
1

University of Aizu, Graduation Thesis. March 2023 s1280123

Abstract
In action games, there are situations where

cooperative NPCs do not move as intended. Since
people have different play styles, optimal behavior as a
cooperative agent varies among players. There is
MADDPG method to train multiple agents with
interacting each other, and transfer learning method to
reuse trained data. The goal is to create supportive
agents, which can improve player scores by adapting
cooperative agents to the individual's playstyle through
learning. Additionally, it's also important to minimize
the amount of human play required for learning. To
achieve this, MADDPG self-training is executed at first,
then do transfer learning involving human play has
done. It was a success to learn agent action to improve
human play score with few trials of human play
compared to learning from zero.

1 Introduction
Reinforcement learning [7] is a type of machine

learning that uses a method to maximize the reward
from the environment based on the actions of an agent.
There are some approaches to use human action for
learning, and it is often called Human-In-The-Loop
(HITL) learning [10]. The main approach is imitation
learning. The purpose of the algorithm is to imitate
human play, so that agent can perform high score
quickly. There is one agent per human. There are
various algorithms such as behavior cloning [9] and
inverse reinforcement learning [8]. However, it seems
that few studies have examined methods for learning
multiple agents based on single human play. These
methods do not fit to implement supportive agent in
multiple actor games. Therefore, I focused on using
HITL to learn multiple agents that adapt to the
movements of playing humans. The HITL learning is
necessary to train an agent that performs optimally for
individuals, but the challenge is that human movements
are irregular, which could lead to a long learning time
or not able to learn at all. Hence, this study proposes
methods for learning even with human unstable
policies.

2 Background
These are the main ideas utilized to the implementation.

2.1 Deep Q Network (DQN)

Q-learning and Deep Q Network (DQN) [5] is
frequently used in RL domain. Q-learning is a method
to save value of a certain action taken in a certain state.
This value, Q-value is updated for each action and used
to select actions.
 DQN estimates action value function by neural
network. Experience replay buffer is used to update the
network. It is tuple (state 𝑠 , action a , reward 𝑟 , next
state 𝑠′). There are two networks: Q Network and
Target Network. Neural networks have parameters of
weight of each neuron. The learning aims to maximize
reward from environment by adjusting these
parameters. Q Network is updated by batch randomly
selected from buffers, and Target Network is reflected
to Q Network with certain rate. It helps to reduce
overestimation.

𝑄∗̅̅ ̅ is target function, and 𝑦 is target Q-value.

The network parameter θ is updated to minimize this

loss function.

ℒ(𝜃) = 𝔼𝑠,𝑎,𝑟,𝑠′[(𝑄∗(𝑠, 𝑎 ∣ 𝜃) − 𝑦)2],

where y = r + γ max
a′

Q∗̅̅ ̅ (𝑠′, a′)

The loss function represents the error between the
predicted values output by the model and the actual
measured values.

Adaption of Cooperative Agents to Human Play Through

Deep Reinforcement Learning and Transfer Learning
Ryoma Usui s1280123 Supervised by Prof. Maxim Mozgovoy

Figure 1. Deep Q Network

2

University of Aizu, Graduation Thesis. March 2023 s1280123

2.2 Policy Gradient

Another popular method is Policy Gradient [6]. It aims
to maximize the objective function by adjusting the
network parameters θ of actor policy 𝜋.

∇𝜃𝐽(𝜃) = 𝔼𝑠∼𝑝𝜋,𝑎∼𝜋𝜃
[∇𝜃 log 𝝅𝜃(𝑎 ∣ 𝑠)𝑄𝜋(𝑠, 𝑎)]

It is also can be applied to deterministic policy μ.

∇𝜃𝐽(𝜃) = 𝔼𝑠∼𝒟[∇𝜃𝝁𝜃(𝑎 ∣ 𝑠)∇𝑎𝑄𝜇(𝑠, 𝑎)|𝑎=𝝁𝜃(𝑠)]

Deep Deterministic Policy Gradient (DDPG) is variant
of DPG. Deep neural network is used to solve policy 𝜇
and critic 𝑄𝜇 . DDPG also makes target network as
DQN.

2.3 Actor-Critic

Actor-Critic [7] is combination of DQN and Policy
Gradient idea. It thinks the model separately as the
actor, which selects actions, and the critic, which
evaluates the value function of the actor and trains it.
Generally, this reduces learning instability. In many
cases, policy gradient methods are used for actor
learning.

2.4 MADDPG

Multi-agent DDPG (MADDPG) [1] is extended DDPG
to multi-agent environment. The main idea is
Centralized training and Decentralized execution.
Agent on his model use only own observation when
executing, and critic to output Q-value has extra
information for other agents. It can be adaptable to both
cooperative and competitive environments.

Each network can be updated as follows.

Actor update

The objective function for each agent 𝑖 to update
actor policy.

∇𝜃𝑖
𝐽(𝝁𝒊)

= 𝐸𝒙,𝑎∼𝒟 [∇𝜃𝑖
𝝁𝒊(𝑎𝑖 ∣∣ 𝑜𝑖)∇𝑎𝑖

𝑄𝑖
𝜇(𝒙, 𝑎1, … , 𝑎𝑁)|

𝑎𝑖=𝝁𝒊(𝑜𝑖)
]

𝒟 is batch of replay buffers.

Critic update
Input for critic is all state information in of other agents
and all their actions. 𝑥 could consist of all agents’
observations, for example.

ℒ(𝜃𝑖) = 𝔼𝑥,𝑎,𝑟,𝑥′[(𝑄𝑖
𝜇

(𝒙, 𝑎1 , . . . 𝑎𝑁) − 𝑦2)]

𝑤ℎ𝑒𝑟𝑒 𝑦 = 𝑟𝑖 + 𝛾𝑄𝑖
𝝁′

(𝒙′, 𝑎1
′ , . . . , 𝑎𝑖 , . . . , 𝑎𝑁

′)|𝑎′=𝜇′(𝑜)

2.5 Fine Tuning

Fine tuning is a type of transfer learning, which is
the process of reusing a neural network model trained
on one task for a similar task. This can significantly
reduce the time needed to train the model compared to
from scratch. One way to do this is to freeze the
parameters in the lower layers and only train the upper
layers. Low layers mostly have important weight that
should not be changed.

3 Method
These are the steps of the experiment to create efficient
cooperative agents using human play.

3.1 Pre-training

Conducting reinforcement learning with human-in-
the-loop from the beginning takes too much time. In
this method, agents will be trained by themselves with
simple MADDPG (Fig. 3, above), and then do HITL
training. Actions are randomly selected for the certain
steps.

3.2 Human-In-the-loop training

Pre-trained model is used for HITL training (Fig. 3,
below) by fine tuning method. Since the goal is
adaption for human specific play, single person will be
attempted to the training.

Figure 2. Overview of MADDPG (adopted from [1])

Figure 3. Training process

Above: self-training; below: HITL-training

3

University of Aizu, Graduation Thesis. March 2023 s1280123

While this HITL-training, parameters of some lower
layers of model network is being frozen.

3.3 Evaluation

It is difficult to measure mean expected reward for
models accurately because human intention can be
involved in the results. To minimize the evaluator's
intention, the two policies to compare will be randomly
selected. One is before and one is after human-in-the-
loop learning. This should reduce the bias in the
player's movements during evaluation. The evaluation
should be done by the same person as HITL training.

Figure 4 shows models in evaluation. Evaluation a and
c use self-trained model, which is not HITL-trained,
and b and d use HITL-trained model. a and b is

3.4 Expected Result

There is limit to human reflex, so it is likely that the
average reward of plays without humans will be higher.
The method will be successful if mean reward of
human play in HITL-trained model (Fig. 4b) is higher
than in pre-trained model (Fig. 4a). Furthermore, since
HITL-trained model should be optimized to human
play, performance when using pre-trained agent instead
of a human through HITL-trained model (Fig. 4d) is
expected to decline compared to using pre-trained
model for cooperative agents (Fig. 4c).

4 Experiments
In this section, previously mentioned method is applied
to simple multi-agent environment.

4.1 Environment

A python library “PettingZoo” provides multi-agent
reinforcement learning environment. The environment
"Simple_tag" in PettingZoo is customized for this
experiment. In this environment, there are 3 adversary

actor and single prey actor. Each time predator and prey
collide, all predators get positive rewards, and the prey
gets a negative reward. They aim to maximize their
rewards. Predator, prey, and an obstacle are displayed
with red, green, and gray respectively. A predator with
the first index is changed to purple for clarity that it is
human player during HITL training.

Each actor and obstacle will rebound each other. Their
action space is discrete; movements up, down, left, and
right. Since prey could move faster than predators,
predators must cooperate to catch the prey.
Prey also gets negative rewards if it moved too far from
the center, so that it won’t run away straight forever.

4.2 Training Flow

Pre-training
The pre-training is done with mostly same model
structure and hyperparameters as original MADDPG
experiment [1], except that activation function is tanh.
This table shows the hyper parameters for the training.
tau is update rate from Q network to Target network.

Hyper parameters Value

Episode number 30000

Episode length 100

Learn interval 100

tau 0.02

gamma 0.95

batch size 1024

Learning rate 0.01

Fig. 6 shows how predator agents in pre-trained model
can cooperate to catch prey. In this episode, direction
to prey from predator_1 was upper right at t=0.
However, the agent decided to move upper left to
surround the prey with other predators. If DDPG is

Figure 5 Customized simple_tag environment

Figure 4. Situations for evaluation

4

University of Aizu, Graduation Thesis. March 2023 s1280123

used, actors won’t develop to consider other predators.

Human-In-the-Loop training
After pre-training human-in-the-loop training has done.
In this training, actor policy of prey is fixed to make
comparation of predators’ performances before and
after this learning.
This is the parameters for the training. The batch size
is smaller than pre-training so that it can learn precise
policy.

HITL training parameters Value

Buffer number 5000
tau 0.5

gamma 0.95
batch size 128

Learning number 100

Learning rate 0.1

100 trials recorded and each episode is set to be 50
steps, so 5000 replay buffers are used for HITL-
training.

All actor and critic networks have shown in figure 7.
These have 2 dense hidden layers, which receives all
inputs from previous layer. They have 64 units for each.
Activation function is tanh. While HITL training in this
experience, all of weights are frozen except output
layer, shown with red node. Without freezing, the
model performance gets extremely bad.

5 Result
This table shows sum of rewards of predators through
trials.

Pre-trained

model
HITL trained

model

Human play
(500 trials)

6740 8310

No human
 (1000 trials)

262210 105680

Reward of predators with pre-trained model and HITL-
trained model are compared when predator_0 is a pre-
trained agent or a human.
After HITL-training, predator performance decreased
by more than 50%. On the other hand, reward with
human play improved slightly.

6 Discussion
Due to uncertain evaluation method, it cannot be

proved that HITL-trained model is always better than
pre-trained model under human play. However, even
though the model’s performance without human has
decreased significantly, human play performance did
not decrease. It can be said that it adapted to human
play.

7 Conclusion
This research aimed to implement cooperative

agents with MADDPG algorithm and fine-tuning. The
main part of training is Human-In-The-Loop, and fine-
tuning is successful to reduce the trial number for
human to play.

8 Future work
In this experiment, the results were not very reliable

because there was only one human participant. The
result can be changed if play style was different. Also,
it took over 3 hours, to evaluate 1000 trials for one
human. In future, Human-In-The-Loop training

Figure 6 Agent movement after pre-training

Figure 7. Network of while HITL-training

5

University of Aizu, Graduation Thesis. March 2023 s1280123

process can be adapting the frameworks such as
COGMENT [2], which enables many humans to
participate in the learning process online.

In addition to the Fine-tuning method used this time,
I would also like to try other transfer learning method
or using inverse reinforcement learning methods such
as GAIL [5] to reduce the number of human plays
required for learning by imitating human play during
the learning process.

Acknowledgement
I would like to thank Prof. Maxim Mozgovoy for
advice on designing experiments.

References
[1] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and

I. Mordatch, “Multi-agent actor-critic for mixed
cooperative-competitive environments” in
Advances in neural information processing
systems 30, 2017, pp. 6379-6390.

[2] N. Navidi, F. Chabo, S. Kurandwa, I. Lutigma, V.
Robt, G. Szrftgr, and A. Schuh, “Human and
Multi-Agent collaboration in a human-MARL
teaming framework” in arXiv e-prints, 2020,
arXiv:2006.07301 [cs.AI]

[3] C. Tan, F. Sun, T. Knong, W. Zhang, C. Yang, and
C. Liu, “A survey on deep transfer learning” in
Internatial conference on artificial neural
networks, 2018 September, pp. 270-279

[4] J. Ho, S. Ermon, “Generative adversarial
imitation learning” in Advances in neural
information processing systems 28, 2016, pp.
4567-4573

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu,
J. Veness, M. G. Bellemare, A. Graves,M.
Riedmiller, A. K. Fidjeland, G. Ostrovski,
“Human-level control through deep rein-
forcement learning” in Nature 518, 2015, pp.
529–533

[6] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y.
Mansour, “Policy gradient methods for rein-
forcement learning with function approximation”
in Advances in neural information processing
systems, 2000, pp.1057-1063

[7] R. S. Sutton and A. G. Barto, Reinforcement
learning: An introduction, Cambridge, MIT press,
1998

[8] A. Y. Ng and S. Russell. “Algorithms for inverse
reinforcement learning” tn ICML, 2000

[9] B. D. Argall, S. Chernova, M. Veloso, and B.
Browning, “A survey of robot learning from
demonstration” in Robotics and autonomous
systems, 57(5), pp.469–483, 2009

[10] X. Wu, L. Xiao, Y. Sun, J. Zhang, T. Ma, and L.
He. 2021. “A Survey of Human-in-the-loop for
Machine Learning” in arXiv preprint, 2021,
arXiv:2108.00941

