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Abstract 
In action games, there are situations where 

cooperative NPCs do not move as intended. Since 
people have different play styles, optimal behavior as a 
cooperative agent varies among players. There is 
MADDPG method to train multiple agents with 
interacting each other, and transfer learning method to 
reuse trained data. The goal is to create supportive 
agents, which can improve player scores by adapting 
cooperative agents to the individual's playstyle through 
learning. Additionally, it's also important to minimize 
the amount of human play required for learning. To 
achieve this, MADDPG self-training is executed at first, 
then do transfer learning involving human play has 
done. It was a success to learn agent action to improve 
human play score with few trials of human play 
compared to learning from zero. 

1    Introduction 
Reinforcement learning [7] is a type of machine 

learning that uses a method to maximize the reward 
from the environment based on the actions of an agent. 
There are some approaches to use human action for 
learning, and it is often called Human-In-The-Loop 
(HITL) learning [10]. The main approach is imitation 
learning. The purpose of the algorithm is to imitate 
human play, so that agent can perform high score 
quickly. There is one agent per human. There are 
various algorithms such as behavior cloning [9] and 
inverse reinforcement learning [8]. However, it seems 
that few studies have examined methods for learning 
multiple agents based on single human play. These 
methods do not fit to implement supportive agent in 
multiple actor games. Therefore, I focused on using 
HITL to learn multiple agents that adapt to the 
movements of playing humans. The HITL learning is 
necessary to train an agent that performs optimally for 
individuals, but the challenge is that human movements 
are irregular, which could lead to a long learning time 
or not able to learn at all. Hence, this study proposes 
methods for learning even with human unstable 
policies. 

2    Background 
These are the main ideas utilized to the implementation. 

2.1    Deep Q Network (DQN) 

Q-learning and Deep Q Network (DQN) [5] is 
frequently used in RL domain. Q-learning is a method 
to save value of a certain action taken in a certain state. 
This value, Q-value is updated for each action and used 
to select actions. 
  DQN estimates action value function by neural 
network. Experience replay buffer is used to update the 
network. It is tuple (state 𝑠 , action a , reward 𝑟 , next 
state 𝑠′ ). There are two networks: Q Network and 
Target Network. Neural networks have parameters of 
weight of each neuron. The learning aims to maximize 
reward from environment by adjusting these 
parameters. Q Network is updated by batch randomly 
selected from buffers, and Target Network is reflected 
to Q Network with certain rate. It helps to reduce 
overestimation. 

 

𝑄∗̅̅ ̅ is target function, and 𝑦 is target Q-value. 

The network parameter θ is updated to minimize this 

loss function. 
 

ℒ(𝜃) = 𝔼𝑠,𝑎,𝑟,𝑠′[(𝑄∗( 𝑠, 𝑎 ∣ 𝜃 ) − 𝑦)2],  

where  y = r + γ max
a′

Q∗̅̅ ̅ (𝑠′, a′) 

The loss function represents the error between the 
predicted values output by the model and the actual 
measured values. 
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Figure 1. Deep Q Network 
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2.2    Policy Gradient 

Another popular method is Policy Gradient [6]. It aims 
to maximize the objective function by adjusting the 
network parameters θ of actor policy 𝜋. 
 

∇𝜃𝐽(𝜃) = 𝔼𝑠∼𝑝𝜋,𝑎∼𝜋𝜃
[∇𝜃 log 𝝅𝜃(𝑎 ∣ 𝑠)𝑄𝜋(𝑠, 𝑎)] 

 

It is also can be applied to deterministic policy μ. 
 

∇𝜃𝐽(𝜃) = 𝔼𝑠∼𝒟[∇𝜃𝝁𝜃(𝑎 ∣ 𝑠)∇𝑎𝑄𝜇(𝑠, 𝑎)|𝑎=𝝁𝜃(𝑠)] 
 
Deep Deterministic Policy Gradient (DDPG) is variant 
of DPG. Deep neural network is used to solve policy 𝜇 
and critic 𝑄𝜇 . DDPG also makes target network as 
DQN. 

2.3    Actor-Critic 

Actor-Critic [7] is combination of DQN and Policy 
Gradient idea. It thinks the model separately as the 
actor, which selects actions, and the critic, which 
evaluates the value function of the actor and trains it. 
Generally, this reduces learning instability. In many 
cases, policy gradient methods are used for actor 
learning. 

2.4    MADDPG 

Multi-agent DDPG (MADDPG) [1] is extended DDPG 
to multi-agent environment. The main idea is 
Centralized training and Decentralized execution. 
Agent on his model use only own observation when 
executing, and critic to output Q-value has extra 
information for other agents. It can be adaptable to both 
cooperative and competitive environments. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Each network can be updated as follows. 
 
Actor update 

The objective function for each agent 𝑖  to update 
actor policy. 

∇𝜃𝑖
𝐽(𝝁𝒊)

= 𝐸𝒙,𝑎∼𝒟 [∇𝜃𝑖
𝝁𝒊( 𝑎𝑖 ∣∣ 𝑜𝑖 )∇𝑎𝑖

𝑄𝑖
𝜇(𝒙, 𝑎1, … , 𝑎𝑁)|

𝑎𝑖=𝝁𝒊(𝑜𝑖)
] 

 

𝒟 is batch of replay buffers. 
 
Critic update 
Input for critic is all state information in of other agents 
and all their actions. 𝑥  could consist of all agents’ 
observations, for example. 
 

ℒ(𝜃𝑖) = 𝔼𝑥,𝑎,𝑟,𝑥′[(𝑄𝑖
𝜇

(𝒙, 𝑎1 , . . . 𝑎𝑁) − 𝑦2)] 

𝑤ℎ𝑒𝑟𝑒   𝑦 = 𝑟𝑖 + 𝛾𝑄𝑖
𝝁′

(𝒙′, 𝑎1
′ , . . . , 𝑎𝑖 , . . . , 𝑎𝑁

′ )|𝑎′=𝜇′(𝑜) 

2.5    Fine Tuning 

Fine tuning is a type of transfer learning, which is 
the process of reusing a neural network model trained 
on one task for a similar task. This can significantly 
reduce the time needed to train the model compared to 
from scratch. One way to do this is to freeze the 
parameters in the lower layers and only train the upper 
layers. Low layers mostly have important weight that 
should not be changed. 

3    Method 
These are the steps of the experiment to create efficient 
cooperative agents using human play. 

3.1    Pre-training 

Conducting reinforcement learning with human-in-
the-loop from the beginning takes too much time. In 
this method, agents will be trained by themselves with 
simple MADDPG (Fig. 3, above), and then do HITL 
training. Actions are randomly selected for the certain 
steps. 

3.2    Human-In-the-loop training 

Pre-trained model is used for HITL training (Fig. 3, 
below) by fine tuning method. Since the goal is 
adaption for human specific play, single person will be 
attempted to the training. 
 
 
 
 
 
 
 
 
 
 

Figure 2. Overview of MADDPG (adopted from [1]) 

Figure 3. Training process 

Above: self-training; below: HITL-training 
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While this HITL-training, parameters of some lower 
layers of model network is being frozen.  
 

3.3    Evaluation 

It is difficult to measure mean expected reward for 
models accurately because human intention can be 
involved in the results. To minimize the evaluator's 
intention, the two policies to compare will be randomly 
selected. One is before and one is after human-in-the-
loop learning. This should reduce the bias in the 
player's movements during evaluation. The evaluation 
should be done by the same person as HITL training. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 shows models in evaluation. Evaluation a and 
c use self-trained model, which is not HITL-trained, 
and b and d use HITL-trained model. a and b is 

3.4    Expected Result 

There is limit to human reflex, so it is likely that the 
average reward of plays without humans will be higher. 
The method will be successful if mean reward of 
human play in HITL-trained model (Fig. 4b) is higher 
than in pre-trained model (Fig. 4a). Furthermore, since 
HITL-trained model should be optimized to human 
play, performance when using pre-trained agent instead 
of a human through HITL-trained model (Fig. 4d) is 
expected to decline compared to using pre-trained 
model for cooperative agents (Fig. 4c). 

 

4    Experiments 
In this section, previously mentioned method is applied 
to simple multi-agent environment. 

4.1    Environment 

A python library “PettingZoo” provides multi-agent 
reinforcement learning environment. The environment 
"Simple_tag" in PettingZoo is customized for this 
experiment. In this environment, there are 3 adversary 

actor and single prey actor. Each time predator and prey 
collide, all predators get positive rewards, and the prey 
gets a negative reward. They aim to maximize their 
rewards. Predator, prey, and an obstacle are displayed 
with red, green, and gray respectively. A predator with 
the first index is changed to purple for clarity that it is 
human player during HITL training. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Each actor and obstacle will rebound each other. Their 
action space is discrete; movements up, down, left, and 
right. Since prey could move faster than predators, 
predators must cooperate to catch the prey. 
Prey also gets negative rewards if it moved too far from 
the center, so that it won’t run away straight forever. 

4.2    Training Flow 

Pre-training 
The pre-training is done with mostly same model 
structure and hyperparameters as original MADDPG 
experiment [1], except that activation function is tanh. 
This table shows the hyper parameters for the training. 
tau is update rate from Q network to Target network. 
 

Hyper parameters Value 

Episode number 30000 

Episode length 100 

Learn interval 100 

tau 0.02 

gamma 0.95 

batch size 1024 

Learning rate 0.01 

 
Fig. 6 shows how predator agents in pre-trained model 
can cooperate to catch prey. In this episode, direction 
to prey from predator_1 was upper right at t=0. 
However, the agent decided to move upper left to 
surround the prey with other predators. If DDPG is 

Figure 5 Customized simple_tag environment 

Figure 4. Situations for evaluation 
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used, actors won’t develop to consider other predators. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Human-In-the-Loop training 
After pre-training human-in-the-loop training has done. 
In this training, actor policy of prey is fixed to make 
comparation of predators’ performances before and 
after this learning. 
This is the parameters for the training. The batch size 
is smaller than pre-training so that it can learn precise 
policy. 
 

HITL training parameters Value 

Buffer number 5000 
tau  0.5 

gamma  0.95 
batch size 128 

Learning number 100 

Learning rate 0.1 
 
100 trials recorded and each episode is set to be 50 
steps, so 5000 replay buffers are used for HITL-
training.  
 
 
 
 
 
 
 
 
 

 
 
 
 
All actor and critic networks have shown in figure 7. 
These have 2 dense hidden layers, which receives all 
inputs from previous layer. They have 64 units for each. 
Activation function is tanh. While HITL training in this 
experience, all of weights are frozen except output 
layer, shown with red node. Without freezing, the 
model performance gets extremely bad. 

5    Result 
This table shows sum of rewards of predators through 
trials. 

 

 
Pre-trained 

model 
HITL trained 

model 

Human play 
(500 trials) 

6740 8310 

No human 
 (1000 trials) 

262210 105680 

 
Reward of predators with pre-trained model and HITL-
trained model are compared when predator_0 is a pre-
trained agent or a human. 
After HITL-training, predator performance decreased 
by more than 50%. On the other hand, reward with 
human play improved slightly. 
 

6    Discussion 
Due to uncertain evaluation method, it cannot be 

proved that HITL-trained model is always better than 
pre-trained model under human play. However, even 
though the model’s performance without human has 
decreased significantly, human play performance did 
not decrease. It can be said that it adapted to human 
play. 

7    Conclusion 
This research aimed to implement cooperative 

agents with MADDPG algorithm and fine-tuning. The 
main part of training is Human-In-The-Loop, and fine-
tuning is successful to reduce the trial number for 
human to play.  

8    Future work 
In this experiment, the results were not very reliable 

because there was only one human participant. The 
result can be changed if play style was different. Also, 
it took over 3 hours, to evaluate 1000 trials for one 
human. In future, Human-In-The-Loop training 

Figure 6 Agent movement after pre-training 

Figure 7. Network of while HITL-training 
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process can be adapting the frameworks such as 
COGMENT [2], which enables many humans to 
participate in the learning process online.  

In addition to the Fine-tuning method used this time, 
I would also like to try other transfer learning method 
or using inverse reinforcement learning methods such 
as GAIL [5] to reduce the number of human plays 
required for learning by imitating human play during 
the learning process. 
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