
1

University of Aizu, Graduation Thesis. March, 2025 s1290042

Abstract
Offline RL has garnered significant attention for its
stability and sampling efficiency in various fields
including the gaming industry. While methods such as
DT and CQL excel in deterministic environments, their
applicability to stochastic settings remains limited. To
address this, ESPER method was introduced,
demonstrating superior performance in stochastic
environments. However, it is not investigated in
deterministic settings. This study compares the
performance of ESPER, DT and CQL in a deterministic
environment using MinAtar’s Breakout. Models were
trained using datasets generated by a DQN agent and
evaluated over one million steps. Results show that
ESPER outperforms DT and CQL in terms of average
score, demonstrating its adaptability to deterministic
environments. However, discrepancies between target
returns and actual scores highlight potential limitations
in training steps and parameter settings. These findings
indicate that ESPER is a versatile approach capable of
achieving robust performance in deterministic and
stochastic environments. Future work will focus on
optimizing training conditions and expanding
evaluations to diverse environments to validate its
generalizability.

1 Introduction
Recently, offline machine learning methods such as
Decision-Transformer (DT) [1], and Conservative Q-
Learning (CQL) [2] have received much attention due
to their stability of evaluation, and efficiency of
sampling in the game industry. However, these
methods can be adopted only in the deterministic
environment and not in the stochastic environment.

Paster et al. introduced environment-stochasticity-
independent representation (ESPER) [3]. This method
is intended for use in environments that include
stochasticity. ESPER got a higher score than other
methods such as DT and CQL in some stochastic
environments. However, these methods have not been
compared in a non-stochastic environment.

The aim of this study is to compare ESPER, DT, and
CQL by training them in a deterministic environment

and investigate whether ESPER is capable of using a
deterministic environment.

2 Method

2.1 Environments
2.1.1 Deterministic or Stochastic [4]
In reinforcement learning tasks, environments are often
classified as either deterministic or stochastic, based on
the predictability of their outcomes.
 Deterministic environments are those where the
outcomes of actions are entirely predictable. If the
same state and action are given, the resulting state and
reward will always be identical. For example, chess,
puzzle solving, and so on.
 Stochastic environments introduce uncertainty and
randomness in outcomes. In these environments, the
same state-action pair can lead to different outcomes
depending on factors beyond the agent’s control. For
example, stock market analysis, autonomous driving,
and so on.

2.1.2 Arcade Learning Environments
Arcade Learning Environment (ALE), developed by
Bellemare et al [5], is widely used for research in game
and reinforcement learning (RL). In this study, we
have also attempted to use ALE, however, we noticed
that the computation resource for it is considerably
high in advancing research. So, we used another
environment, MinAtar, as a deterministic environment.

2.1.3 Breakout in MinAtar
Breakout is one of the ALE games where the player
controls a paddle at the bottom of the screen to bounce
a ball and break rows of bricks positioned at the top of
the screen. Scores are added for each brick broken, and
the game continues with new rows of bricks added after
clearing the existing ones. The game terminates when
the ball falls below the paddle and cannot be returned.
The deterministic mechanics of Breakout, such as
predictable ball reflection angles and consistent reward
structures, make it an ideal environment for RL studies
focusing on policy optimization in controlled settings.

The Comparison Between Environment Stochastic
Independent Representation, Decision Transformer,
and Conservative Q-Learning in Arcade Learning
Environment
Takuya Yahagi s1290042 Supervised by Prof. Maxim Mozgovoy

ゴート・ヤギ

ゴート・ヤギ

2

University of Aizu, Graduation Thesis. March, 2025 s1290042

In this study, we used the light version of Breakout,
which is implemented in the MinAtar framework.
MinAtar is a simplified testbed for RL research
inspired by ALE, developed by Young and Tian [6].
This environment needs lower computational resources
than ALE in that its lower spatial dimension (10 × 10
grid compared to 64 × 64 in ALE), its lower action
space (6 compared to 18 in ALE), and so on. It also
maintains the mechanics of ALE as much as possible.
For example, some environments in MinAtar have
implemented a mechanism like ALE that dynamically
adjusts the difficulty level based on the player’s skill
level or time. By using MinAtar’s version of Breakout,
we leverage its efficient resource requirements while
preserving the game’s core dynamics for our
experimental objectives.

In MinAtar’s Breakout, the primary optimization
goal is to maximize the cumulative reward per episode.
Here, an episode refers to a single game session that
begins when the game starts and ends when the ball is
lost, resulting in the termination of the game. The
player controls a paddle at the bottom of the screen and
must bounce a ball to break 3 rows × 10 columns of
bricks along the top of the screen. A reward of +1 is
given for each brick broken by the ball. When all
bricks are cleared another 3 rows are added. The ball
travels only along diagonals. When the ball hits the
paddle, it is bounced either to the left or right
depending on the side of the paddle hit. When the ball
hits a wall or brick, it is reflected. Termination occurs
when the ball hits the bottom of the screen. The
visualization is shown in Figure 1.

2.2 Experiments
We trained each model by a million steps.
2.2.1 Dataset
There are no datasets for MinAtar. So, we created a
dataset based on DQN Replay Dataset [7]. We adopted
Deep Q-Network (DQN) [8] agents in MinAtar’s
breakout for collecting data. It is trained by about a
million steps, and we got about 17500 episodes in this
training. Parameters are shown in Table 1. We set no
sticky action, the parameter of probability that repeats
the agent’s previous action. We also did not set frame
skipping, which is the parameter to decide the number
of steps the same action continues.
 Figure 2 shows that DQN average returns per 100
steps in training for collecting datasets.

Hyperparameters Value
Batch size 32

Learning Rate 2.5e-4
Activation Function ReLU [9]

Optimizer RMSProp[10]
Buffer size 100,000

Discount factor 0.99
Table 1 DQN hyperparameters

2.2.2 Deep Q Network (DQN)
Q-learning is a model-free RL algorithm that aims to
learn an optimal policy by iteratively updating a Q-
value function. Specifically, the Q-value is updated for
each action, and based on its action is selected.

Figure 2 Average returns per 100 episodes.
Returns are the cumulative return of each episode.
In this graph, they are averaged and plotted every
100 episodes.

Figure 1 The screenshot of MinAtar’s breakout

3

University of Aizu, Graduation Thesis. March, 2025 s1290042

 In DQN, the action Q-value is estimated by a
neural network. For updating the network, experience
replay buffers are used. It is a transition (state, action,
reward, and next state). There are two networks, the Q
network and the target network. The Q network is
updated by batch randomly selected from experience
replay buffers. Then the target network is updated by
the Q network.
 The network parameter 𝜃 is updated to minimize
the following loss function.

𝐿(𝜃) =	

𝔼!",$,%,"!&~(()𝑟 + 𝛾max$)
𝑄(𝑠), 𝑎)|𝜃*) − 𝑄(𝑠, 𝑎|𝜃)6

+
7

Here, s, a is the current state and action, respectively, r
is a reward obtained after taking action a in state s, 𝑠′
is next state, 𝛾 is a discount factor and 𝜃* is a target
network parameter.

2.2.3 Conservative Q-Learning (CQL)
CQL is a value-based offline RL algorithm. Unlike
standard Q-learning approaches, CQL incorporates a
penalty term into the Q-function objective to enforce
conservatism, which ensures that the learned policy
avoids overestimating actions that are not well
supported by the offline dataset.
 In CQL, the following loss function is commonly
used.

𝐿,-.(𝑄) = 𝔼(",$)~([𝑄(𝑠, 𝑎)] − 𝔼(",$)~1[𝑄(𝑠, 𝑎)]
+ 𝛼𝔼(",$)~1[𝑙𝑜𝑔𝜋(𝑎|𝑠)]

Here, D is the replay buffer of the dataset, and π is the
learning policy.

Our CQN architecture consisted of a single
convolutional layer, followed by a fully connected
hidden layer. Our convolutional layer used 16 3*3
convolutions with stride 1 and the fully connected layer
had 128 units. We decided on these conditions based
on DQN settings in Kenny’s research [6]. Another
parameter is shown in Table 2.

Hyperparameters Value

Batch size 128
Learning Rate 5e-4

Target Update Rate 1e-3
Activation Function ReLU [9]

Optimizer Adam [11]
Discount Factor 0.99

Table 2 CQL hyperparameters

2.2.4 Decision-Transformer (DT)
DT is an RL approach that reframes the RL problem as
a sequence modeling task, enabling the use of
transformers to predict actions based on past
trajectories and desired future outcomes. Decision
Transformer is categorized as a return conditioned
supervised learning (RvS) method.
 Unlike traditional RL methods that rely on value
functions or policy optimization, DT conditions
directly on desired returns. It models the trajectory as
a sequence of tokens consisting of states 𝑠2, actions 𝑎2,
and returns-to-go 𝑅2. The transformer predicts actions
by attending to the entire sequence and considering the
relationships between past states, actions, and future
rewards.
 The input sequence to the transformer is structured
as:

𝜏 = (𝑅2 , 𝑠2 , 𝑎2 , 𝑅234, 𝑠234, 𝑎234, …)
 The model is trained to minimize the negative
log-likelihood of actions:

𝐿 = −𝔼5~([𝑙𝑜𝑔𝑝(𝑎2|𝜏)]

Here, 𝑅2 is a return-to-go, representing the sum of
future rewards starting from the time step 𝑡 , 𝑠2 is a
current state at time t and 𝑎2 is an action taken at time
𝑡.

We used almost same DT architecture that is
implemented in Paster et al. research [3].

Hyperparameter Value
Batch size 128

Learning Rate 1e-4
Embed dim 128
Num layer 3
Num head 1

Activation Function ReLU [9]
Dropout 0.1

Weight decay 1e-4
Warmup steps 10000

Discount Factor 1
Target return 1, 2,…,8

Table 3 DT hyperparameters

2.2.5 ESPER
ESPER is a method designed to address the limitations
of RvS approaches in stochastic environments. Unlike
traditional RvS methods, which condition policies on
trajectory returns that may be influenced by
environmental stochasticity, ESPER ensures that
policies are conditioned on representations
independent of such stochasticity. This independence
enables ESPER to produce consistent and reliable
behaviors even in stochastic settings.

4

University of Aizu, Graduation Thesis. March, 2025 s1290042

The implementation of ESPER involves three
main phases:

1. Adversarial Clustering

In the first phase, ESPER employs a neural network
to assign each trajectory to a cluster based on features
independent of environmental stochasticity. This
clustering process is adversarial, aiming to minimize
the dependency between the cluster assignments and
the stochastic outcomes of the environment. The
clustering model is trained using two losses, policy
reconstruction loss and adversarial loss. Policy
reconstruction loss is the loss that encourages the
clustering model to capture information about the
behavior policy. Adversarial loss is the loss that
penalizes cluster assignments that enable the
dynamics model to predict next states based on
environmental stochasticity.

For the clustering model, a Long Short-Term
Memory (LSTM) [12] network is used for trajectory
encoding.

2. Estimating Cluster Returns
After clustering, the second phase involves
computing the average return for each cluster. The
return predictor is trained to estimate these cluster-
specific average returns using the following loss
function:

𝐿(𝜓) = 𝔼6(5)~7"8𝐼(𝜏)9𝜏: GHI𝑅 − 𝑓;K𝐼(𝜏)LIH	+
+M

Here, R represents the cumulative discounted return
for a trajectory and 𝑓;K𝐼(𝜏)Lpredicts the cluster’s
average return.

For action and return predictors, fully connected
Multi-Layer Perceptrons (MLPS) [13] are used.

3. Training the RvS Agent
In this phase, an RvS agent is trained using the
clustered average returns as conditioning targets. The
policy is learned by minimizing the negative log-
likelihood of the actions conditioned on the states and
estimated cluster returns:

𝐿(𝜉) = 𝔼"#,$#,<=#~(O−𝑙𝑜𝑔𝜋>K𝑎2I𝑠2 , 𝑅P2LQ
RvS policy is a transformer-based sequence model,
following the architecture used in DT. The
parameters of DT are same as DT one and are shown
in Table 3.

Finally, the architecture of ESPER is shown in Figure
3 and parameter settings are shown in Table 4.

Hyperparameters Values
Batch size 128

Learning Rate 5e-4
Hidden size 128

Policy hidden layers 2
Clustering model hidden layers 2
Clustering model lstm layers 1

Action predictor hidden layers 2
Return predictor hidden layers 2

Activation Function ReLU
Optimizer AdamW [14]

Normalization Batch norm
Table 4 ESPER Hyperparameters

2.2.6 Evaluation
To evaluate the performance of each method, we
implemented a standardized evaluation protocol.
Specifically, the evaluation process was conducted
every 2,500 training steps. The evaluation process is
to conduct only an episode per 2,500 steps. Then the
summation of returns is used as a performance value.

Figure 3 Architecture of ESPER [3]

5

University of Aizu, Graduation Thesis. March, 2025 s1290042

3 Results
Our results are represented as discrete values ranging
from 0 to 4. Due to the inherently high variance and
jagged nature of the raw data, we judged interpreting
the trends directly from the original graphs is
challenging. So, we applied a 100-step moving
average to smooth the results for clearness of
visualization and reliable analysis.

For DT and ESPER’s results, since we set the
target return values to range from 1 to 8, there are eight
patterns of results for each method. Figures 4 and 5
show the eight patterns of score transition graphs for
DT and ESPER, respectively. From these graphs, we
judged that target 1 is the best for DT and target 5 is the
best for ESPER. So, we use these as the result of each
method.

3.1 Score Transition Graph
We present a graph illustrating the score transitions
over training for each method. The X-axis represents
the number of evaluations. In the training loops, we
evaluate each method every 2500 steps, so evaluation
is conducted 400 times. The Y-axis indicates the
smoothed scores, calculated using a 100-step moving
average.
 The results of the transition score are shown in
Figure 6. From it, we found that ESPER hit the best
score of the other methods. However, many of
ESPER’s results are staying constant. DT’s results also
remain constant over time likewise ESPER’s one. On
the other hand, CQL’s results steadily increase after
about 200 steps.
 Moreover, ESPER looks steadier than DT, because
many DT’s results finished closing 0 score. (Figures 4
and 5.)

3.2 Comparison Table
We compare these methods by maximum and average
scores. The results are shown in Table 5.
 From this table, we found that in average score,
DT and ESPER is twice as big as CQL. Also, ESPER
is a little better than DT. On the other hand, in the
maximum score, there are almost no difference in the
three methods.

 CQL DT ESPER
Max 3 4 4

Average 0.2 0.41 0.55
Table 5 Comparison performance

4 Discussions
From the score transition graphs, ESPER demonstrates
a higher average performance compared to both CQL
and DT. It achieved relatively higher stability in its
results. DT also performed consistently, many of its
results converged near a score of 0. It shows DT’s
limitations in certain target returns. Conversely, CQL
tends to increase performance after approximately 200
evaluation steps. It shows its potential for gradual
improvement with extended training.
 The comparison table reveals that in terms of
average score, ESPER outperforms both CQL and DT.
DT achieves similar average performance but exhibits
more variability, as suggested by its lower minimum
scores in the transition graphs.
 In maximum scores, all three methods reach
comparable performance, suggesting that when
optimal trajectories exist, all algorithms can identify
and exploit them.
 Overall, ESPER achieved equal or better
performance than both CQL and DT. So, we can say it
ESPER can be utilized in deterministic environment.
 However, if we focus on the relationship between
the target return and the actual score in the transition
graph of DT and ESPER, there are many results that
end up not being close to the target return. It shows the
possibility of insufficient training steps or suboptimal
parameter settings.

5 Conclusion
This study demonstrates that ESPER consistently
outperforms both CQL and DT, and it can be utilized in
a deterministic environment.
 The findings highlight the potential of ESPER for
tasks requiring reliable and stable performance in
stochastic environments, such as autonomous decision-
making and real-world offline RL applications.
 However, the discrepancies between the target
return and actual performance in both DT and ESPER
suggest that further tuning of training steps and
parameter settings is necessary to achieve optimal
results. Additionally, the current evaluation focuses on
discrete scores, which may limit the granularity of
performance insights.
 Future work could explore more comprehensive
parameter optimization strategies and extend the
evaluation to include continuous performance metrics
for finer-grained analysis. Furthermore, applying these
methods to a wider range of environments could
validate their generalizability and effectiveness in
diverse settings.

6

University of Aizu, Graduation Thesis. March, 2025 s1290042

Figure 5 DT smoothed score for each target

Figure 4 ESPER smoothed score for each target

Figure 6 Comparison scores between three methods

ゴート・ヤギ
4

ゴート・ヤギ
5

7

University of Aizu, Graduation Thesis. March, 2025 s1290042

Acknowledgment
I would like to thank Prof. Maxim Mozgovoy for his
advice on this research, and everyone who cooperated.

References
[1] Lili Chen, Kevin Lu, Aravind Rajeswaran,

Kimin Lee, Aditya Grover, Michael
Laskin,Pieter Abbeel, Aravind Srinivas, and
Igor Mordatch. Decision Transformer:
Reinforcement Learning via Sequence
Modeling. In Marc’Aurelio Ranzato, Alina
Beygelzimer, Yann N. Dauphin, Percy Liang,
and Jennifer Wortman Vaughan, editors,
Advances in Neural Information Processing
Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS
2021, December 6-14, 2021, virtual, pages
15084–15097, 2021. URL
https://proceedings.neurips.cc/paper/2021/hash
/7f489f642a0ddb10272b5c31057f0663-
Abstract.html.

[2] Aviral Kumar, Aurick Zhou, George Tucker,
and Sergey Levine. Conservative Q-Learning
for Offline Reinforcement Learning. In Hugo
Larochelle, Marc’Aurelio Ranzato, Raia
Hadsell, Maria-Florina Balcan, and Hsuan-Tien
Lin, editors, Advances in Neural Information
Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020,
NeurIPS2020, December 6-12, 2020, virtual,
2020. URL
https://proceedings.neurips.cc/paper/2020/hash
/0d2b2061826a5df3221116a5085a6052-
Abstract.html.

[3] Keiran Paster, Shelia A. McIlraith, and Jimmy
Ba. You can’t count on luck: Why decision
transformers fail in stochastic environments.
arXiv preprint arXiv:2205.15967, 2022.

[4] GeeksforGeeks, “Deterministic vs Stochastic
Environment in AI,” [Online]. Available:
https://www.geeksforgeeks.org/deterministic-
vs-stochastic-environment-in-ai/. [Accessed:
Jan. 15, 2025].

[5] Marc G. Bellemare, Yavar Naddaf, Joel Veness,
and Michael Bowling. The Arcade Learning
Environment: An Evaluation Platform for
General Agents. J. Artif. Intell. Res., 47:253–
279, 2013. doi: 10.1613/jair.3912.

[6] Kenny Young and Tian Tian. Minatar: An atari-
inspired testbed for thorough and reproducible
reinforcement learning experiments. arXiv
preprint arXiv:1903.03176, 2019.

[7] Papers with Code, “DQN Replay Dataset,”
[Online]. Available:
https://paperswithcode.com/dataset/dqn-
replay-dataset. [Accessed: Jan. 15, 2025].

[8] Volodymyr Mnih, Koray Kavukcuoglu, David
Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari
with deep reinforcement learning. arXiv
preprint arXiv:1312.5602, 2013.

[9] Vinod Nair and Geoffrey E. Hinton. Rectified
Linear Units Improve Restricted Boltzmann
Machines. In Proceedings of the 27th
International Conference on Machine Learning,
pages 807–814. Omnipress, 2010.

[10] Geoffrey Hinton, Nitish Srivastava, and Kevin
Swersky. Neural networks for machine learning
lecture 6a overview of mini-batch gradient
descent. page 14, 2012.

[11] Diederik P Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[12] Sepp Hochreiter and Jürgen Schmidhuber. Long
short-term memory. Neural computation, 9(8):
1735–1780, 1997. Publisher: MIT Press.

[13] Almeida, L.B. Multilayer perceptrons, in
Handbook of Neural Computation, IOP
Publishing Ltd and Oxford University Press,
1997.

[14] Ilya Loshchilov and Frank Hutter. Decoupled
Weight Decay Regularization. In 7th
International Conference on Learning
Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019. OpenReview.net, 2019.
URL
https://openreview.net/forum?id=Bkg6RiCqY7.

https://proceedings.neurips.cc/paper/2021/hash/7f489f642a0ddb10272b5c31057f0663-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/7f489f642a0ddb10272b5c31057f0663-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/7f489f642a0ddb10272b5c31057f0663-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/0d2b2061826a5df3221116a5085a6052-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/0d2b2061826a5df3221116a5085a6052-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/0d2b2061826a5df3221116a5085a6052-Abstract.html
https://www.geeksforgeeks.org/deterministic-vs-stochastic-environment-in-ai/
https://www.geeksforgeeks.org/deterministic-vs-stochastic-environment-in-ai/
https://paperswithcode.com/dataset/dqn-replay-dataset
https://paperswithcode.com/dataset/dqn-replay-dataset
https://openreview.net/forum?id=Bkg6RiCqY7

