

Abstract
 The objective of this research is to train agents on a
racetrack so that they can drive to the goal as fast as
possible. In addition to driving along a road, two
functions, drifting and items, are also aimed to be used
by the agents. In this experiment, imitation learning
and reinforcement learning are used to achieve the
objective.

1 Introduction
 Nowadays, the number of players in esports is more
than the one in baseball or soccer. I wanted to develop
an AI which can compete with or even outperform
humans in the genre of esports games. Mario Kart is
one of the most famous racing games, and also used as
an esports game. Unlike other racing games, Mario
Kart has many functions like items, stage gimmicks, a
variety of kart components, etc. In the paper [1], Mario
Kart AI was trained. However, they had no drifting
capability or powerups. Therefore, I used a Mario Kart-
like game with drifting capability and powerups for the
environment to work on the experiment.

2 Environment

2.1 Tools

 Two tools are used to create the environment for the
experiment.
The first one is Unity: a cross-platform game engine.
This is used to set up the base environment like tracks
and kart controlling.
The second one is Unity Machine Learning Agents
Toolkit (ML-Agents): an open-source project that
enables games and simulations to serve as
environments for training intelligent agents.

2.2 Environmental Setup

 The Experiment was done in a simple environment.

 There is an observation-decision-action-reward
cycle when using reinforcement learning.
Observation

2.2.1 Observation
 At the observation phase, agents gather the data from
the environment. This table shows what kind of data
was given to the agents and what was aimed at teaching
them with it.

Observation Purpose

Speed of the kart Basic move

Rotation of the kart

Drifting state Whether it is drifting or
not

Accumulated drifting
power (the kart gets to
boost at certain amount
of the power, it
accumulates while it is
drifting)

It is accumulated while
drifting and it gets to
boost when reaching
certain amount of it

Creating AI for Mario Kart With Imitation Learning

and Reinforcement Learning
Ryo Ikarashi s1280003 Supervised by Prof. Maxim Mozgovoy

Figure 1 (top). The track used for the training

Figure 2 (bottom). Kart’s drifting and holding an item

Item state Whether it has an item
or not

Distance between the
kart and checkpoints,
walls, corner walls and
item boxes

What the above states
are supposed to be in
state with distance of
those objects

2.2.2 Decision
 At the decision phase, the agent decides the next
action based on the data it has. A decision is made every
step, which is every 0.1 seconds in the experiment.

2.2.3 Action
 At the action phase, the agent makes actions based
on its decision. Here are the available actions in my
environment. (They are all discrete inputs)

• Moving forward (W key)
• Moving right (D key)
• Moving left (A key)
• Drifting (Space key,

There are two levels of boosting, and the level
is decided by the value of accumulated
drifting power. It accumulates while drifting.
You can control how much you want to drift
inward or outward while drifting with D and
A key. Drifting inward accumulates the
drifting power faster)

• Using items (U key,
Only a boost item is implemented in the
environment.)

2.2.4 Reward
 At the reward phase, the agent gets a reward, which
is a numerical signal provided by the environment
based on its action. Table1 says what kind of action
gives the agent how much amount of reward.

Task Reward

Going through a right

checkpoint

+0.1

Going through a wrong

checkpoint

-0.1

Not going through the next

checkpoint within a time limit

-0.1

Hitting walls -0.15

Staying on the wall after

hitting it (every 0.02 seconds)

-0.002

Keeping max speed (every

0.02 seconds)

+0.002

Boosting at first level +0.8

Boosting at second level +0.9

Getting an item +0.1

Using an item +0.1

In addition to these rewards above, -0.0001 reward is
given to agents every 0.02 seconds because this small
negative reward helps the agent to complete its task as
soon as possible. For example, if one episode (period
between the beginning of the task and the end of it, in
the experiment, reaching the time limit or going
through the last checkpoint was set as the end of the
task) ended in 1000 steps. Then the agent gets a reward
with the amount of 1000 * (-0.001) = -0.1. If one
episode ended in 10000 steps. Then the agent gets a
reward with the amount of 10000 * (-0.001) = -1.0.

3 Method

3.1 Algorithm

 For Imitation Learning, two algorithms are used.

3.1.1 Behavioral Cloning
 The first one is Behavioral Cloning (BC), which
trains the Agent's neural network to exactly mimic
state-action pairs provided in expert demonstrations.
There are two types of loss functions (represent how
wrong the prediction of the neural network is) of BC.
The first one is Cross-entropy Loss, which is used for
discreet actions.

𝐿(𝑝, 𝑞) = − ∑ 𝑝𝑖𝑙𝑜𝑔(𝑞𝑖)

𝑖

L is the loss function, p is the true probability

distribution and q is the predicted probability

distribution.
 The second one is the Mean Squared Error (MSE),
which is used for continuous actions.

𝑀𝑆𝐸 =
1

𝑛
∑(𝑞𝑖 − 𝑝𝑖)2

𝑛

𝑖=1

MSE is the loss function, n is the number of training
examples, p is the true target value and q is the
predicted value.
In my experiment, Cross-entropy Loss was used since
all of the inputs are discreet.
 In BC, agents receive states as inputs directly from
expert demonstrations, then try available actions so
that it matches the expert state-action pairs.
 The advantage of BC is that it doesn’t require any
environmental interaction during training. Therefore,
agents can learn to do complicated tasks faster than
using reinforcement learning algorithms. However, its

Table 2. Extrinsic reward (reward defined in the

environment)

Table 1. Observation and the purpose of giving them

disadvantages are that because of its exact imitation, it
can’t generalize its policy well to unseen scenarios, and
it lacks in sample efficiency in terms of expert data,
which means it requires an expert demonstration with
a lot of data.

3.1.2 Generative Adversarial Imitation Learning
 The second one is Generative Adversarial Imitation
Learning (GAIL). This is the algorithm.

1: Input: Expert trajectories τE ∼ πE, initial policy and
discriminator parameters θ0, w0
2: for i = 0, 1, 2, . . . do
3: Sample trajectories τi ∼ πθi
4: Update the discriminator parameters from wi to
wi+1 with the gradient

𝐸𝜏𝑖
[𝛻𝑤𝑙𝑜𝑔(𝐷𝑤(𝑠, 𝑎))] + 𝐸𝜏𝑖

[𝛻𝑤𝑙𝑜𝑔(1 − 𝐷𝑤(𝑠, 𝑎))]
5: Take a policy step from θi to θi+1, using the TRPO
rule with cost function log(Dwi+1 (s, a)).
Specifically, take a KL-constrained natural gradient
step with

𝐸𝜏𝑖
[𝛻𝜃𝑙𝑜𝑔𝜋𝜃(𝑎|𝑠)𝑄(𝑠, 𝑎)] − 𝜆𝛻𝜃𝐻(𝜋𝜃),

𝑤ℎ𝑒𝑟𝑒 𝑄(𝑠, 𝑎)
= 𝐸𝜏𝑖

[𝑙𝑜𝑔 (𝐷𝑤𝑖+1
(𝑠, 𝑎)) |𝑠0 = 𝑠, 𝑎0 = 𝑎]

6: end for [2]

Here is a quick overview of how it works.

1 Agents take observation and output an action.
2 The discriminator (a second neural network)

outputs a reward based on how close it believes
the state-action pair provided by the agents is to
the one in an expert demonstration.

3 The agent tries to learn how to maximize this
reward, which is to try to mimic expert’s state-
action pairs.

4 The discriminator is trained to better distinguish
between expert’s state-action pairs and agents’
ones.

5 Repeat 1 - 4

 The advantages of GAIL are that it is efficient in
terms of expert data, which comes in handy especially
when the tasks to be recorded takes time to finish or
they are so difficult that humans can’t perform well
stably. Also, it can generalize its policy well to unseen
scenarios while it helps to learn complicated tasks
faster by trying to imitate expert demonstration. On the
other hand, its disadvantage is that it lacks in sample
efficiency in terms of environmental interaction.

3.1.3 Proximal Policy Optimization

 For Reinforcement Learning, Proximal Policy

Optimization (PPO), specifically, PPO-clip is used.

This is the objective function of the PPO.

𝐿𝐶𝐿𝐼𝑃(𝜃)

= 𝐸𝑡 [𝑚𝑖𝑛 (
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑
(𝑎𝑡|𝑠𝑡)

𝐴𝑡 , 𝑐𝑙𝑖𝑝 (
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑
(𝑎𝑡|𝑠𝑡)

, 1

− 𝜀, 1 + 𝜀) 𝐴𝑡)]

𝐴𝑡 = 𝛿𝑡 + (𝛾𝜆)𝛿𝑡+1 + ⋯ + ⋯ + (𝛾𝜆)𝑇−𝑡+1𝛿𝑇−1,
 𝑤ℎ𝑒𝑟𝑒 𝛿𝑡 = 𝑟𝑡 + 𝛾𝑉(𝑠𝑡+1) − 𝑉(𝑠𝑡) [3]

L is a loss function, π is a policy, A is an advantage

function (represents how good it is to take an action Y

at state X compared to other actions according to the

current policy), ε represents how much the policy can

change, γ represents importance of future rewards, λ is

importance of future rewards in advantage calculation,

δ represents discrepancy between the current rewards

and the expected rewards, and V is a value function

(gives the expected cumulative reward in state s using

the current policy)

 This algorithm prevents a policy from changing too

much by “clipping” when the ratio the new policy to

the old policy is lower or higher than the set value.
 The advantages of using reinforcement learning are

that it can generalize its policy well to unseen states and

it tries out new actions to discover potentially better

strategies. Whereas its disadvantages are that it often

requires a lot of interactions with the environment,

which makes the training time-consuming. Also,

designing appropriate reward functions is challenging

since poorly designed ones can lead to undesirable

behavior.

3.2 Training Process

 Judging from the advantages of each algorithm
described before, it is assumed that combining BC,
GAIL and PPO can compensate for each other’s
disadvantages and train neural networks better and
faster. The flow of training is described below.

3.2.1 Pre-training
 BC was used to train a neural network model. Its
policy will be used as an initial policy of a new model
which will be trained using GAIL and PPO. The reason
for this is that due to no necessity of the environmental
interaction in BC, it can help train a neural network
which utilizes GAIL, which requires the environmental
interaction, at initial steps. However, it has to be noted
that training with BC too much can cause creating
inflexible model, which gets overly used to the
environment used for the training so that it can’t
perform well in other environments.

3.2.2 Training with the pre-trained policy
 A new model is created with the initial policy trained
by BC. Using GAIL both and PPO help the neural
network learn complicated tasks fast, be flexible to
environments, and potentially find better strategies
than those of experts. Table 2 shows the configuration
used for the experiment.

3.2.3 Expected Result
 The neural network model trained by BC, GAIL and
PPO is expected to learn faster than other combinations
of those and be able to work on tracks which was not
used for the training, and of course drive along the
course using the drifting function and the items
properly.

4 Result and Discussion

 Figure 3 shows that the way of using all three of BC,
GAIL and PPO got stable in gaining the possible

Configuration Value

Time Horizon 64

Hidden Units 128

Number of Layers 2

Learning Rate 0.0003

Batch Size 512

Buffer Size 10240

Beta 0.005

Epsilon (ε)
0.2

Lambda (λ)
0.95

Gamma (γ)
0.99

PPO Strength
0 -> 1.0

GAIL Strength
0 -> 0.1

BC Strength
1.0 -> 0

Figure 3 (top). Cumulative Reward

Figure 4 (middle). Entropy (randomness of actions)
Figure 5 (bottom). GAIL Expert Estimate

X-axis: Number of steps

Y-axis: Environment Reward
Yellow: BC + GAIL + PPO (BC 500,000 steps, Demo: 4

times larger steps than others)

Green: BC + GAIL + PPO (BC 500,000 steps)
Black: BC + GAIL + PPO (BC 100,000 steps)

Blue: BC + GAIL + PPO (BC 100,000 steps, GAIL Strength:

10 times smaller than others)
Purple: GAIL + PPO

Red: BC + GAIL (BC 100,000 steps)

Orange: GAIL

Gray: BC

Table 3. Configuration
Time Horizon: How many steps of experience to collect per-

agent before adding it to the experience buffer

Batch Size: Number of experiences (a tuple of [Agent
observations, actions, rewards] of a single Agent obtained after

a Step) in each iteration of gradient descent

Buffer Size: Number of experiences to collect before updating
the policy model

Beta: Make its model take more random actions

Strength: How much it can influence the model
[4]

highest cumulative reward the fastest. The result of
successful training can also be seen in Figure 4. The
entropy decreased as time passed, meaning that the
agents gradually started taking actions less randomly
and got to know which action to take in which state.
However, the trained model was not flexible enough to
drive on other tracks even though it achieved the goal
of driving along the trained track smoothly while
drifting and using items properly. In addition, Figure 5
shows that when the GAIL strength is low, it can’t learn
to take actions like an expert well. While if it is high, it
focuses more on gaining intrinsic reward, which is
given by the discriminator, rather than gaining extrinsic
reward. Therefore, it is difficult to find the way to train
the model to imitate experts and also to try to find better
strategies than expert’s ones. But, in Figure 2, more
steps in the expert demonstration, and in the pre-trained
model showed that they converged to gaining the
highest cumulative reward faster than those with less
of them. Thus, giving more data and changing the steps
of pre-training are also the options for the improvement
besides configuring parameters.

5 Conclusion
 Using Imitation Learning and Reinforcement
Learning, the neural network was successfully trained
to use the drifting function and the items properly in
addition to driving along the courses. However, it
lacked in the generalized policy, which is required for
driving in unseen environments. In order to achieve it,
properly setting reward design, observation data and
configuration and patience are required.

References

[1] Harrison Ho, Varun Ramesh, Eduardo Torres

Montano, “Neuralkart: A real-time mario kart

64 ai”, Google Scholar, 2017

[2] Jonathan Ho, Stefano Ermon, “Generative

Adversarial Imitation Learning”,

arXiv:1606.03476 [cs.LG], 2016

[3] John Schulman, “Proximal Policy Optimization

Algorithms”, arXiv:1707.06347 [cs.LG], 2017

[4] Unity Technologies, “Training Configuration

File”, https://github.com/Unity-

Technologies/ml-

agents/blob/develop/docs/Training-

Configuration-File.md#training-configuration-

file, accessed 2024/02/01

https://github.com/Unity-Technologies/ml-agents/blob/develop/docs/Training-Configuration-File.md#training-configuration-file
https://github.com/Unity-Technologies/ml-agents/blob/develop/docs/Training-Configuration-File.md#training-configuration-file
https://github.com/Unity-Technologies/ml-agents/blob/develop/docs/Training-Configuration-File.md#training-configuration-file
https://github.com/Unity-Technologies/ml-agents/blob/develop/docs/Training-Configuration-File.md#training-configuration-file
https://github.com/Unity-Technologies/ml-agents/blob/develop/docs/Training-Configuration-File.md#training-configuration-file

