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Abstract 
Parallel programming is difficult to master. 

That's because it requires understanding many 
abstract concepts such as threads, processes, race 
conditions, and deadlocks. Also, in asynchronous 
programming, the order of process execution 
changes with each execution, making debugging 
very difficult. To address these issues, we are 
developing a 2D game using a train metaphor that 
allows users to learn parallel programming in a fun 
and intuitive way. Each element of the game is 
carefully designed to map to a specific concept in 
parallel programming, making it easy to transfer 
knowledge from the game to the real world. 
However, our game lacked a strict validation 
mechanism. In this work, our goal is to correctly 
detect crashes and deadlocks. By implementing the 
correct detection mechanism, we believe that our 
game will be able to provide correct feedback to 
students, which will lead to improved learning 
efficiency. 
 

1. Introduction 
1.1. Purpose and goals 

When learning something, it is very important 
to have a fun learning environment. We are 
developing a 2D game that uses a railroad metaphor 
to help users learn the basics of parallel 
programming in a fun way. [1] Each element of the 
game corresponds to a specific concept of parallel 
programming, allowing users to learn in a natural 
way. [2] For example, a train corresponds to the 
instruction pointer, and placing multiple trains can 
represent multiple threads. Switches and crossings 
correspond to semaphores, [3] and can represent 
resource occupation. Basic stages exist by default, 
allowing users to quickly gain knowledge. More 
advanced users can also edit the stages themselves to 
deepen their understanding. The game is primarily 

targeted at students taking parallel programming 
courses. 

Accurate validation is crucial to provide 
students with the right feedback. The most frequent 
need is to detect race conditions, which in our game 
are mainly crashes and deadlocks. A race condition 
is a situation in which multiple threads access a 
shared resource, and the order in which they access 
it has a significant effect on the execution result. 
Since the execution result depends on the order in 
which each thread executes, debugging is very 
difficult. However, since the conditions for a race 
condition to occur depend on the initial positions and 
speeds of the trains, it is not easy to detect it in 
advance. A crash is simply a collision between trains, 
and it has significant meaning in the game. A 
deadlock is a situation in which two or more threads 
occupy a shared resource, and each thread continues 
to request the other's locked resource. When a 
deadlock occurs, the system comes to a complete 
halt. In this work, we discuss crashes and specific 
methods for detecting deadlocks. 
 

1.2. Game Description 
Before we get into the main topic, I would like 

to explain the basic elements of our game. 

 
Fig. 1. Numbering in-game elements. 
 
 Train (1)        It consists of a locomotive and 

cars. Items can be loaded onto the cars, and 
when they pass in front of the shop (2) or the 
warehouse (3), they will receive or hand over 
items. 



 Shop (2)        Shops supply items to trains. The 
type and number of items the shop can provide 
to your train is displayed in the bottom right 
corner of the shop. A train can receive items 
from the shop as many times as there are cars 
in the train. 

 Warehouse (3)        The warehouse receives 
items from the train. The type and number of 
items that can be received from the train are 
displayed in the bottom right of the warehouse, 
and the game is cleared when all warehouses 
are filled with items. 

 Button (4)        Available in red, blue and yellow. 
When a train passes over a button it will open 
the crossing of the same color as the button. 

 Crossing (5)        Available in red, blue and 
yellow. At the start of the game the crossings 
are closed and trains cannot pass through. 
When the corresponding colored button is 
stepped on, the crossing opens, allowing trains 
to pass through. 

 

2. Method 
2.1. Crash Definition 
A crash is a train collision, and in the game, it is the 
main cause of defeat. A crash is one of the results of 
a race condition, and whether a crash occurs depends 
on the initial position and speed of each train.

 
Fig. 2. Shortly afterwards, a train crash occurs. 
 
For example, in a particular stage, a crash occurs if 
the blue train is slightly slower than the red train, as 
shown in Figure 3. 

 
Fig. 3. For example, if the blue train is slow, a crash 
will occur. 
 
However, a crash does not occur when the blue train 
is significantly faster than the red train, as in Figure 
4. 

 
Fig. 4. For example, if the blue train is enough fast, 
no crash will occur. 
 
In the context of the metaphor, the speed of the train 
corresponds to the speed at which a program runs in 
the real world. In real life, you can't be sure that a 
program will finish executing at exactly a specific 
time. If you run the same program multiple times, 
the time it takes to complete will likely vary slightly. 
It might be affected by other programs running at the 
same time, or by hardware resource allocation. To 
reflect these factors, in the version of the game I use, 
the train's speed is initialized randomly. 
 

2.2. Crash Detection Implementation 
There are a huge number of combinations of 

train speeds, and we can also increase the number of 
trains. Therefore, it is very difficult to check all the 
patterns. I decided to use a stochastic method to 
detect crashes. I run a sufficient number of 
simulations with trains initialized to random speeds 
and observe whether train collisions occur. If a 
collision is observed even once, a crash is detected. 
With this method, even if no collisions occur during 
multiple simulations, we cannot completely rule out 
the possibility of a crash, because we have not 



examined all possible patterns. However, if we 
calculate a confidence interval and find that the 
probability is very low, we can determine whether a 
crash exists or not at a level that is practically useful. 

 

2.3. Deadlock Definition 
A deadlock refers to a state in which multiple threads 
hold shared resources and each other requests the 
locked resources. For example, consider a situation 
in which thread A holds resource A and requests 
resource B. However, thread B holds resource B and 
is waiting for resource A to be released. In this case, 
each thread will be waiting for the locked resource, 
and threads A and B will be unable to proceed. In 
our game, we can recreate deadlocks using switches 
and crossings. All switches are at the end of the 
crossing, and neither train can open the crossing. 

 
Fig. 5. The simplest case involving a deadlock. 
 

2.4. Deadlock Detection Implementation 
Unlike crashes, deadlock detection employs a 

mathematical model. [4] Nodes can store 
information about all trains and all crossings, and 
can record snapshots of the game board. The initial 
state is stored in the initial node, and the state 
transitions to a new node every time the train moves 
one tile. A depth-first search is used to explore all 
situations, allowing rigorous deadlock verification. 
If the search in one direction is unsuccessful, it is 
possible to roll back to the parent node and try 
another direction. 
 

3. Result and Discussion 
3.1. Crash 

We tested in Stage A and Stage B, which have the 
potential for collisions.

 
Fig. 6. Stage A: Crashes are relatively easy to detect. 
 

 
Fig. 7. Stage B: Validation is relatively difficult. 
 
We simulated each 600 times, and the number of 
times and probability that a crash did not occur are 
shown in Table 1. 

 Number of 
times crashes 
do not occur 
(times) 

Probability of 
crashes not 
occurring (%) 

Stage A 369 61.5 

Stage B 465 77.5 

Table. 1. Number of times and probability that crash 
did not occur after 600 trials. 
 
In other words, there is a fairly high probability that 
a crash will not be detected in a single simulation. 
Therefore, as mentioned above, we decide to reduce 
the probability of a false negative by running n trials.  
I want to introduce the method I used to calculate the 
confidence interval. “p” is the probability of a false 
occurring in one trial. “n” is the total number of trials. 
“x” is the number of false negatives occurring in n 



trials. In that case, p is calculated using x and n as 
follows. 

𝑝 =  
𝑥

𝑛
 

 
Based on the properties of the binomial distribution, 
the standard error “SE” can be calculated using p and 
n as follows. 

𝑆𝐸 = ඨ 
𝑝(1 −  𝑝)

𝑛
 

 
The 95 percent confidence interval “CI” for the 
occurrence of a false negative is calculated as 
follows. 

𝐶𝐼 =  [𝑝 −  𝑧 ×  𝑆𝐸, 𝑝 +  𝑧 ×  𝑆𝐸] 
 
“z” is a value in the standard normal distribution, and 
for the 95% confidence interval, it is z = 1.96. In this 
case, it means that the probability of a false negative 
occurring falls within this interval with a 95% 
probability.  Furthermore, this confidence interval is 
used to calculate the range of probability when 
multiple trials are performed. This can be calculated 
by exponentiating the lower and upper limits of the 
confidence interval. If we consider t trials, 

[(𝑝 −  𝑧 ×  𝑆𝐸)௧ , (𝑝 +  𝑧 ×  𝑆𝐸)௧] 
 
Using this formula, we actually calculated 95 
percent confidence intervals for the probability of 
false negatives occurring after n trials for stage A 
and stage B, and summarized the results in Table 1. 

 n = 5 
(%) 

n = 10 
(%) 

n = 15 
(%) 

n = 20 
(%) 

Stage A [6.3 
, 11.0] 

[0.4, 
1.4] 

[0.025, 
0.170] 

[0.001,
0.020] 

Stage B [22, 34] [5, 11] [1.1, 
4.1] 

[0.25, 
1.40] 

Table. 2. Probability of false negatives after 5, 10, 
15, and 20 trials. 
 
The train speeds are initialized randomly, it is highly 
likely that a crash will not be detected in a single 
attempt. However, if we run a sufficient number of 

attempts for many combinations of train speeds, the 
chances of detecting a crash increase. 
 

3.2. Deadlock 
Let's actually look at deadlock detection step 

by step. In a deadlock detection, the victory 
condition is met when all trains reach the end of the 
track. 

 
Fig. 8. Initial state. 
 
As you can see, there is a deadlock in the stage of 
figure 8. Both trains are blocked by the railroad 
crossing and cannot meet the victory condition. The 
deadlock detection logic is as follows. First, the red 
train moves three tiles and stops at the red railroad 
crossing. This is due to the nature of depth-first 
search, which prioritizes moving the red train as 
much as possible. In my implementation, the board 
is saved every time the train moves one tile, so it can 
be rolled back at any time. 

 
Fig. 9. The red train moved 3 tiles. 
 
Currently, the red train is stopped as shown in figure 
9, and the depth-first search algorithm next selects 
the blue train. Similarly, the blue train also moves 
three tiles. 



 
Fig. 10. The blue train moved 3 tiles. 
 
Now, all trains are stopped at the railroad crossing, 
but they have not yet reached the goal at the end of 
the track. Since none of the trains can be moved, the 
algorithm decides to roll back one step. Since the 
blue train was the most recently moved, we rewind 
the blue train one tile. 

 
Fig. 11. A rollback occurred and the blue train reeled 
back. 
 
The goal condition is checked when a rollback 
occurs. A rollback is required if all trains have 
stopped. If the goal condition is not met in this 
situation, a deadlock should be detected. The goal 
condition is for all trains to reach the end of the track, 
which is not achieved this time. Therefore, the 
deadlock is correctly detected. When a deadlock is 
detected, the user is notified and the path in which it 
occurred is reproduced graphically. The user can 
confirm that a deadlock will occur without any effort. 
For example, this example reproduces six steps: red, 
red, red, blue, blue, blue. If a deadlock is found on a 
path, it can be determined that the stage contains a 
deadlock, and there is no need to search for 
additional paths. Therefore, the simulation ends 
immediately after the rollback in this stage. 
 
Let's verify this result with a theoretical graph. At the 
stage of Figure 8, there are red trains and blue trains, 
which can be thought of as representing different 
processes. Here, we'll represent the process held by 

the red train as process R, and the process held by 
the blue train as process B. We can get some 
information from the initial state, Figure 8. First, all 
the crossings are locked to begin with. Also, there is 
a blue switch on the red train's tracks that opens the 
blue crossings, so process R has locked the blue 
crossing resource and expects to release it at some 
point. Similarly, process B has locked the red 
crossings. Let's now break down and organize the 
tasks performed by Process R and Process B. The 
tasks of Process R are executed in the following 
order. 
1. Request to pass through the red crossing, then 

lock it. 
2. Step on the blue switch to open the blue 

crossing. 
The tasks of Process B are similarly as follows: 
1. Request to pass through the blue crossing, then 

lock it. 
2. Step on the red switch to open the red crossing. 
 
However, the red and blue crossings are already 
locked from the start, and neither process R nor 
process B can execute their first tasks. This is a 
deadlock, and can be represented, for example, by 
the following graph. The round nodes represent 
processes, and the square nodes represent resources. 
The arrows leaving the round nodes represent 
resource requests, and the arrows entering the round 
nodes represent resource possession. 

 
Fig. 12. Graph showing the relationship between 
processes and resources and the deadlock state. 
 
Process R and process B are both waiting to request 
a locked resource. The graph is circular, which 
means that deadlocks can occur. 
 



 
Fig. 13. The stage with loop structures. 
 
There is also the stage with even more complex loop 
structures in figure 13. 
In this stage, a deadlock will occur if the situation in 
figure 14 occurs, for example. 
 

 
Fig. 14. The two trains are blocked at the crossings 
and deadlocked. 
 
I think Figure 13 is closer to the real problem. Let's 
verify this with a theoretical graph as well. For 
example, if Figure 13 is the initial state, Process R 
executes the following tasks in order. 
1. Release the yellow crossing 
2. Lock the blue crossing 
3. Lock the yellow crossing 
4. Release the blue crossing 
 
Process B similarly executes the following tasks in 
order: 
1. Release the blue crossing 
2. Release the yellow crossing 
3. Lock the yellow crossing 
4. Lock the blue crossing 
 
Because Process R and Process B have a loop 
structure, these tasks are executed repeatedly. 

Because these processes include repetition, there are 
virtually an infinite number of combinations of steps 
that can occur before a deadlock occurs, but here we 
will only consider the step that will cause a deadlock 
in the shortest time. This can be reproduced by the 
following steps. 
1. Process R executes task 1 
2. Process B executes tasks 1 to 3 
3. Process R executes task 2 
 
What is happening in this situation? The next task of 
process R (task 3) requires passing through the 
yellow crossing, which is locked by process B. The 
next task of process B (task 4) requires passing 
through the blue crossing, which is locked by 
process R. This is a genuine deadlock, and can be 
represented by the following graph. B stands for the 
blue crossing, Y for the yellow crossing, and 0 and 1 
stand for the locked and unlocked states, 
respectively. For example, B = 0 means that the blue 
train is locked. Also, I use expressions such as R2 
and B3 to represent task numbers. For example, R2 
is the second task of process R, and B3 is the third 
task of process B. Please forgive me for not showing 
all the diagrams due to space limitations, but only 
showing an example of the shortest process that 
leads to a deadlock. 

 
Fig. 15. Graph showing how the crossing state 
changes each time a task is executed. 
 
In Figure 15, starting from state B = 0, Y = 0 (i.e. 
both crossings are locked), by executing tasks in a 
specific order, we can return to state B = 0, Y = 0. 
But in that situation, the next tasks that process R and 
process B should execute are R3 and B4, 
respectively, which cannot be executed because they 
require crossing resources. This graph is circular, 
which means that a deadlock can occur. However, it 



does not mean that it will definitely occur. For 
example, even in the stage of Figure 13, a deadlock 
will not occur depending on the execution order of 
certain processes. In this way, we can see that the 
results of the detection algorithm are consistent with 
the theoretical answer. 
 

4. Conclusion 
In this research, we added the ability to detect 

crashes and deadlocks to an educational game for 
parallel programming. Crashes can be detected 
statistically, and deadlocks can be detected reliably. 
For deadlock detection, we also implemented an 
auxiliary function that can remember the path on 
which a deadlock occurred and reproduce it 
graphically. One of the challenges with deadlock 
detection is that the number of game elements 
supported is small. We would like to continue 
improving the model so that we can solve these 
problems in the future. 
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