
University of Aizu, Graduation Thesis. March, 2025 s1290102 1

Terrain Design Prototyping With Diffusion Models
Hajime Fukai s1290102 Supervised by Prof. Maxim Mozgovoy

Abstract
Video games often feature a vast expanse of game world
and such games are called open-world games. The ob-
jective of this study is to aid the prototyping of world
map creation of such games. We have attempted to
achieve this objective by creating terrain generation
models. We have trained two distinct image-to-image
translation models: pix2pix and Palette. The experi-
ment results have shown that pix2pix requires less com-
puting resources to train, and it is capable of generating
valid and natural terrain than Palette.

1 Introduction
Today, the open-world games are becoming popular in
the video game industry. The open-world games are
the video games which feature a vast expanse of game
world. One of the characteristics of open-world games
is the degree of freedom; players can enjoy the game in
their own way. In order to achieve this freedom, it is
necessary to provide the players with a sufficiently large
world map.

There are two typical approaches to the implementa-
tion of the open-world games.

The first approach is to use manually designed world
maps. In this approach, the world data is designed and
created by the developer, and it is stored alongside the
game program. The advantage of this approach is that
the developer has complete control of the game world,
therefore the developer can tailor it to the desired game
experience. Examples of games using this approach
include The Legend of Zelda: Breath of the Wild (2017)
and Grand Theft Auto V (2013).

The second approach is to generate world maps in
real time using a deterministic, or non-deterministic al-
gorithm. This approach is known as procedural content
generation (PCG) of world maps. Practically, this ap-
proach is able to create an infinitely large world, making
an endlessly explorable game world possible. However,
sometimes it is difficult for the developer to predict
the outcome of the algorithm if the algorithm is non-
deterministic. Examples of games using this approach
include Minecraft (2011) and No Man’s Sky (2019).

In this study, we focus on the former approach of the
open-world game implementation, namely the manually
designed world maps. In this case, the developer of the
game must create the world map. However, creating
such a world map, realistic terrain in particular, is a

difficult task for nonexperts since it is required to know
the characteristics of the real terrain.

The objective of this study is to aid the prototyping of
world map creation, by creating terrain generation mod-
els. These models take a hand-drawn contour sketch as
input, and generate terrain corresponding to the sketch
in the form of an elevation map. We train each model
with real terrain dataset, so that it can generate realis-
tic, natural terrain. Such models enable nonexperts to
create a world map easily and quickly, allowing rapid
prototyping of a world map.

Traditionally, this sort of procedural content gener-
ation tasks have been implemented using a Generative
Adversarial Network (GAN) [2]. On the other hand,
recent advancement in image synthesis has proven the
advantages of diffusion models [3] [7]. Therefore, we
investigate the applicability of diffusion models to the
procedural content generation by comparing with a tra-
ditional GAN.

2 Background
2.1 Sketch2Map
Sketch2Map [9] is a framework for sketch-based world
map design prototyping proposed by Tong Wang et al.

Sketch2Map features a two-stage generative model.
The first stage is the conditional generative adversar-
ial network (conditional GAN) model which converts a
sketch into an elevation map, and the second stage is
a deterministic algorithm generating a level asset from
the map. The training dataset of a conditional GAN
consists of data generated by a random map generator
and the real world elevation data.

Our study has drawn some inspiration from their
work, such as the application of conditional GANs into
terrain generation.

2.2 Conditional Generative Adversarial
Network

A conditional generative adversarial network (condi-
tional GAN) [4] is a general-purpose image-to-image
translation model proposed by Phillip Isola et al. in
2018. A conditional GAN is a variant of a generative
adversarial network (GAN) [2] and it learns the mapping
from an input image to an output image. The implemen-
tation of a conditional GAN is released under the name
of pix2pix.

A conditional GAN is a mapping from an observed
image 𝒙 and a random noise vector 𝒛 to an output image



University of Aizu, Graduation Thesis. March, 2025 s1290102 2

𝒚, namely 𝐺 : {𝒙, 𝒛} → 𝒚. The loss function of a
conditional GAN is

𝐺∗ = arg min
𝐺

max
𝐷

L𝑐𝐺𝐴𝑁 (𝐺, 𝐷) + 𝜆L𝐿1 (𝐺)

where L𝑐𝐺𝐴𝑁 (𝐺, 𝐷) is a loss function

L𝑐𝐺𝐴𝑁 (𝐺, 𝐷) =E𝒙,𝒚 [log 𝐷 (𝒙, 𝒚)]+
E𝒙,𝒛 [log(1 − 𝐷 (𝒙, 𝐺 (𝒙, 𝒛)))]

and L𝐿1 (𝐺) is an L1 distance

L𝐿1 (𝐺) = E𝒙,𝒚,𝒛 [∥𝒚 − 𝐺 (𝒙, 𝒛)∥1] .

2.3 Palette
Palette [8] is an image-to-image translation model based
on the diffusion models [3], proposed by Chitwan Sa-
haria et al. in 2022.

Generally, the diffusion models are formulated as the
process of adding Gaussian noise to the given image
(forward process) and the process of denoising the given
noisy image (reverse process). The diffusion models
generate images from a noisy image 𝒚𝑇 ∼ N(0, 𝑰) by
removing the noise iteratively.

The loss function of Palette is

E(𝒙,𝒚 )E𝝐∼N(0,I )E𝛾

 𝑓𝜃 (𝒙,√𝛾𝒚 + √︁
1 − 𝛾𝝐 , 𝛾) − 𝝐

𝑝
𝑝

where 𝒙 is the conditioning image, 𝒚 is the ground
truth image, 𝛾 is the noise level indicator and 𝑓𝜃 is
the neural network predicting the noise 𝝐 . �̃� =

√
𝛾𝒚 +√︁

1 − 𝛾𝝐 is a noisy image created from 𝒚.

2.4 NASADEM
NASADEM [6] is a global elevation dataset published
by Land Processes Distributed Active Archive Center
(LP DAAC) and it was derived from the data obtained
in Shuttle Radar Topography Mission (SRTM) as well
as Terra Advanced Spaceborne Thermal and Reflection
Radiometer (ASTER) Global Digital Elevation Model
(GDEM) and Ice, Cloud, and Land Elevation Satellite
(ICESat) Geoscience Laser Altimeter System (GLAS)
to improve the accuracy of the data.

NASADEM HGT is a part of NASADEM dataset
and each region of the dataset represents an area of 1
degree latitude by 1 degree longitude. It has 3 channels
in total. The hgt channel represents the elevation in
meters. This elevation is relative to the EGM96 geoid.
The swb channel represents the water body; 0 for land,
255 for water. The num channel indicates the source of
the data.

3 Method
3.1 Dataset Structure
Our dataset consists of pairs of a height-map and a
contour-map.

A height-map is a 256x256 PNG image representing
terrain. The red and green channels of a height-map
represent the height of the point. The green channel
is positive if the point has positive height, and the red
channel is positive if the point has negative height. If the
height of the point is 0, then these channels are 0. The
red channel and the green channel can not be positive at
the same time. The blue channel is 255 if the point is
water, 0 if the point is land.

A contour-map is a 256x256 PNG image representing
a sketch for the corresponding terrain. A contour-map
has three kinds of solid lines and the background is
black. A green line signifies the enclosed area has higher
elevation than the area around the line. In contrast, the
red line signifies lower elevation. A blue line signifies
the boundary between water and land.

3.2 Dataset Creation
We have created our dataset from NASADEM HGT
v001 [6].

Algorithm 1 is the pseudo-code for creating a height-
map and Algorithm 2 is the the pseudo-code for creating
a contour-map from a given NASADEM HGT region.
Examples of created dataset are shown in Figure 1.

3.2.1 Height Relativization

In order to augment the locality of the dataset, we re-
duce the DC component of the height from each region.
This is achieved by making the height relative from the
base-height of the region. The pseudo-code for height
relativization is shown in Algorithm 3.

3.2.2 Blurring

We applied OpenCV’s Gaussian blur to the height and
the water body mask of each region so that we can make
the contour-map smoother. The kernel size of the blur is
proportional to the square root of the land area, so that
the blur does not oversimplify the coast line. The detail
of this process can be found in Algorithm 4.

3.2.3 Height Stratification

Height stratification is a process of rounding the height
value in each region. This process is necessary for
making contour lines consistent in the following step.
The pseudo-code for height stratification is in Algorithm
5. In the following, we call the connected area having
the exact same height a stratum.



University of Aizu, Graduation Thesis. March, 2025 s1290102 3

Algorithm 1 Create height-map from 𝑑𝑒𝑚 𝑟𝑒𝑔𝑖𝑜𝑛

1: function create height map(𝑑𝑒𝑚 𝑟𝑒𝑔𝑖𝑜𝑛)
2: Resize 𝑑𝑒𝑚 𝑟𝑒𝑔𝑖𝑜𝑛 into 256x256
3: Relativize height of 𝑑𝑒𝑚 𝑟𝑒𝑔𝑖𝑜𝑛

4: Render height-map of 𝑑𝑒𝑚 𝑟𝑒𝑔𝑖𝑜𝑛 as PNG image
5: end function

Algorithm 2 Create contour-map from 𝑑𝑒𝑚 𝑟𝑒𝑔𝑖𝑜𝑛

1: function create contour map(𝑑𝑒𝑚 𝑟𝑒𝑔𝑖𝑜𝑛)
2: Resize 𝑑𝑒𝑚 𝑟𝑒𝑔𝑖𝑜𝑛 into 1800x1800
3: Blur 𝑑𝑒𝑚 𝑟𝑒𝑔𝑖𝑜𝑛

4: Relativize height of 𝑑𝑒𝑚 𝑟𝑒𝑔𝑖𝑜𝑛

5: Stratify 𝑑𝑒𝑚 𝑟𝑒𝑔𝑖𝑜𝑛

6: 𝑐𝑜𝑛𝑡𝑜𝑢𝑟 𝑔𝑟𝑎𝑝ℎ := the result of contouring 𝑑𝑒𝑚 𝑟𝑒𝑔𝑖𝑜𝑛

7: Color edges of 𝑐𝑜𝑛𝑡𝑜𝑢𝑟 𝑔𝑟𝑎𝑝ℎ using stratified 𝑑𝑒𝑚 𝑟𝑒𝑔𝑖𝑜𝑛

8: Render edges of 𝑐𝑜𝑛𝑡𝑜𝑢𝑟 𝑔𝑟𝑎𝑝ℎ in 256x256 PNG image
9: end function

Algorithm 3 Relativize height of 𝑑𝑒𝑚 𝑟𝑒𝑔𝑖𝑜𝑛

1: function measure side ratio(𝑑𝑒𝑚 𝑟𝑒𝑔𝑖𝑜𝑛,𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑)
2: return the ratio of pixels on the sides of 𝑑𝑒𝑚 𝑟𝑒𝑔𝑖𝑜𝑛 where its height is lower or equal to 𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑

3: end function
4: function determine base height(𝑑𝑒𝑚 𝑟𝑒𝑔𝑖𝑜𝑛)
5: if 𝑑𝑒𝑚 𝑟𝑒𝑔𝑖𝑜𝑛 has water then
6: return minimum point of water
7: else
8: return minimum ℎ which satisfies measure side ratio(𝑑𝑒𝑚 𝑟𝑒𝑔𝑖𝑜𝑛, ℎ) ≥ 0.5
9: end if

10: end function
11: function relativize height(𝑑𝑒𝑚 𝑟𝑒𝑔𝑖𝑜𝑛)
12: ℎ := determine base height(𝑑𝑒𝑚 𝑟𝑒𝑔𝑖𝑜𝑛)
13: for all y do
14: for all x do
15: 𝑑𝑒𝑚 𝑟𝑒𝑔𝑖𝑜𝑛.ℎ𝑔𝑡 [𝑦] [𝑥] = 𝑑𝑒𝑚 𝑟𝑒𝑔𝑖𝑜𝑛.ℎ𝑔𝑡 [𝑦] [𝑥] − ℎ

16: end for
17: end for
18: end function

Algorithm 4 Blur 𝑑𝑒𝑚 𝑟𝑒𝑔𝑖𝑜𝑛

1: function oddify(𝑛)
2: return n + (n % 2) + 1
3: end function
4: function blur(𝑑𝑒𝑚 𝑟𝑒𝑔𝑖𝑜𝑛)
5: a := the area of the land in 𝑑𝑒𝑚 𝑟𝑒𝑔𝑖𝑜𝑛

6: 𝑙𝑎𝑛𝑑 𝑘𝑒𝑟𝑛𝑒𝑙 := oddify(floor(
√
𝑎/4)) ⊲ OpenCV’s GaussianBlur requires odd kernel size

7: Apply Gaussian blur to 𝑑𝑒𝑚 𝑟𝑒𝑔𝑖𝑜𝑛.ℎ𝑔𝑡 with kernel size (𝑙𝑎𝑛𝑑 𝑘𝑒𝑟𝑛𝑒𝑙, 𝑙𝑎𝑛𝑑 𝑘𝑒𝑟𝑛𝑒𝑙)
8: 𝑤𝑎𝑡𝑒𝑟 𝑘𝑒𝑟𝑛𝑒𝑙 := oddify(floor(

√
𝑎 × 3/32))

9: Apply Gaussian blur to 𝑑𝑒𝑚 𝑟𝑒𝑔𝑖𝑜𝑛.𝑠𝑤𝑏 with kernel size (𝑤𝑎𝑡𝑒𝑟 𝑘𝑒𝑟𝑛𝑒𝑙, 𝑤𝑎𝑡𝑒𝑟 𝑘𝑒𝑟𝑛𝑒𝑙)
10: Binarize 𝑑𝑒𝑚 𝑟𝑒𝑔𝑖𝑜𝑛.𝑠𝑤𝑏 with threshold 4/16 × 255
11: end function



University of Aizu, Graduation Thesis. March, 2025 s1290102 4

Algorithm 5 Stratify 𝑑𝑒𝑚 𝑟𝑒𝑔𝑖𝑜𝑛

1: function stratify(𝑑𝑒𝑚 𝑟𝑒𝑔𝑖𝑜𝑛)
2: 𝑙𝑒𝑣𝑒𝑙𝑠 := {. . . ,−𝑒6,−𝑒4,−𝑒2, 0, 𝑒2, 𝑒4, 𝑒6, . . . } where 𝑒 is the base of the natural logarithms
3: for all y do
4: for all x do
5: 𝑑𝑒𝑚 𝑟𝑒𝑔𝑖𝑜𝑛.ℎ𝑔𝑡 [𝑦] [𝑥] = the greatest element in 𝑙𝑒𝑣𝑒𝑙𝑠 less than or equal to 𝑑𝑒𝑚 𝑟𝑒𝑔𝑖𝑜𝑛.ℎ𝑔𝑡 [𝑦] [𝑥]
6: end for
7: end for
8: end function

3.2.4 Contouring
We used CONREC [1] to contour the given height-map.
{. . . ,−𝑒6,−𝑒4,−𝑒2, 𝑒2, 𝑒4, 𝑒6, . . . } was used as contour
levels parameter of CONREC. The result of CONREC
is a list of edges on the boundary between contour levels.

The boundaries between land and water are also iden-
tified by CONREC, and those edges are colored blue.
3.2.5 Contour Edge Coloring
The contour edges obtained in the previous step are
colored by performing breadth-first search on stratified
height-map. The pseudo-code is for contour edge col-
oring is in Algorithm 6.

Figure 1: Created dataset

4 Experiments
4.1 Generative Models
We have trained two distinct models for performing
translation between a contour-map and a height-map:
Palette and pix2pix. These two models are trained with

the aforementioned dataset to generate a corresponding
height-map conditioned on a contour-map. We have
trained both models for 1200 epochs.

4.2 Hand-drawn Contour Sketches
We have created hand-drawn contour sketch dataset for
testing the trained models. This dataset consists of 141
contour-maps drawn by hand. The number of data is
augmented by flipping and rotating these hand-drawn
contour-maps, resulting in a total of 1128 contour maps.
Examples of this dataset are shown in Figure 2. We
have used this dataset for conducting the following eval-
uations.

Figure 2: Hand-drawn contour sketches

4.3 Validity Evaluation
In the validity evaluation, we test if the output images
are semantically valid as height-maps defined in Section
3.1.

Height-maps in our dataset always satisfy

∀𝑦∀𝑥 min(𝑟𝑥,𝑦 , 𝑔𝑥,𝑦) = 0

where 𝑟𝑥,𝑦 and 𝑔𝑥,𝑦 are the values of red and
green channels at (𝑥, 𝑦) of the image. Note that
min(𝑟𝑥,𝑦 , 𝑔𝑥,𝑦) = 0 implies that at least one of 𝑟𝑥,𝑦
and 𝑔𝑥,𝑦 must be 0.

However, we expect the output images to have gener-
ation noise. In order to ignore minute generation noise,
we define the validity of an output image by the follow-
ing formula:



University of Aizu, Graduation Thesis. March, 2025 s1290102 5

Algorithm 6 Color edges of 𝑐𝑜𝑛𝑡𝑜𝑢𝑟 𝑔𝑟𝑎𝑝ℎ using stratified 𝑑𝑒𝑚 𝑟𝑒𝑔𝑖𝑜𝑛

1: function color contour graph(𝑐𝑜𝑛𝑡𝑜𝑢𝑟 𝑔𝑟𝑎𝑝ℎ, 𝑑𝑒𝑚 𝑟𝑒𝑔𝑖𝑜𝑛)
2: Perform breadth-first search on 𝑑𝑒𝑚 𝑟𝑒𝑔𝑖𝑜𝑛 starting from the strata where the height is 0, and obtain the

shortest distance to each stratum
3: for all 𝑒𝑑𝑔𝑒 in 𝑐𝑜𝑛𝑡𝑜𝑢𝑟 𝑔𝑟𝑎𝑝ℎ do
4: 𝑠1, 𝑠2 := two strata adjacent to 𝑒𝑑𝑔𝑒 where 𝑠1.ℎ𝑒𝑖𝑔ℎ𝑡 < 𝑠2.ℎ𝑒𝑖𝑔ℎ𝑡
5: if 𝑠1.𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 < 𝑠2.𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 then ⊲ 𝑠.𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 is the distance to 𝑠 obtained in line 2
6: 𝑒𝑑𝑔𝑒.𝑐𝑜𝑙𝑜𝑟 = 𝐺𝑅𝐸𝐸𝑁

7: else
8: 𝑒𝑑𝑔𝑒.𝑐𝑜𝑙𝑜𝑟 = 𝑅𝐸𝐷

9: end if
10: end for
11: end function

∀𝑦∀𝑥 min(𝑟𝑥,𝑦 , 𝑔𝑥,𝑦) ≤ 𝑡

where 𝑡 is the tolerance of the test, and we use 𝑡 = 16.
This test tolerates the error cases where both channels
are positive, unless the error min(𝑟𝑥,𝑦 , 𝑔𝑥,𝑦) is greater
than tolerance 𝑡.

4.4 Score-based Evaluation
In the score-based evaluation, we assess the valid output
of each model by calculating the fractal dimension of
resultant height-maps. The rationale behind this is that
natural terrain is expected to have fractal structures. We
use the box-counting method described by Wen-Li Lee
et al. [5] for the calculation. For this evaluation, we only
take into account the height value of the terrain, and thus
the water body is ignored, due to the limitation of the
algorithm.

4.5 Environment
We have conducted our experiments using a computer
with the following equipment:

• CPU: Intel Core i7 6700K

• RAM: DDR4 32GB

• GPU: NVIDIA GeForce RTX 4060 Ti 16GB

5 Results
5.1 Training Time
The training time for pix2pix was roughly 93.33 hours,
while the training time for Palette was roughly 480
hours.

5.2 Generation Time
The generation time is the required time to generate one
height-map from a contour-map. The average genera-
tion time of pix2pix was 0.005182 seconds, while the
average generation time of Palette was 46.33 seconds.

5.3 Generated Height-maps
Eight samples of generated height-maps by each model
are shown in Figure 3.

5.4 Validity Evaluation
The results of the validity evaluation are shown in Table
1. Each column is showing the result for the correspond-
ing generative model. The error rate is the number of
invalid output divided by the number of all output.

pix2pix Palette
Number of Valid Output 901 400
Number of Invalid Output 227 728
Error Rate [%] 20.12 64.54

Table 1: Results of Validity Evaluation

5.5 Score-based Evaluation
The results of the score-based evaluation are shown in
Table 2. In addition to the scores for each model, we
have calculated the score of the dataset created in Section
3.2 for reference. The score distributions for pix2pix,
Palette and the dataset are shown in Figure 4, 5 and 6.

6 Discussion
As for the training time, it has turned out that Palette
requires much longer training time than pix2pix. The
same goes for generation time. This implies that pix2pix
is more affordable to train, compared to Palette.

From Figure 3, we can observe Palette produce some
random noise in the output, while the output of pix2pix
is more saturated. In some cases, the output is so noisy
that it is considered invalid. The problem with pix2pix
is that the output tends to have unnatural, repetitive
patterns. This phenomenon is especially noticeable in
watered areas.



University of Aizu, Graduation Thesis. March, 2025 s1290102 6

pix2pix Palette Dataset
Average of Fractal Dimension 2.004 1.643 2.096
Standard Deviation of Fractal Dimension 0.2941 0.3462 0.3230
Minimum of Fractal Dimension 1.083 0.9999 1.398
Maximum of Fractal Dimension 2.610 2.510 2.844

Table 2: Results of Score-based Evaluation

The possible cause of these problems is the lack of
training epochs, or the insufficiency of the training data.
Longer training time may yield better results.

The validity evaluation has shown that pix2pix is less
likely to produce semantically invalid height-maps than
Palette. In contrast, Palette has frequently produced
invalid height-maps. This seems to be due to the noise
we mentioned earlier.

The score-based evaluation has revealed that the aver-
age score of pix2pix is close to that of the dataset, while
the score of Palette has resulted in much lower score.
This implies that pix2pix is capable of generating more
natural terrain than Palette. However, it should be noted
that this score could have been affected by the repetitive
patterns.

7 Conclusion
We have attempted to create terrain generation models
and investigated the applicability of diffusion models to
the procedural content generation. Our experiment re-
sults have shown that pix2pix takes less time to train, and
it is capable of generating semantically valid and natural
terrain, though it occasionally produces visually unnat-
ural patterns. In contrast, training Palette requires more
than five times as long as pix2pix, and Palette frequently
produced invalid height-maps under our environment.

From these results, we can conclude that pix2pix is
a reasonable option for performing terrain generation,
since it can be trained from scratch with less compu-
tation resources than Palette and has the capacity to
replicate the features of the original dataset.

Acknowledgments
I would like to thank my supervisor Maxim Mozgovoy
for reviewing my research project.

References
[1] P. Bourke, “Conrec - a contouring subroutine,”

1987.

[2] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Ben-
gio, “Generative adversarial networks,” 2014.

[3] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion
probabilistic models,” 2020.

[4] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-
to-image translation with conditional adversarial
networks,” 2018.

[5] W.-L. Lee and K.-S. Hsieh, “A robust algorithm
for the fractal dimension of images and its appli-
cations to the classification of natural images and
ultrasonic liver images,” Signal Processing, vol. 90,
no. 6, pp. 1894–1904, 2010.

[6] NASA JPL, “NASADEM Merged DEM Global 1
arc second V001,” 2020, [Data set].

[7] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and
B. Ommer, “High-resolution image synthesis with
latent diffusion models,” 2022.

[8] C. Saharia, W. Chan, H. Chang, C. A. Lee, J. Ho,
T. Salimans, D. J. Fleet, and M. Norouzi, “Palette:
Image-to-image diffusion models,” 2022.

[9] T. Wang and S. Kurabayashi, “Sketch2map: A
game map design support system allowing quick
hand sketch prototyping,” 2020 IEEE Conference
on Games (CoG), pp. 596–599, 2020.



University of Aizu, Graduation Thesis. March, 2025 s1290102 7

Figure 3: Generated height-maps (left: input contour-
map, middle: output of pix2pix, right: output of Palette)

Figure 4: Score distribution of pix2pix

Figure 5: Score distribution of Palette

Figure 6: Score distribution of the Dataset


