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Abstract
Understanding the complexity of dynamic systems through simulation is a critical

theme in the study of artificial life and swarm behavior. In this research, we propose a novel
dynamics model that integrates the “Boid model,” which reproduces swarm behavior
through simple interaction rules, with “Lenia,” which leverages nonlinear dynamics to
create life-like patterns. This model simulates the interaction between swarm behavior and
cellular dynamics.

Specifically, we constructed a system in which Lenia’s growth field is incorporated into
the Boid model, allowing Boid agents to influence Lenia particles while Lenia’s dynamics, in
turn, affect the movement of the Boid agents. This integrated model enables Lenia’s growth
rate to regulate the cohesion and collective motion of Boids while Boid movement
contributes to Lenia’s pattern formation.

The simulation results revealed new dynamic behaviors. Notably, enhanced aggregation
of Boids in regions with high Lenia growth fields and the formation of asymmetric growth
patterns were observed. These findings suggest the possibility of reproducing complex and
organic swarm behaviors and pattern formations that conventional models could not
achieve.

The outcomes of this research provide a novel framework linking swarm intelligence
and self-organizing systems, paving the way for diverse applications in artificial life,
robotics, and understanding biological systems.



Chapter 1

Introduction

Modern simulations of artificial life and swarm behavior have become essential tools for
understanding complex dynamic systems. Notably, the Boid [1] model and simulations like
SmoothLife [2] and Lenia [3] have garnered attention for mimicking swarm behavior and
cellular dynamics through distinct approaches. The Boid model is widely used for dynamic
simulations of collective movements in swarms or flocks, generating coordinated behavior
through simple rules governing interactions between individuals. In contrast, Lenia
leverages nonlinear dynamics to simulate cellular movements, capturing life-like behaviors
that transcend physical constraints.

While each of these models is fascinating in its own right, addressing their limitations
and creating more realistic and intricate dynamic systems requires a novel perspective
beyond treating them in isolation.

1.1 Research Objectives
The objective of this research is to propose a novel dynamic model that integrates the Boid
model and Lenia simulation, facilitating interactions between swarm behavior and cellular
dynamics. Through this integration, the collective behavior in the Boid model will influence
the dynamics of Lenia particles, while Lenia particles, in turn, will affect individual agents
in the Boid system. Specifically, the Lenia particles will exert cohesion and alignment forces
on Boid agents. To achieve a more natural interaction, the concept of growth will be
introduced as a parameter in these interactions.

1.2 Significance of the Research
The significance of this research lies in uniting two seemingly distinct fields—swarm
behavior and cellular dynamics—into a cohesive framework for modeling more complex and
realistic dynamic systems. This integrated approach has the potential to provide fresh
perspectives in artificial life, robotics, swarm simulations, and even the understanding of
biological systems.
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Chapter 2

Background

We here introduce the foundational concepts of two prominent models: the Boid model,
which simulates swarm dynamics, and Lenia, which captures life-like patterns through
continuous cellular automata.

2.1 Boid
The Boid model [1] is an algorithm used to simulate the movement of swarms or flocks,
based on three fundamental principles: “Separation,” “Alignment,” and “Cohesion.” These
rules determine how individual agents (Boids) interact with one another.

• Separation: This rule generates a force that causes a Boid to avoid others if they get too
close. This helps prevent collisions among Boids within the group.

• Alignment: This rule encourages a Boid to align its direction with nearby Boids,
promoting harmony within the swarm’s overall movement.

• Cohesion: This rule generates a force that pulls a Boid toward the center of the swarm,
ensuring that the group moves as a cohesive unit.

These rules are based on local interactions between individuals, yet they collectively
produce organized behavior within the swarm. This model is widely used to replicate
collective behaviors observed in nature, such as flocking birds, schooling fish, and swarming
insects.

2.2 Lenia
Lenia is a continuous cellular automaton that extends traditional cellular automata by using
continuous space, time, and states [3]. This enables complex, life-like patterns that are not
achievable with discrete cellular automata. Lenia achieves this by employing multiple
kernels and channels, which drive self-organizing dynamics.

Lenia’s system is defined in a 𝑑-dimensional continuous space, though most
implementations use a 2-dimensional plane (𝑑 = 2). Each point in this space contains 𝑐 real-
valued channels, with values ranging between 0 and 1. The state of the system evolves over
time based on local interactions, which are defined by kernels and growth mappings.

Lenia is innovative in its use of continuous space, time, and states, setting it apart from
traditional cellular automata. This allows Lenia to simulate complex and realistic life-like
behaviors that were previously unattainable with conventional cellular automata. Lenia
utilizes multiple kernels and multiple channels to generate self-organizing, autonomous
patterns.

2



The world of Lenia begins with a space defined as a d-dimensional lattice in its initial
configuration. Each lattice point contains c channels, represented by real values between 0
and 1. The state of each cell evolves over time based on these channels.

Lenia’s evolution is driven by multiple kernels and growth mappings. The evolution
process is computed as follows:

• Kernel
Each kernel serves as a function that describes the interactions between cells. Kernels are
characterized by features such as radius 𝑟𝑘, parameter 𝛽𝑘, growth mapping parameter 𝜇𝑘,
and 𝜎𝑘. A kernel is constructed by combining exponential kernels and kernel shells to
describe the spatial influence of cells.

• Growth Mapping
Growth mappings are functions used to update the states of cells, employing distinct
parameters for each kernel. Growth mapping can be defined, for example, as follows:

𝐺𝑘(𝑢) = 2 ⋅ exp(−
1
2
(𝑢 − 𝜇𝑘

𝜎𝑘
)
2

)− 1

Here, 𝑢 represents the state of the cell, while 𝜇𝑘 and 𝜎𝑘 are parameters indicating the center
and spread of growth, respectively.

2.2.1 Update Calculation

In Lenia, the state of the world is updated based on the following equation:

𝐴𝑡+Δ𝑡𝑗 = [𝐴𝑡𝑗 +Δ𝑡∑
𝑖,𝑘

ℎ𝑘
ℎ
⋅ 𝐺𝑘(𝐾𝑘 ∗ 𝐴𝑡𝑖)]

1

0

In this equation, the effects of each kernel are averaged, and the weighted composite
result is applied as the new state. Kernels interact based on the states of surrounding cells,
determining the evolution of the cells.

Each kernel is defined by the following parameters:

• 𝑟𝑘 (Radius): A parameter that determines the range of influence of the kernel.
• 𝛽𝑘: A parameter that adjusts the shape of the kernel.
• 𝜇𝑘, 𝜎𝑘: Parameters that define the center and spread of the growth mapping.
• ℎ𝑘: A parameter that adjusts the weight within the kernel.

2.3 Flow Lenia
Flow Lenia [4] is an extension of Lenia that incorporates a continuous velocity field into the
evolution of cellular states. Unlike the original Lenia, where updates rely solely on static
kernels and growth mappings, Flow Lenia introduces an advection or “flow” term that
moves the density of cells according to a local velocity vector. This velocity can be derived
from various sources, such as pre-defined flow equations or coupling with external forces
(e.g., fluid dynamics).

In practical terms, Flow Lenia adds the following modifications:
• A velocity field 𝐏𝑣 that updates the position or phase of each cell before applying the

traditional Lenia kernel-based update.
• An advection-diffusion-like process, where the cell states may be transported or “flowed”

across space, creating more dynamic and shifting patterns than standard Lenia.
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By incorporating flow, the model is able to simulate phenomena such as traveling waves,
rotating spirals, or vortex-like structures more naturally. In the context of Boid-Lenia
integration, Flow Lenia could allow the Lenia field itself to move or warp in response to the
motion of Boid agents, providing an additional feedback loop between the swarm and the
underlying field.

2.4 Particle Lenia
Particle Lenia [5] is a derivative model that applies the principles of the original Lenia to a
particle system. By replacing Lenia’s grid-based interactions with dynamic particle-based
interactions, this approach enables mass-conservation.

𝑑𝐩𝐢
𝑑𝑡

= −∇𝐄(𝐩𝐢) = [
𝜕𝐄(𝐩𝐢)
𝜕𝑝𝑖

]
𝑡

Here, 𝐩𝑖 represents the position of a particle in 2D space, and 𝐄 represents the energy of
the system 𝐄 = 𝐑 −𝐆 where 𝐑 and 𝐆 can be written, respectively, as follows.

𝑅𝑡(𝑥) =
𝑐rep
2

∑
𝑖:𝑝≠𝑥

max(1 − ‖𝑥 − 𝑝𝑖‖, 0)
2

where 𝑐rep is a parameter that controls the strength of repulsion between particles. 𝑅𝑡 is
called repulsion potential field, where the particle distance is less than 1, the distance is
multiplied by 𝑐rep, and the contributions from all particle pairs are summed. Namely,
particles with a distance of 1 or more are not repulsive.

𝐆𝑡(𝐱) = 𝐺(𝐔𝑡(𝐱))

= 𝐺(∑𝐊(𝐱 − 𝐩𝑡𝑖))

= 𝐺(∑𝐾(‖𝐱 − 𝐩𝑡𝑖‖))

where 𝐺(𝑢) = exp(− (𝑢−𝜇𝐺)
2

𝜎2𝐺
) and 𝐾(𝑟) = 𝑤𝐾 ∗ exp(−

(𝑟−𝜇𝐾)
2

𝜎2𝐾
). 𝐾 corresponds to the

adjacent cell rule in the game of life and determines which adjacent particle is used for the
next update of its own state; 𝐺 corresponds to the growth function in the Game of Life and
determines its next state. 𝜇∗ and 𝜎∗ in 𝐾 and 𝐺 weight the states of other particles for use
in updating its own state. 𝑤𝐾  is chosen so that the integral of 𝐾 over the whole space
equals one. Particle will minimize repulsion energy 𝑅, and maximize growth energy 𝐺.
They are modeled without momentum, behaving similarly to microscopic organisms.
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Chapter 3

Integration of Boid and Lenia

Both the Boid model and Lenia exhibit life-like qualities, albeit in different ways. The
Boid model emulates flocking behaviors seen in nature, where individual agents interact
through cohesion, alignment, and separation to produce collective motion reminiscent of
birds or fish. Lenia, on the other hand, generates geometric patterns in a continuous cellular
automaton system, driven by kernel-based local influences. By integrating these two
models, we aim to merge the dynamic, interactive nature of Boid with the emergent, self-
organizing patterns of Lenia, creating a system capable of expressing even more complex
and diverse behaviors.

3.1 Boid-Lenia Dynamics
Our proposed approach, inspired by classical models in physics and chemistry, shares
similarities with Particle Lenia. A notable example is the Lennard-Jones potential [6],
characterized by a system that combines attractive and repulsive potential fields.

Lenia’s ring-shaped kernel introduces new behavioral rules to the Boid model.
Specifically, it modifies interactions between individuals by weighting them through the
ring kernel, resulting in the following behavioral changes:

• Ring-shaped influence range: The range of influence is no longer a simple fixed
distance but takes on a ring shape, providing different effects at the center and the
periphery.

• Growth and dissipation: By applying Lenia’s growth rate to Boids, it becomes possible
to simulate behaviors where the population or density dynamically changes under
specific conditions.

• Utilization of peripheral information: Boids can leverage Lenia’s properties to
broaden their field of view while selectively responding to critical sources of influence.

This integration creates a framework where swarm dynamics and life-like cellular behavior
coexist, leading to emergent properties not achievable with either model in isolation.

3.2 Definition of Kernels
The shape of the kernel follows the approach in [7], representing a sum of multiple window
function. This design makes the parameters differentiable, which is expected to facilitate
learning.

5



𝐾(𝑥) =∑
𝑘

𝑖
𝑤hann,i

𝑤hann(𝑥) ≔
{{
{
{{1
2𝑏𝑖(1 + cos(𝜋

𝑥−𝑎𝑖
𝑤𝑖
)) if |𝑥−𝑎𝑖𝑤𝑖

| ≤ 1
0 otherwise

To stabilize GPU computation and smoothly fade out the Lenia field, we apply a Hann
window function, where 𝑟max is a cutoff radius. This ensures that growth contributions
vanish near the boundary of the kernel, reducing abrupt transitions.

a) Kernel value b) Kernel map on 2D space
Figure 1: Examples of kernels

3.2.1 Attenuating Growth

In the Boid model [1], the forces of Cohesion and Alignment are divided by the number of
individuals in the vicinity. Following this principle, our model defines the force field as
follows:

𝐯𝑡+Δ𝑡 = [𝐯𝑡 +Δ𝑡𝐆(𝐱𝑡)]
scaled

Here, the scaling process [⋅]scaled is defined as:

𝐯scaled = 𝐯 ⋅ tanh(
‖𝐯‖
𝑣max

) ∗ 𝛾

where 𝑣max is the maximum velocity limit, and 𝛾 is the scaling coefficient.

In the integrated Boid-Lenia model, a velocity limit is introduced to prevent individuals
from accelerating excessively. The hyperbolic tangent (tanh) function is employed to
smoothly limit the velocity, avoiding abrupt changes. Additionally, 𝛾 introduces a damping
effect similar to air resistance, enhancing the realism of the behavior.

At each time step, the gradient 𝐺(𝐩) at position 𝐩 is calculated:

𝐆sep(𝐩) =∑
𝑖∈𝑃

𝐱𝑖 − 𝐩
‖𝐱𝑖 − 𝐩‖

(𝑟kernel − ‖𝐱𝑖 − 𝐩‖)
2

𝐆align(𝐩) =∑
𝑖∈𝑃

𝐯𝑖
(∑𝑖𝐊(𝐱𝑖 − 𝐩))

𝑑align

∑𝑖𝐊(𝐱𝑖 − 𝐩)
𝑑align
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𝐆cohe(𝐩) =∑
𝑖∈𝑃
(𝐱 − 𝐩)

(∑𝑖𝐊(𝐱 − 𝐩𝑖))
𝑑cohe

∑𝑖𝐊(𝐱 − 𝐩𝑖)
𝑑cohe

𝐆(𝐩) = 𝑐sep𝐆sep(𝐩) + 𝑐align𝐆align(𝐩) + 𝑐cohe𝐆cohe(𝐩)

By adjusting the attenuation coefficients 𝑑align and 𝑑cohe based on density, we regulate the
changes in growth rates influenced by density.

As shown in Figure 2, setting 𝑑cohe to a value greater than 1 demonstrates how the force
fields counteract each other.

a) 𝑑cohe = 1.0 b) 𝑑cohe = 2.0 c) 𝑑cohe = 3.0
Figure 2: Kernel value heatmap for different density attenuation parameters

3.3 Multi-channel
As shown in Algorithm 1, we employ a multi-channel approach to allow particles (Boids) of
different types or “channels” to interact distinctly. For example, a swarm of predator-type
agents and a swarm of prey-type agents could be treated as separate channels, each with its
own weighting factors for separation, alignment, and cohesion. The key points of this
algorithm are:
• Particles are assigned to grid cells for efficient neighborhood look-up, reducing the

computational cost from 𝑂(𝑁2) to approximately 𝑂(𝑁) in sparse environments.
• For each particle, we compute the gradient by summing the contributions of particles in

adjacent cells, weighted by the multi-channel matrix Weights[i.channel][j.channel].
• After updating velocities, we clamp them to a maximum speed (MAX_SPEED) to prevent

numerical instability and to better mimic real swarm dynamics.
• Periodic boundary conditions (mod 1.0) ensure particles re-enter on the opposite side

when they exit the simulation space.

This channeled approach provides flexibility in modeling interactions between
heterogeneous agents, which can be extended to incorporate Lenia-like kernels for
additional complexity.
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Algorithm 1: Multi-channel Boid Algorithm

1 Assign particles to grid cells:
2 for each boid i in Particles:
3 Compute grid index g based on 𝑝𝑖
4 Atomically increment g.count
5 Add i to g.particleIndices
6 end
7 Compute gradients and update boids:
8 for each boid i in Particles:
9 Initialize gradient ← (0, 0)

10 Identify current grid cell g and neighboring cells N(g)
11 for each cell c in N(g):
12 for each boid j in c.particleIndices:
13 if i ≠ j then
14 Compute distance 𝑑 ← ||𝑝𝑖 - 𝑝𝑗||
15 Compute separation force 𝑆 based on inverse-square law
16 Compute alignment force 𝐴 using kernel functions
17 Compute cohesion force 𝐶 using kernel functions
18 gradient ← gradient + (S + A + C) × Weights[i.channel][j.channel]
19 end
20 end
21 𝑣𝑖 ← 𝑣𝑖 + gradient
22 Limit 𝑣𝑖 to 𝑣{max}
23 Apply damping: 𝑣𝑖 ← 𝑣𝑖 × 𝛾
24 𝑝𝑖 ← (𝑝𝑖 + 𝑣𝑖 × Δ𝑡) mod 1.0
25 end

3.4 Implementation Details
Our simulation framework is implemented in C++ with CUDA for GPU acceleration. Each
time step consists of two major kernels:
1. Grid Building Kernel: Particles are assigned to uniform grid cells based on their (𝑥, 𝑦)

positions. This step is essential to limit the neighbor search to a few adjacent cells rather
than the entire particle set.

2. Force Computation & Integration Kernel: For each particle, we compute separation,
alignment, cohesion forces (Boid model) and Lenia-based kernel influences in parallel.
We then update the position and velocity of each particle by integrating these forces.

The grid cell size is chosen to match the maximum interaction radius among particles,
which is the radius of the Lenia kernel 𝑟𝑘. We also leverage shared memory to cache the
positions of particles in the same cell, minimizing global memory transactions. As a result,
the simulation scales to thousands or tens of thousands of particles in real time on a
standard GPU. These optimizations enable us to perform parameter sweeps and random
searches more efficiently.
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Chapter 4

Experiments

4.1 Setup and Methodology
The initial state, including the number of Boids and Lenia particles, their positions, and
initial velocities, was randomly generated. The two-dimensional space in which particles
move is toroidal, meaning the position of a particle 𝐱 = (𝑥, 𝑦) follows periodic boundary
conditions in both dimensions, where 𝑥, 𝑦 ∈ [0, 1). This configuration allows individuals to
move freely without concern for boundary conditions, making it suitable for observing
natural flocking behavior and particle evolution.

This setup prevents particles from moving infinitely far apart, ensuring that their
interactions remain observable throughout the simulation.

4.2 Visualization
The visualization of the Boid-Lenia system is as follows:

• In the Boid model, velocity vectors are critical for identifying the state of individual
agents. Therefore, we visualized the velocity vectors using the HSV color space, which
effectively highlights the characteristics of each Boid.

As part of the visualization, we present:
1. A diagram where particles are colored in red.
2. A corresponding diagram illustrating the same state, represented in the HSV color space

for velocity visualization.
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Figure 3: 2x2 grid of Lenia kernels defining the interactions between two channels

• Top-left: Self-interaction of channel 0 (channel 0 → channel 0).
• Top-right: Influence of channel 0 on channel 1 (channel 0 → channel 1).
• Bottom-left: Influence of channel 1 on channel 0 (channel 1 → channel 0).
• Bottom-right: Self-interaction of channel 1 (channel 1 → channel 1).

Figure 3 illustrates the force field generated around a particle moving at maximum velocity
in the rightward direction. The direction of the force field is represented in HSV color space,
following the mapping shown in the adjacent legend. Blue represents a forward-directed
force field, while red indicates a backward-directed force field.

From this point onward, boids will be represented as red particles in single-channel
environments, and as cyan and yellow particles in two-channel environments.

a) Channel 0 described by red particle b) with hsv
Figure 4: “1-channel boids”
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a) particle b) gradient
Figure 5: 2-channel boids
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Chapter 5

Evaluation Methods

5.1 Evaluation Criteria
To evaluate the integrated Boid-Lenia model, the following criteria were established:

1. Overall system stability
The stability of the system is evaluated to ensure that the interactions between Boid and
Lenia do not lead to excessive destabilization, maintaining a dynamic equilibrium.

• Particle distribution: Although the initial distribution of particles is random, clustering
or uniformity emerges over time, influenced by Boid’s cohesion and Lenia’s growth rates.

• Toroidal space characteristics: When particles cross the toroidal boundaries, they
seamlessly reappear on the opposite side. The periodic boundary conditions are
accounted for in distance calculations between particles, ensuring accurate interactions.

5.2 Calculation of Boid Center
To understand the overall movement of the Boid swarm, the center-of-mass velocity is
calculated. This metric indicates how the swarm moves through space and serves as a key
indicator of how interactions with Lenia influence Boid dynamics.

In toroidal space, particle positions are restricted to the range [0, 1) × [0, 1).
Considering these periodic boundary conditions, the calculation of the center-of-mass and
dispersion employs the Circular mean method.

Given a particle position 𝐩𝑖 = (𝑥𝑖, 𝑦𝑖), the center in toroidal space is computed as
follows: In toroidal space, each coordinate component 𝑥𝑖 and 𝑦𝑖 is converted to an angular
position 𝜃𝑖 = 2𝜋𝑥𝑖 on a circle.

1. Treating particle positions as angles on a circle, the mean angle is calculated using the
sine and cosine averages for each component:

𝑥center = atan2(
1
𝑁
∑
𝑁

𝑖=1
sin(2𝜋𝑥𝑖),

1
𝑁
∑
𝑁

𝑖=1
cos(2𝜋𝑥𝑖))

𝑦center is computed in a similar manner to obtain 𝑝center = (𝑥center, 𝑦center).

5.3 Variation of Particles in Torus
The variance of particles in toroidal space is computed by adjusting the distances from the
center using periodic boundary conditions. The distance of each particle from the center is
calculated while accounting for periodicity:
Δ𝐩𝑖 = 𝐩𝑖 − 𝐩center − ⌊𝐩𝑖 − 𝐩center + 1

2⌋
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Here, Δ𝐩𝑖 represents the distance of particle 𝑖 from the center. The variance is defined as:
𝜎2 = 1

𝑁 ∑
𝑁
𝑖=1 ‖Δ𝐩𝑖‖

2

5.3.1 Probability Density Function (KDE)

The probability density function of a Gaussian distribution is defined as follows:

𝑓(𝑥, 𝑦) = 1
2𝜋𝜎2

exp(−𝑥
2 + 𝑦2

2𝜎2
)

Here, 𝜎 is the standard deviation, and 2𝜋𝜎2 is the normalization factor for the distribution
in two-dimensional space. This ensures that the integral of the distribution equals 1.

In this study, instead of using a Gaussian function as the target function, we employed a
custom function 𝐺(𝑥dist) based on the Smoothstep function. The Smoothstep function,
Smoothstep(𝑥) = 3𝑥2 − 2𝑥3, has the characteristic of smoothly interpolating input values
within the range of 0 to 1.

𝐺(𝑥dist) ≔

{{
{{
{{
{1 if (0 ≤ 𝑥dist ≤ 𝑅inner)

−3( 𝑟−𝑅inner
𝑅outer−𝑅inner

)
2
+ 2( 𝑟−𝑅inner

𝑅outer−𝑅inner
)
3
+ 1 if (𝑅inner < 𝑥dist ≤ 𝑅outer)

0 if (𝑅outer < 𝑥dist)

The reason for adopting this shape for the target function instead of a Gaussian function is
to prevent particles from becoming overly concentrated at the center. Additionally, since the
size of the kernel is fixed, the formation of groups is expected to exhibit periodicity. To
maintain this periodicity, it was considered necessary to have density remain within a
certain interval.

Figure 6: Target Distribution

Here, we propose two approaches to calculate the variance of Boids.

5.3.2 2-dimensional KDE

We evaluate whether the heatmap of particles in a two-dimensional space corresponds to
the expected distribution. Specifically, when plotting the previously defined distribution, it
appears as follows:
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a) particle position b) KDE density c) target density
Figure 7: Density Heatmap

5.3.3 1-dimensional KDE

Next, we explore an approach that uses only the distance as the basis for evaluating the
distribution. Unlike the previous method, this approach is not restricted to a specific shape.
Instead, it examines the distribution of distances from the center.

To ensure that this distribution closely resembles the two-dimensional spatial
distribution, we use the target density distribution obtained by circularly integrating the
previously defined target function. The distribution resulting from integrating Equation 1 is
expressed as follows:

Figure 8: Density Heatmap

5.3.4 Convolution

To estimate the particle distribution using KDE, we convolve the target distribution with the
same Gaussian function. This approach ensures that the estimated distribution aligns with
the target distribution while smoothing out noise or irregularities.

The convolution operation is defined as follows:

𝐹Blurred(𝑥0) = (𝑓 ∗ 𝑔)(𝑥0) = ∫
∞

∞
(𝑓(𝑡) ∗ 𝑔(𝑥0 − 𝑡)) d𝑡

Here:
• 𝑓(𝑡) represents the target distribution.
• 𝑔(𝑥) is the Gaussian function used for convolution.
• 𝑥0 denotes the evaluation point for the resulting blurred distribution.
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By performing this convolution, we obtain a smoothed version of the target distribution,
which serves as a reference for comparing the particle distribution estimated via KDE. This
step is essential for ensuring that the analysis focuses on meaningful features rather than
noise.

5.4 Loss Calculations
To compare the boids distribution with the target distribution, we employed the Jensen-
Shannon divergence (JSD) [8], which is a symmetric variant of the Kullback-Leibler (KL)
divergence. The KL divergence, commonly used to measure differences between probability
distributions, has a critical limitation: it becomes undefined when comparing distributions
with zero density in certain regions. Since the boids’ positions may result in highly skewed
distributions with near-zero densities, the KL divergence can lead to instability or unreliable
results. In this study, the JSD is used to quantify how closely the simulated boids
distribution aligns with a predefined target distribution. A lower JSD value indicates higher
similarity, allowing us to evaluate the effectiveness of the parameter settings in guiding the
boids toward the desired spatial patterns.
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Chapter 6

Results and Discussion

The radius of the kernel was set to 0.05 in [0, 1) × [0, 1) two‐dimensional surface, and
the number of Boids was set to 1000.

6.1 Random Search
Random search is a parameter optimization method where parameters are varied randomly
within a predefined range. The goal is to find parameter values that minimize the loss
function effectively.

The parameter space for this search includes:

KernelParam
𝑐sep, 𝑐align, 𝑐cohe ∈ [0, 1]
𝑑align, 𝑑cohe ∈ [1, 3]

Kernel bumps:
Alignment
𝑎 ∈ [0, 1]
𝑏 ∈ [−1, 1]
𝑤 ∈ [0.1, 1]

Kernel bumps:
Cohesion
𝑎 ∈ [0, 1]
𝑏 ∈ [0, 1]
𝑤 ∈ [0.1, 1]

Table 1: Parameter space

To ensure stable and coherent behavior in the flock, we carefully define parameter ranges
for alignment, kernel bump size, and cohesion density. The maximum alignment strength is
limited to prevent undesirable behaviors; excessively large values can cause agents to
overreact to others’ movements, leading to rapid oscillations that stabilize into a deadlock,
where agents cease meaningful motion. For the kernel bump size, an overly narrow bump is
avoided because it reduces the region of influence, which can make SLPs difficult to achieve.
Finally, a minimum cohesion density greater than 1 is introduced to prevent agents from
collapsing into a single overly dense cluster. While this threshold may vary with the total
number of particles, our experiments showed that a value of at least 1.5 is necessary to
counteract excessive aggregation. However, setting this parameter too high increases the
risk of over-dispersal, potentially leading to fragmentation.

For instance, in the Boid-Lenia model, parameters such as 𝑐sep and 𝜇 influence the
swarm behavior and growth field interactions. By exploring values within [0, 1], the random
search ensures sufficient diversity to discover configurations that balance swarm dynamics
with the underlying growth patterns.

The features “Inner Energy” and “Directed Velocity” did not transition from one to the
other during gradient-based learning. This observation suggests that these states are
separated into distinct local optima, making it unlikely for the system to move between
them under the current optimization framework.
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Additionally, while the minimization of loss via KDE was achieved, its primary goal was
to prevent excessive dispersion or aggregation. As such, random search was deemed
sufficient for exploration in this case, since it adequately addressed the problem without
requiring more complex optimization methods.

6.2 Observed Patterns
By integrating Boid and Lenia into a unified simulation model, we observed novel swarm
behaviors that were not achievable with traditional Boid models. The Boid agents were
influenced by Lenia’s ring-shaped kernels, exhibiting tendencies to be attracted to other
particles within a specific range. As a result, Lenia’s characteristic growth patterns
manifested in distinctive structural formations.

Specifically, the following features were identified:

1. In regions where Lenia’s growth field was high, Boid velocities decreased, leading to
stronger aggregation of the boids flock.

2. When Boids maintained movement in a specific direction, Lenia’s growth patterns were
dragged along, resulting in asymmetric distributions.

3. Over extended simulations, a dynamic equilibrium between Boid and Lenia behaviors
was maintained under certain conditions.

These behaviors demonstrate that Boid-Lenia agents, unlike those in traditional interaction
models, are dynamically modulated by Lenia’s nonlinear growth processes. This integration
highlights the potential of the combined model to simulate complex, emergent behaviors
that bridge swarm dynamics with cellular growth mechanisms. Based on our observations,
we categorized these behaviors into four distinct patterns: Flutter Pattern, Ring Pattern,
Swap Pattern, and Stable Pattern.

6.2.1 Flutter Pattern

The Flutter Pattern, as shown in Figure 9, is characterized by short-period oscillations. This
is the only observed pattern that forms stripe-like structures. Within a single channel, boids
align in the same direction, while interactions between the two channels involve alternating
phases of repulsion and attraction. These dynamics give rise to wave-like, oscillatory
movements, creating a visually distinct and temporally dynamic behavior.

a) gradient of channel 1 b) particle
Figure 9: Flutter Pattern
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6.2.2 Ring Pattern

The ring pattern is formed when boids in two channels move in opposite directions.
Alignment within the same channel is positive, while alignment between different channels
is negative, resulting in this behavior. This pattern exhibits continuous rotation.

a) gradient of channel 1 b) particle
Figure 10: Ring Pattern

6.2.3 Swap Pattern

As shown in Figure 11, the boids in two channels exhibit periodic swapping movements.
The interaction between the swapped channels is fundamentally similar to that of the ring
pattern; however, specific dynamics result in this alternating behavior.
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a) gradient of channel 1 b) particle

(c) (d) (e) (f)
Figure 11: Swap Pattern: The progression of timesteps is shown in the order of (c) → (d) →
(e) → (f). Notably, the positions of Channel 1 and Channel 2 are reversed between (c) and

(f), and this periodic swapping motion continues indefinitely.

6.2.4 Stable Pattern

The Stable Pattern is defined by minimal internal movement within the flock, even when
the flock itself is in motion. Unlike the other patterns, which display continuous or periodic
shifts, this pattern maintains a relatively fixed shape. However, the forms it produces exhibit
greater diversity compared to other patterns. This pattern tends to arise when the negative
weighting of alignment between channels is low, allowing for more cohesive, stable
groupings.
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a) gradient of channel 1 b) particle
Figure 12: Stable Pattern

This pattern is a stable pattern, which is a pattern that does not relatively change over time.

6.3 Movement Characteristics
Among the four observed patterns, certain Stable Patterns displayed greater displacement of
the flock’s center of mass, whereas Flutter, Ring, and Swap Patterns tended to remain more
localized. However, not all Stable Patterns exhibited this trait; many showed only minimal
overall movement. These observations point to a possible trade-off between large-scale
translational motion and the internal oscillations or periodic rearrangements typical of
other patterns, though further analysis is required to clarify this relationship.

6.4 Energy Analysis
We defined the total system energy as 𝐸flock = ∑

𝑁
𝑖 ‖𝐆(𝐩𝑖)‖, following the approach

described in Particle Lenia [5]. Also, kinetic energy is calculated as the sum of the
magnitude of the velocities of all particles in the system, defined as 𝑉flock = ∑

𝑁
𝑖 ‖𝐯𝑖‖) This

definition was employed to evaluate the stability of the model.

The following figures illustrate the movement of the center of mass and the progression
of total energy in the switcher model, respectively.

As observed in Figure 13, the total energy stabilizes significantly after certain timesteps
from the start of the simulation.
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Figure 13: Energy and velocity sum over time: The red line represents the sum of gradient
magnitudes 𝐸flock, while the blue line corresponds to the total sum of the magnitudes of

velocities 𝑉flock for all boids. The x-axis represents time steps, and the y-axis indicates the
magnitude of the respective energy values.

Unlike Particle Lenia, the alignment mechanism in this model allows larger velocities to
create steeper gradients, resulting in behaviors that do not adhere to the law of energy
conservation. Consequently, 𝐸flock + 𝑉flock does not remain constant. However, as
demonstrated in the figure, the system exhibits remarkable stability despite this deviation.

Comparing the states at timestep = 100 and timestep = 10,000, as shown in Figure 14,
periodic changes within the system persist. The model exhibits the “swap” movement
repeatedly, while the overall structure and energy distribution remain remarkably stable.
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𝑡 = 100 𝑡 = 10, 000
Figure 14: Simulation at temporally separated timesteps 𝑡

6.5 Comparison of Theoretical Predictions and Experimental Results
Theoretical predictions suggested that Lenia’s ring-shaped kernels would induce stable
concentric growth patterns in the behavior of Boid swarms. However, experimental results
revealed that the emergence of such stable patterns was highly sensitive to parameter
settings.

The following key findings were observed:

1. Impact of Growth Rate:
• When the growth rate was low, Boids exerted insufficient influence on Lenia particles,

resulting in monotonous Lenia patterns.
• Conversely, when the growth rate was high, Boids became overly confined to regions

of high growth in Lenia, leading to a loss of collective freedom within the swarm.

2. Impact of Velocity Limitation:
• With loose velocity constraints, Lenia patterns struggled to keep up with Boid

movement, leading to turbulent behaviors.
• When velocity was appropriately controlled, stable periodic patterns driven by Boid-

Lenia interactions were observed.

These findings demonstrate that the interactions between Boids and Lenia are more
complex than simple intuitive predictions would suggest. The results underscore the critical
role of parameter tuning in shaping the emergent behaviors of the integrated model.
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Figure 15: Collection of boid-lenia patterns
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Chapter 7

Conclusion

This study demonstrated the potential for new dynamic behaviors and pattern
formations through an integrated model of Boid and Lenia. In particular, the influence of
Lenia’s ring-shaped kernels on Boid dynamics revealed emergent behaviors not achievable
with traditional models. This work proposes a novel framework that bridges swarm
intelligence and self-organizing systems.

7.1 Limitations and Future Directions
1. Exploration of a broader range of parameter settings

While this study focused on a limited set of parameters, investigating a more diverse
range (e.g., kernel shapes, interaction ranges, and environmental noise) could uncover a
wider variety of emergent behaviors. This would enhance our understanding of the
adaptability and generalizability of the integrated model.

2. Application to 3D spaces
Similar to the original Boid model [1], the proposed method can be extended to three-
dimensional spaces. This extension could reveal dynamic behaviors closer to real-world
flock phenomena and foster the discovery of novel pattern formations.

3. Optimization of algorithms
To enable real-time parameter exploration, it is crucial to design algorithms that
accelerate loss calculations. Such advancements would improve the practicality and
scalability of the model in dynamic simulations.

• Expanded Channel Interactions

In the study of Lenia as a sensorimotor agency [7], simulations involve interactions with
objects such as walls using additional channels. Similarly, future work on the Boid-Lenia
model could focus on expanding the expected interactions between channels. While this
study primarily explored patterns where two channels form a single flock, further
investigations could include improving stability during collisions with fixed objects, as
demonstrated in the aforementioned research. Additionally, it would be interesting to study
patterns where two channels interact with each other but do not belong to the same flock.
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