
 

 

Abstract 
 The objective of this research is to train agents on a 
racetrack so that they can drive to the goal as fast as 
possible. In addition to driving along a road, two 
functions, drifting and items, are also aimed to be used 
by the agents. In this experiment, imitation learning 
and reinforcement learning are used to achieve the 
objective. 

1    Introduction 
 Nowadays, the number of players in esports is more 
than the one in baseball or soccer. I wanted to develop 
an AI which can compete with or even outperform 
humans in the genre of esports games. Mario Kart is 
one of the most famous racing games, and also used as 
an esports game. Unlike other racing games, Mario 
Kart has many functions like items, stage gimmicks, a 
variety of kart components, etc. In the paper [1], Mario 
Kart AI was trained. However, they had no drifting 
capability or powerups. Therefore, I used a Mario Kart-
like game with drifting capability and powerups for the 
environment to work on the experiment. 

2    Environment 

2.1    Tools 

 Two tools are used to create the environment for the 
experiment.  
The first one is Unity: a cross-platform game engine. 
This is used to set up the base environment like tracks 
and kart controlling. 
The second one is Unity Machine Learning Agents 
Toolkit (ML-Agents): an open-source project that 
enables games and simulations to serve as 
environments for training intelligent agents.  

2.2 Environmental Setup 

 The Experiment was done in a simple environment. 

 

 

  
 There is an observation-decision-action-reward 
cycle when using reinforcement learning.  
Observation 
 
2.2.1 Observation 
 At the observation phase, agents gather the data from 
the environment. This table shows what kind of data 
was given to the agents and what was aimed at teaching 
them with it. 
 

Observation Purpose 

Speed of the kart Basic move 

Rotation of the kart 

Drifting state Whether it is drifting or 
not 

Accumulated drifting 
power (the kart gets to 
boost at certain amount 
of the power, it 
accumulates while it is 
drifting) 

It is accumulated while 
drifting and it gets to 
boost when reaching 
certain amount of it 
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Figure 1 (top). The track used for the training 

Figure 2 (bottom). Kart’s drifting and holding an item 



 

 

Item state Whether it has an item 
or not 

Distance between the 
kart and checkpoints, 
walls, corner walls and 
item boxes 

What the above states 
are supposed to be in 
state with distance of 
those objects 

 
2.2.2 Decision 
 At the decision phase, the agent decides the next 
action based on the data it has. A decision is made every 
step, which is every 0.1 seconds in the experiment. 
 
2.2.3 Action 
 At the action phase, the agent makes actions based 
on its decision. Here are the available actions in my 
environment. (They are all discrete inputs) 

• Moving forward (W key) 
• Moving right (D key) 
• Moving left (A key) 
• Drifting (Space key, 

There are two levels of boosting, and the level 
is decided by the value of accumulated 
drifting power. It accumulates while drifting. 
You can control how much you want to drift 
inward or outward while drifting with D and 
A key. Drifting inward accumulates the 
drifting power faster) 

• Using items (U key, 
Only a boost item is implemented in the 
environment.) 
 

2.2.4 Reward 
 At the reward phase, the agent gets a reward, which 
is a numerical signal provided by the environment 
based on its action. Table1 says what kind of action 
gives the agent how much amount of reward. 
 

Task Reward 

Going through a right 

checkpoint 

+0.1 

Going through a wrong 

checkpoint 

-0.1 

Not going through the next 

checkpoint within a time limit 

-0.1 

Hitting walls -0.15 

Staying on the wall after 

hitting it (every 0.02 seconds) 

-0.002 

Keeping max speed (every 

0.02 seconds) 

+0.002 

Boosting at first level +0.8 

Boosting at second level +0.9 

Getting an item +0.1 

Using an item +0.1 

 

In addition to these rewards above, -0.0001 reward is 
given to agents every 0.02 seconds because this small 
negative reward helps the agent to complete its task as 
soon as possible. For example, if one episode (period 
between the beginning of the task and the end of it, in 
the experiment, reaching the time limit or going 
through the last checkpoint was set as the end of the 
task) ended in 1000 steps. Then the agent gets a reward 
with the amount of 1000 * (-0.001) = -0.1. If one 
episode ended in 10000 steps. Then the agent gets a 
reward with the amount of 10000 * (-0.001) = -1.0. 

3 Method 

3.1    Algorithm 

 For Imitation Learning, two algorithms are used. 
 

3.1.1 Behavioral Cloning 
 The first one is Behavioral Cloning (BC), which 
trains the Agent's neural network to exactly mimic 
state-action pairs provided in expert demonstrations. 
There are two types of loss functions (represent how 
wrong the prediction of the neural network is) of BC. 
The first one is Cross-entropy Loss, which is used for 
discreet actions. 

𝐿(𝑝, 𝑞) = − ∑ 𝑝𝑖𝑙𝑜𝑔(𝑞𝑖)

𝑖

 

L is the loss function, p is the true probability 

distribution and q is the predicted probability 

distribution.  
 The second one is the Mean Squared Error (MSE), 
which is used for continuous actions. 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑞𝑖 − 𝑝𝑖)2

𝑛

𝑖=1

 

MSE is the loss function, n is the number of training 
examples, p is the true target value and q is the 
predicted value.  
In my experiment, Cross-entropy Loss was used since 
all of the inputs are discreet. 
 In BC, agents receive states as inputs directly from 
expert demonstrations, then try available actions so 
that it matches the expert state-action pairs. 
 The advantage of BC is that it doesn’t require any 
environmental interaction during training. Therefore, 
agents can learn to do complicated tasks faster than 
using reinforcement learning algorithms. However, its 

Table 2. Extrinsic reward (reward defined in the 

environment) 

Table 1. Observation and the purpose of giving them 



 

 

disadvantages are that because of its exact imitation, it 
can’t generalize its policy well to unseen scenarios, and 
it lacks in sample efficiency in terms of expert data, 
which means it requires an expert demonstration with 
a lot of data. 
 
3.1.2 Generative Adversarial Imitation Learning 
 The second one is Generative Adversarial Imitation 
Learning (GAIL). This is the algorithm. 
 
1: Input: Expert trajectories τE ∼ πE, initial policy and 
discriminator parameters θ0, w0 
2: for i = 0, 1, 2, . . . do 
3: Sample trajectories τi ∼ πθi 
4: Update the discriminator parameters from wi to 
wi+1 with the gradient 

𝐸𝜏𝑖
[𝛻𝑤𝑙𝑜𝑔(𝐷𝑤(𝑠, 𝑎))] + 𝐸𝜏𝑖

[𝛻𝑤𝑙𝑜𝑔(1 − 𝐷𝑤(𝑠, 𝑎))] 
5: Take a policy step from θi to θi+1, using the TRPO 
rule with cost function log(Dwi+1 (s, a)). 
Specifically, take a KL-constrained natural gradient 
step with 

𝐸𝜏𝑖
[𝛻𝜃𝑙𝑜𝑔𝜋𝜃(𝑎|𝑠)𝑄(𝑠, 𝑎)] − 𝜆𝛻𝜃𝐻(𝜋𝜃), 

𝑤ℎ𝑒𝑟𝑒 𝑄(𝑠, 𝑎)
= 𝐸𝜏𝑖

[𝑙𝑜𝑔 (𝐷𝑤𝑖+1
(𝑠, 𝑎)) |𝑠0 = 𝑠, 𝑎0 = 𝑎] 

6: end for [2] 
 
Here is a quick overview of how it works. 
 
1 Agents take observation and output an action. 
2 The discriminator (a second neural network) 

outputs a reward based on how close it believes 
the state-action pair provided by the agents is to 
the one in an expert demonstration. 

3 The agent tries to learn how to maximize this 
reward, which is to try to mimic expert’s state-
action pairs. 

4 The discriminator is trained to better distinguish 
between expert’s state-action pairs and agents’ 
ones.  

5 Repeat 1 - 4 
 
 The advantages of GAIL are that it is efficient in 
terms of expert data, which comes in handy especially 
when the tasks to be recorded takes time to finish or 
they are so difficult that humans can’t perform well 
stably. Also, it can generalize its policy well to unseen 
scenarios while it helps to learn complicated tasks 
faster by trying to imitate expert demonstration. On the 
other hand, its disadvantage is that it lacks in sample 
efficiency in terms of environmental interaction. 
 
3.1.3 Proximal Policy Optimization 

 For Reinforcement Learning, Proximal Policy 

Optimization (PPO), specifically, PPO-clip is used.  

This is the objective function of the PPO. 

 

𝐿𝐶𝐿𝐼𝑃(𝜃)

= 𝐸𝑡 [𝑚𝑖𝑛 (
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑
(𝑎𝑡|𝑠𝑡)

𝐴𝑡 , 𝑐𝑙𝑖𝑝 (
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑
(𝑎𝑡|𝑠𝑡)

, 1

− 𝜀, 1 + 𝜀) 𝐴𝑡)] 

𝐴𝑡 = 𝛿𝑡 + (𝛾𝜆)𝛿𝑡+1 + ⋯ + ⋯ + (𝛾𝜆)𝑇−𝑡+1𝛿𝑇−1, 
    𝑤ℎ𝑒𝑟𝑒      𝛿𝑡 = 𝑟𝑡 + 𝛾𝑉(𝑠𝑡+1) − 𝑉(𝑠𝑡)     [3] 

 

L is a loss function, π is a policy, A is an advantage 

function (represents how good it is to take an action Y 

at state X compared to other actions according to the 

current policy), ε represents how much the policy can 

change, γ represents importance of future rewards, λ is 

importance of future rewards in advantage calculation, 

δ represents discrepancy between the current rewards 

and the expected rewards, and V is a value function 

(gives the expected cumulative reward in state s using 

the current policy) 

 This algorithm prevents a policy from changing too 

much by “clipping” when the ratio the new policy to 

the old policy is lower or higher than the set value. 
 The advantages of using reinforcement learning are 

that it can generalize its policy well to unseen states and 

it tries out new actions to discover potentially better 

strategies. Whereas its disadvantages are that it often 

requires a lot of interactions with the environment, 

which makes the training time-consuming. Also, 

designing appropriate reward functions is challenging 

since poorly designed ones can lead to undesirable 

behavior. 

3.2    Training Process 

 Judging from the advantages of each algorithm 
described before, it is assumed that combining BC, 
GAIL and PPO can compensate for each other’s 
disadvantages and train neural networks better and 
faster. The flow of training is described below. 
 
3.2.1 Pre-training 
 BC was used to train a neural network model. Its 
policy will be used as an initial policy of a new model 
which will be trained using GAIL and PPO. The reason 
for this is that due to no necessity of the environmental 
interaction in BC, it can help train a neural network 
which utilizes GAIL, which requires the environmental 
interaction, at initial steps. However, it has to be noted 
that training with BC too much can cause creating 
inflexible model, which gets overly used to the 
environment used for the training so that it can’t 
perform well in other environments.  



 

 

 
3.2.2 Training with the pre-trained policy 
 A new model is created with the initial policy trained 
by BC. Using GAIL both and PPO help the neural 
network learn complicated tasks fast, be flexible to 
environments, and potentially find better strategies 
than those of experts. Table 2 shows the configuration 
used for the experiment. 

 

 
3.2.3 Expected Result 
 The neural network model trained by BC, GAIL and 
PPO is expected to learn faster than other combinations 
of those and be able to work on tracks which was not 
used for the training, and of course drive along the 
course using the drifting function and the items 
properly. 

 

4     Result and Discussion 

 
  

 
 

 
  

 Figure 3 shows that the way of using all three of BC, 
GAIL and PPO got stable in gaining the possible 

Configuration Value 

Time Horizon 64 

Hidden Units 128 

Number of Layers 2 

Learning Rate 0.0003 

Batch Size 512 

Buffer Size 10240 

Beta 0.005 

Epsilon (ε) 
0.2 

 

Lambda (λ) 
0.95 

 

Gamma (γ) 
0.99 

PPO Strength 
0 -> 1.0 

GAIL Strength 
0 -> 0.1  

BC Strength 
1.0 -> 0 

Figure 3 (top). Cumulative Reward 

Figure 4 (middle). Entropy (randomness of actions) 
Figure 5 (bottom). GAIL Expert Estimate 

X-axis: Number of steps 

Y-axis: Environment Reward  
Yellow: BC + GAIL + PPO (BC 500,000 steps, Demo: 4 

times larger steps than others) 

Green: BC + GAIL + PPO (BC 500,000 steps) 
Black: BC + GAIL + PPO (BC 100,000 steps) 

Blue: BC + GAIL + PPO (BC 100,000 steps, GAIL Strength: 

10 times smaller than others) 
Purple: GAIL + PPO 

Red: BC + GAIL (BC 100,000 steps) 

Orange: GAIL 

Gray: BC 

Table 3. Configuration 
Time Horizon: How many steps of experience to collect per-

agent before adding it to the experience buffer 

Batch Size: Number of experiences (a tuple of [Agent 
observations, actions, rewards] of a single Agent obtained after 

a Step) in each iteration of gradient descent 

Buffer Size: Number of experiences to collect before updating 
the policy model 

Beta: Make its model take more random actions 

Strength: How much it can influence the model 
[4] 



 

 

highest cumulative reward the fastest. The result of 
successful training can also be seen in Figure 4. The 
entropy decreased as time passed, meaning that the 
agents gradually started taking actions less randomly 
and got to know which action to take in which state. 
However, the trained model was not flexible enough to 
drive on other tracks even though it achieved the goal 
of driving along the trained track smoothly while 
drifting and using items properly. In addition, Figure 5 
shows that when the GAIL strength is low, it can’t learn 
to take actions like an expert well. While if it is high, it 
focuses more on gaining intrinsic reward, which is 
given by the discriminator, rather than gaining extrinsic 
reward. Therefore, it is difficult to find the way to train 
the model to imitate experts and also to try to find better 
strategies than expert’s ones. But, in Figure 2, more 
steps in the expert demonstration, and in the pre-trained 
model showed that they converged to gaining the 
highest cumulative reward faster than those with less 
of them. Thus, giving more data and changing the steps 
of pre-training are also the options for the improvement 
besides configuring parameters. 
 

5    Conclusion 
 Using Imitation Learning and Reinforcement 
Learning, the neural network was successfully trained 
to use the drifting function and the items properly in 
addition to driving along the courses. However, it 
lacked in the generalized policy, which is required for 
driving in unseen environments. In order to achieve it, 
properly setting reward design, observation data and 
configuration and patience are required. 
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