT is an RL approach that reframes the RL problem as 
a sequence modeling task, enabling the use of 
transformers to predict actions based on past 
trajectories and desired future outcomes.  Decision 
Transformer is categorized as a return conditioned 
supervised learning (RvS) method. 
 Unlike traditional RL methods that rely on value 
functions or policy optimization, DT conditions 
directly on desired returns.  It models the trajectory as 
a sequence of tokens consisting of states 𝑠2, actions 𝑎2, 
and returns-to-go 𝑅2.  The transformer predicts actions 
by attending to the entire sequence and considering the 
relationships between past states, actions, and future 
rewards. 
 The input sequence to the transformer is structured 
as: 

𝜏 = (𝑅2 , 𝑠2 , 𝑎2 , 𝑅234, 𝑠234, 𝑎234, … ) 
 The model is trained to minimize the negative 
log-likelihood of actions: 

𝐿 = −𝔼5~([𝑙𝑜𝑔𝑝(𝑎2|𝜏)] 

Here, 𝑅2  is a return-to-go, representing the sum of 
future rewards starting from the time step 𝑡 , 𝑠2  is a 
current state at time t and 𝑎2 is an action taken at time 
𝑡. 

We used almost same DT architecture that is 
implemented in Paster et al. research [3]. 
 

Hyperparameter Value 
Batch size 128 

Learning Rate 1e-4 
Embed dim 128 
Num layer 3 
Num head 1 

Activation Function ReLU [9] 
Dropout 0.1 

Weight decay 1e-4 
Warmup steps 10000 

Discount Factor 1 
Target return 1, 2,…,8 

Table 3 DT hyperparameters 
 
2.2.5    ESPER 
ESPER is a method designed to address the limitations 
of RvS approaches in stochastic environments. Unlike 
traditional RvS methods, which condition policies on 
trajectory returns that may be influenced by 
environmental stochasticity, ESPER ensures that 
policies are conditioned on representations 
independent of such stochasticity. This independence 
enables ESPER to produce consistent and reliable 
behaviors even in stochastic settings. 
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The implementation of ESPER involves three 
main phases: 

 
1. Adversarial Clustering 

In the first phase, ESPER employs a neural network 
to assign each trajectory to a cluster based on features 
independent of environmental stochasticity. This 
clustering process is adversarial, aiming to minimize 
the dependency between the cluster assignments and 
the stochastic outcomes of the environment. The 
clustering model is trained using two losses, policy 
reconstruction loss and adversarial loss.  Policy 
reconstruction loss is the loss that encourages the 
clustering model to capture information about the 
behavior policy.  Adversarial loss is the loss that 
penalizes cluster assignments that enable the 
dynamics model to predict next states based on 
environmental stochasticity. 

For the clustering model, a Long Short-Term 
Memory (LSTM) [12] network is used for trajectory 
encoding. 
 

2. Estimating Cluster Returns 
After clustering, the second phase involves 
computing the average return for each cluster. The 
return predictor is trained to estimate these cluster-
specific average returns using the following loss 
function: 

𝐿(𝜓) = 𝔼6(5)~7"8𝐼(𝜏)9𝜏: GHI𝑅 − 𝑓;K𝐼(𝜏)LIH	+
+M 

Here, R represents the cumulative discounted return 
for a trajectory and 𝑓;K𝐼(𝜏)Lpredicts the cluster’s 
average return. 

For action and return predictors, fully connected 
Multi-Layer Perceptrons (MLPS) [13] are used. 
 

 
 
 
 
 

3. Training the RvS Agent 
In this phase, an RvS agent is trained using the 
clustered average returns as conditioning targets. The 
policy is learned by minimizing the negative log-
likelihood of the actions conditioned on the states and 
estimated cluster returns: 

𝐿(𝜉) = 𝔼"#,$#,<=#~(O−𝑙𝑜𝑔𝜋>K𝑎2I𝑠2 , 𝑅P2LQ 
RvS policy is a transformer-based sequence model, 
following the architecture used in DT.  The 
parameters of DT are same as DT one and are shown 
in Table 3. 

 
Finally, the architecture of ESPER is shown in Figure 
3 and parameter settings are shown in Table 4. 
 

Hyperparameters Values 
Batch size 128 

Learning Rate 5e-4 
Hidden size 128 

Policy hidden layers 2 
Clustering model hidden layers 2 
Clustering model lstm layers 1 

Action predictor hidden layers 2 
Return predictor hidden layers 2 

Activation Function ReLU 
Optimizer AdamW [14] 

Normalization Batch norm 
Table 4 ESPER Hyperparameters 

 
2.2.6    Evaluation 
To evaluate the performance of each method, we 
implemented a standardized evaluation protocol.  
Specifically, the evaluation process was conducted 
every 2,500 training steps.  The evaluation process is 
to conduct only an episode per 2,500 steps.  Then the 
summation of returns is used as a performance value. 
 
 
 
 
 

Figure 3 Architecture of ESPER [3] 
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3    Results 
Our results are represented as discrete values ranging 
from 0 to 4.  Due to the inherently high variance and 
jagged nature of the raw data, we judged interpreting 
the trends directly from the original graphs is 
challenging.  So, we applied a 100-step moving 
average to smooth the results for clearness of 
visualization and reliable analysis.  

For DT and ESPER’s results, since we set the 
target return values to range from 1 to 8, there are eight 
patterns of results for each method.  Figures 4 and 5 
show the eight patterns of score transition graphs for 
DT and ESPER, respectively.  From these graphs, we 
judged that target 1 is the best for DT and target 5 is the 
best for ESPER.  So, we use these as the result of each 
method. 

3.1    Score Transition Graph 
We present a graph illustrating the score transitions 
over training for each method.  The X-axis represents 
the number of evaluations.  In the training loops, we 
evaluate each method every 2500 steps, so evaluation 
is conducted 400 times.  The Y-axis indicates the 
smoothed scores, calculated using a 100-step moving 
average. 
  The results of the transition score are shown in 
Figure 6.  From it, we found that ESPER hit the best 
score of the other methods.  However, many of 
ESPER’s results are staying constant.  DT’s results also 
remain constant over time likewise ESPER’s one.  On 
the other hand, CQL’s results steadily increase after 
about 200 steps. 
 Moreover, ESPER looks steadier than DT, because 
many DT’s results finished closing 0 score. (Figures 4 
and 5.) 

3.2    Comparison Table 
We compare these methods by maximum and average 
scores.  The results are shown in Table 5. 
 From this table, we found that in average score, 
DT and ESPER is twice as big as CQL.  Also, ESPER 
is a little better than DT.  On the other hand, in the 
maximum score, there are almost no difference in the 
three methods. 
 

 CQL DT ESPER 
Max 3 4 4 

Average 0.2 0.41 0.55 
Table 5 Comparison performance 

 
 
 
 

4    Discussions 
From the score transition graphs, ESPER demonstrates 
a higher average performance compared to both CQL 
and DT.  It achieved relatively higher stability in its 
results.  DT also performed consistently, many of its 
results converged near a score of 0.  It shows DT’s 
limitations in certain target returns.  Conversely, CQL 
tends to increase performance after approximately 200 
evaluation steps.  It shows its potential for gradual 
improvement with extended training. 
 The comparison table reveals that in terms of 
average score, ESPER outperforms both CQL and DT.  
DT achieves similar average performance but exhibits 
more variability, as suggested by its lower minimum 
scores in the transition graphs. 
 In maximum scores, all three methods reach 
comparable performance, suggesting that when 
optimal trajectories exist, all algorithms can identify 
and exploit them. 
 Overall, ESPER achieved equal or better 
performance than both CQL and DT.  So, we can say it 
ESPER can be utilized in deterministic environment. 
 However, if we focus on the relationship between 
the target return and the actual score in the transition 
graph of DT and ESPER, there are many results that 
end up not being close to the target return.  It shows the 
possibility of insufficient training steps or suboptimal 
parameter settings. 

5    Conclusion 
This study demonstrates that ESPER consistently 
outperforms both CQL and DT, and it can be utilized in 
a deterministic environment. 
 The findings highlight the potential of ESPER for 
tasks requiring reliable and stable performance in 
stochastic environments, such as autonomous decision-
making and real-world offline RL applications. 
 However, the discrepancies between the target 
return and actual performance in both DT and ESPER 
suggest that further tuning of training steps and 
parameter settings is necessary to achieve optimal 
results.  Additionally, the current evaluation focuses on 
discrete scores, which may limit the granularity of 
performance insights. 
 Future work could explore more comprehensive 
parameter optimization strategies and extend the 
evaluation to include continuous performance metrics 
for finer-grained analysis.  Furthermore, applying these 
methods to a wider range of environments could 
validate their generalizability and effectiveness in 
diverse settings. 
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Figure 5 DT smoothed score for each target 

Figure 4 ESPER smoothed score for each target 

Figure 6 Comparison scores between three methods 
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