
Detecting Race Conditions and Deadlocks in the Train
Game for Concurrent Programming Education
s1270112 Shota Kamei, Supervisor: Prof. Maxim Mozgovoy

Abstract
Parallel programming is difficult to master.

That's because it requires understanding many
abstract concepts such as threads, processes, race
conditions, and deadlocks. Also, in asynchronous
programming, the order of process execution
changes with each execution, making debugging
very difficult. To address these issues, we are
developing a 2D game using a train metaphor that
allows users to learn parallel programming in a fun
and intuitive way. Each element of the game is
carefully designed to map to a specific concept in
parallel programming, making it easy to transfer
knowledge from the game to the real world.
However, our game lacked a strict validation
mechanism. In this work, our goal is to correctly
detect crashes and deadlocks. By implementing the
correct detection mechanism, we believe that our
game will be able to provide correct feedback to
students, which will lead to improved learning
efficiency.

1. Introduction
1.1. Purpose and goals

When learning something, it is very important
to have a fun learning environment. We are
developing a 2D game that uses a railroad metaphor
to help users learn the basics of parallel
programming in a fun way. [1] Each element of the
game corresponds to a specific concept of parallel
programming, allowing users to learn in a natural
way. [2] For example, a train corresponds to the
instruction pointer, and placing multiple trains can
represent multiple threads. Switches and crossings
correspond to semaphores, [3] and can represent
resource occupation. Basic stages exist by default,
allowing users to quickly gain knowledge. More
advanced users can also edit the stages themselves to
deepen their understanding. The game is primarily

targeted at students taking parallel programming
courses.

Accurate validation is crucial to provide
students with the right feedback. The most frequent
need is to detect race conditions, which in our game
are mainly crashes and deadlocks. A race condition
is a situation in which multiple threads access a
shared resource, and the order in which they access
it has a significant effect on the execution result.
Since the execution result depends on the order in
which each thread executes, debugging is very
difficult. However, since the conditions for a race
condition to occur depend on the initial positions and
speeds of the trains, it is not easy to detect it in
advance. A crash is simply a collision between trains,
and it has significant meaning in the game. A
deadlock is a situation in which two or more threads
occupy a shared resource, and each thread continues
to request the other's locked resource. When a
deadlock occurs, the system comes to a complete
halt. In this work, we discuss crashes and specific
methods for detecting deadlocks.

1.2. Game Description
Before we get into the main topic, I would like

to explain the basic elements of our game.

Fig. 1. Numbering in-game elements.

 Train (1) It consists of a locomotive and

cars. Items can be loaded onto the cars, and
when they pass in front of the shop (2) or the
warehouse (3), they will receive or hand over
items.

 Shop (2) Shops supply items to trains. The
type and number of items the shop can provide
to your train is displayed in the bottom right
corner of the shop. A train can receive items
from the shop as many times as there are cars
in the train.

 Warehouse (3) The warehouse receives
items from the train. The type and number of
items that can be received from the train are
displayed in the bottom right of the warehouse,
and the game is cleared when all warehouses
are filled with items.

 Button (4) Available in red, blue and yellow.
When a train passes over a button it will open
the crossing of the same color as the button.

 Crossing (5) Available in red, blue and
yellow. At the start of the game the crossings
are closed and trains cannot pass through.
When the corresponding colored button is
stepped on, the crossing opens, allowing trains
to pass through.

2. Method
2.1. Crash Definition
A crash is a train collision, and in the game, it is the
main cause of defeat. A crash is one of the results of
a race condition, and whether a crash occurs depends
on the initial position and speed of each train.

Fig. 2. Shortly afterwards, a train crash occurs.

For example, in a particular stage, a crash occurs if
the blue train is slightly slower than the red train, as
shown in Figure 3.

Fig. 3. For example, if the blue train is slow, a crash
will occur.

However, a crash does not occur when the blue train
is significantly faster than the red train, as in Figure
4.

Fig. 4. For example, if the blue train is enough fast,
no crash will occur.

In the context of the metaphor, the speed of the train
corresponds to the speed at which a program runs in
the real world. In real life, you can't be sure that a
program will finish executing at exactly a specific
time. If you run the same program multiple times,
the time it takes to complete will likely vary slightly.
It might be affected by other programs running at the
same time, or by hardware resource allocation. To
reflect these factors, in the version of the game I use,
the train's speed is initialized randomly.

2.2. Crash Detection Implementation
There are a huge number of combinations of

train speeds, and we can also increase the number of
trains. Therefore, it is very difficult to check all the
patterns. I decided to use a stochastic method to
detect crashes. I run a sufficient number of
simulations with trains initialized to random speeds
and observe whether train collisions occur. If a
collision is observed even once, a crash is detected.
With this method, even if no collisions occur during
multiple simulations, we cannot completely rule out
the possibility of a crash, because we have not

examined all possible patterns. However, if we
calculate a confidence interval and find that the
probability is very low, we can determine whether a
crash exists or not at a level that is practically useful.

2.3. Deadlock Definition
A deadlock refers to a state in which multiple threads
hold shared resources and each other requests the
locked resources. For example, consider a situation
in which thread A holds resource A and requests
resource B. However, thread B holds resource B and
is waiting for resource A to be released. In this case,
each thread will be waiting for the locked resource,
and threads A and B will be unable to proceed. In
our game, we can recreate deadlocks using switches
and crossings. All switches are at the end of the
crossing, and neither train can open the crossing.

Fig. 5. The simplest case involving a deadlock.

2.4. Deadlock Detection Implementation
Unlike crashes, deadlock detection employs a

mathematical model. [4] Nodes can store
information about all trains and all crossings, and
can record snapshots of the game board. The initial
state is stored in the initial node, and the state
transitions to a new node every time the train moves
one tile. A depth-first search is used to explore all
situations, allowing rigorous deadlock verification.
If the search in one direction is unsuccessful, it is
possible to roll back to the parent node and try
another direction.

3. Result and Discussion
3.1. Crash

We tested in Stage A and Stage B, which have the
potential for collisions.

Fig. 6. Stage A: Crashes are relatively easy to detect.

Fig. 7. Stage B: Validation is relatively difficult.

We simulated each 600 times, and the number of
times and probability that a crash did not occur are
shown in Table 1.

 Number of
times crashes
do not occur
(times)

Probability of
crashes not
occurring (%)

Stage A 369 61.5

Stage B 465 77.5

Table. 1. Number of times and probability that crash
did not occur after 600 trials.

In other words, there is a fairly high probability that
a crash will not be detected in a single simulation.
Therefore, as mentioned above, we decide to reduce
the probability of a false negative by running n trials.
I want to introduce the method I used to calculate the
confidence interval. “p” is the probability of a false
occurring in one trial. “n” is the total number of trials.
“x” is the number of false negatives occurring in n

trials. In that case, p is calculated using x and n as
follows.

𝑝 =
𝑥

𝑛

Based on the properties of the binomial distribution,
the standard error “SE” can be calculated using p and
n as follows.

𝑆𝐸 = ඨ
𝑝(1 − 𝑝)

𝑛

The 95 percent confidence interval “CI” for the
occurrence of a false negative is calculated as
follows.

𝐶𝐼 = [𝑝 − 𝑧 × 𝑆𝐸, 𝑝 + 𝑧 × 𝑆𝐸]

“z” is a value in the standard normal distribution, and
for the 95% confidence interval, it is z = 1.96. In this
case, it means that the probability of a false negative
occurring falls within this interval with a 95%
probability. Furthermore, this confidence interval is
used to calculate the range of probability when
multiple trials are performed. This can be calculated
by exponentiating the lower and upper limits of the
confidence interval. If we consider t trials,

[(𝑝 − 𝑧 × 𝑆𝐸)௧ , (𝑝 + 𝑧 × 𝑆𝐸)௧]

Using this formula, we actually calculated 95
percent confidence intervals for the probability of
false negatives occurring after n trials for stage A
and stage B, and summarized the results in Table 1.

 n = 5
(%)

n = 10
(%)

n = 15
(%)

n = 20
(%)

Stage A [6.3
, 11.0]

[0.4,
1.4]

[0.025,
0.170]

[0.001,
0.020]

Stage B [22, 34] [5, 11] [1.1,
4.1]

[0.25,
1.40]

Table. 2. Probability of false negatives after 5, 10,
15, and 20 trials.

The train speeds are initialized randomly, it is highly
likely that a crash will not be detected in a single
attempt. However, if we run a sufficient number of

attempts for many combinations of train speeds, the
chances of detecting a crash increase.

3.2. Deadlock
Let's actually look at deadlock detection step

by step. In a deadlock detection, the victory
condition is met when all trains reach the end of the
track.

Fig. 8. Initial state.

As you can see, there is a deadlock in the stage of
figure 8. Both trains are blocked by the railroad
crossing and cannot meet the victory condition. The
deadlock detection logic is as follows. First, the red
train moves three tiles and stops at the red railroad
crossing. This is due to the nature of depth-first
search, which prioritizes moving the red train as
much as possible. In my implementation, the board
is saved every time the train moves one tile, so it can
be rolled back at any time.

Fig. 9. The red train moved 3 tiles.

Currently, the red train is stopped as shown in figure
9, and the depth-first search algorithm next selects
the blue train. Similarly, the blue train also moves
three tiles.

Fig. 10. The blue train moved 3 tiles.

Now, all trains are stopped at the railroad crossing,
but they have not yet reached the goal at the end of
the track. Since none of the trains can be moved, the
algorithm decides to roll back one step. Since the
blue train was the most recently moved, we rewind
the blue train one tile.

Fig. 11. A rollback occurred and the blue train reeled
back.

The goal condition is checked when a rollback
occurs. A rollback is required if all trains have
stopped. If the goal condition is not met in this
situation, a deadlock should be detected. The goal
condition is for all trains to reach the end of the track,
which is not achieved this time. Therefore, the
deadlock is correctly detected. When a deadlock is
detected, the user is notified and the path in which it
occurred is reproduced graphically. The user can
confirm that a deadlock will occur without any effort.
For example, this example reproduces six steps: red,
red, red, blue, blue, blue. If a deadlock is found on a
path, it can be determined that the stage contains a
deadlock, and there is no need to search for
additional paths. Therefore, the simulation ends
immediately after the rollback in this stage.

Let's verify this result with a theoretical graph. At the
stage of Figure 8, there are red trains and blue trains,
which can be thought of as representing different
processes. Here, we'll represent the process held by

the red train as process R, and the process held by
the blue train as process B. We can get some
information from the initial state, Figure 8. First, all
the crossings are locked to begin with. Also, there is
a blue switch on the red train's tracks that opens the
blue crossings, so process R has locked the blue
crossing resource and expects to release it at some
point. Similarly, process B has locked the red
crossings. Let's now break down and organize the
tasks performed by Process R and Process B. The
tasks of Process R are executed in the following
order.
1. Request to pass through the red crossing, then

lock it.
2. Step on the blue switch to open the blue

crossing.
The tasks of Process B are similarly as follows:
1. Request to pass through the blue crossing, then

lock it.
2. Step on the red switch to open the red crossing.

However, the red and blue crossings are already
locked from the start, and neither process R nor
process B can execute their first tasks. This is a
deadlock, and can be represented, for example, by
the following graph. The round nodes represent
processes, and the square nodes represent resources.
The arrows leaving the round nodes represent
resource requests, and the arrows entering the round
nodes represent resource possession.

Fig. 12. Graph showing the relationship between
processes and resources and the deadlock state.

Process R and process B are both waiting to request
a locked resource. The graph is circular, which
means that deadlocks can occur.

Fig. 13. The stage with loop structures.

There is also the stage with even more complex loop
structures in figure 13.
In this stage, a deadlock will occur if the situation in
figure 14 occurs, for example.

Fig. 14. The two trains are blocked at the crossings
and deadlocked.

I think Figure 13 is closer to the real problem. Let's
verify this with a theoretical graph as well. For
example, if Figure 13 is the initial state, Process R
executes the following tasks in order.
1. Release the yellow crossing
2. Lock the blue crossing
3. Lock the yellow crossing
4. Release the blue crossing

Process B similarly executes the following tasks in
order:
1. Release the blue crossing
2. Release the yellow crossing
3. Lock the yellow crossing
4. Lock the blue crossing

Because Process R and Process B have a loop
structure, these tasks are executed repeatedly.

Because these processes include repetition, there are
virtually an infinite number of combinations of steps
that can occur before a deadlock occurs, but here we
will only consider the step that will cause a deadlock
in the shortest time. This can be reproduced by the
following steps.
1. Process R executes task 1
2. Process B executes tasks 1 to 3
3. Process R executes task 2

What is happening in this situation? The next task of
process R (task 3) requires passing through the
yellow crossing, which is locked by process B. The
next task of process B (task 4) requires passing
through the blue crossing, which is locked by
process R. This is a genuine deadlock, and can be
represented by the following graph. B stands for the
blue crossing, Y for the yellow crossing, and 0 and 1
stand for the locked and unlocked states,
respectively. For example, B = 0 means that the blue
train is locked. Also, I use expressions such as R2
and B3 to represent task numbers. For example, R2
is the second task of process R, and B3 is the third
task of process B. Please forgive me for not showing
all the diagrams due to space limitations, but only
showing an example of the shortest process that
leads to a deadlock.

Fig. 15. Graph showing how the crossing state
changes each time a task is executed.

In Figure 15, starting from state B = 0, Y = 0 (i.e.
both crossings are locked), by executing tasks in a
specific order, we can return to state B = 0, Y = 0.
But in that situation, the next tasks that process R and
process B should execute are R3 and B4,
respectively, which cannot be executed because they
require crossing resources. This graph is circular,
which means that a deadlock can occur. However, it

does not mean that it will definitely occur. For
example, even in the stage of Figure 13, a deadlock
will not occur depending on the execution order of
certain processes. In this way, we can see that the
results of the detection algorithm are consistent with
the theoretical answer.

4. Conclusion
In this research, we added the ability to detect

crashes and deadlocks to an educational game for
parallel programming. Crashes can be detected
statistically, and deadlocks can be detected reliably.
For deadlock detection, we also implemented an
auxiliary function that can remember the path on
which a deadlock occurred and reproduce it
graphically. One of the challenges with deadlock
detection is that the number of game elements
supported is small. We would like to continue
improving the model so that we can solve these
problems in the future.

References
[1] M. Purgina, M. Mozgovoy, "Designing
Interactive Visualizations for Teaching Concurrent
Programming", Proceedings of the 14th
International Congress on Advanced Applied
Informatics, Koriyama, Japan, 2023.
[2] Zhu, Jichen, et al. "Programming in game space:
how to represent parallel programming concepts in
an educational game." Proceedings of the 14th
International Conference on the Foundations of
Digital Games. 2019.
[3] Dijkstra, E. W. (2002). Cooperating sequential
processes. In The origin of concurrent
programming: from semaphores to remote
procedure calls (pp. 65-138). New York, NY:
Springer New York.
[4] Merz, Stephan. "Model checking: A tutorial
overview." Summer School on Modeling and
Verification of Parallel Processes (2000): 3-38.

