

Abstract
Fighting games usually include battles against an

AI-controlled opponent for training. Such AI needs
to resemble human players to serve as training AI,
allowing players to have mock battles without other
players. In this research, an attempt was made to
create human-like AI in a fighting game using
reinforcement learning. Similarity to demonstration
data played by human player is used for human-like
behavior. The proposed method based on DQN
worked effectively compared to pure DQN.

1 Introduction
 In this study, we aim to create human-like AI in a

fighting game. An AI opponent in fighting games
serves not only as an enemy to beat but also as a
training partner to practice with. In a fighting game
whose main game mode is against real players, it is
important to also have battle mode against AI, as the
players can practice in the same setup many times
without other real players. The AI should behave as
human players behave to become good training
partners. Also, since fighting AI often has humanly
impossible behaviors, such as fast reaction time and
perfect precision of combos, this makes the players
feel it is unfair, but human-like AI by itself solves
this problem.

 There has been much past research done on AI
in gaming. In Oh et al., deep reinforcement learning
is used to create AI in a commercial fighting game
called Blade & Soul [1]. They employed reward
shaping to generate three different styles of AI in
order to utilize self-play. They successfully created
AI that even surpassed the ability of professional
players. Needless to say, our goal is human-like AI,
not strong AI like this work.

In Dossa et al., they attempted to create a human-
like AI that sustains high performance and tested it
on three games [2]. In their method, based on
reinforcement learning, the policy was updated,
taking into account both human play-based policy
and pure reinforcement learning-based policy. As a
result, the created agent achieved both high
performance and human-likeliness. Their method is
one example of a method that attempts to use
imitation learning using reinforcement learning, like
ours.

2 Method
2.1 Algorithm

To imitate human players’ behavior, one possible
approach would be behavior cloning. In behavior
cloning, the agent learns the expert’s policy using
supervised learning with collected data demonstrated
by the expert. However, directly learning an expert’s
policy often has problems, such as requiring
numerous samples and getting stuck in local optima.

Instead of directly imitating a human player’s
policy like behavior cloning, guiding the agent to
human-like behavior while it is learning how to play
on its own is also a common approach, especially in
a more complex environment. We took this approach
in this research. In our method, DQN [3] was used to
let the agent learn how to play the game and another
technique was introduced so that agent can follow
some given demonstrations while learning the policy.

DQN is a reinforcement algorithm to learn a
mapping from a particular state to the value of an
action. This mapping function is called the Q
function and is represented by a neural network. At
each time step, the agent takes an action, 𝑎𝑡 under
the current state, 𝑠𝑡. Then the agent receives reward,
𝑟𝑡 and observes the next state, 𝑠𝑡+1. The Q function
is then updated using the obtained information and
the Bellman equation to make it more similar to the
actual Q function. This process is repeated until the
performance of the agent improves.

To make its behavior closer to a human player’s
behavior, we used demonstration data. During
training, if the agent chooses exploitation based on
the 𝜖 -greedy algorithm, the agent only takes an
action, 𝑎𝑡 which satisfies:

𝑎𝑡 = arg max
𝑎

𝑄(𝑠𝑡 , 𝑎) where 𝐿(𝑠𝑡 , 𝑎, 𝐷) ≥ 𝐿𝑚

Here, 𝐿(𝑠, 𝑎, 𝐷) is a similarity function between
the state-action pair and the demonstrations 𝐷, and
𝐿𝑚 is a constant we manually set. 𝐿(𝑠, 𝑎, 𝐷) simply
returns -1 if action 𝑎 is not found in demonstrations
𝐷 , otherwise, it returns the maximum cosine
similarity value between state 𝑠 and a state in the
demonstrations 𝐷 where the next action is the same
as 𝑎. With this similarity constraint, an action taken
by the agent is guaranteed to have some similarity to
the demonstration data.

Human-like AI in a Fighting Game Using

Reinforcement Learning
Riku Tanji s1270139 Supervised by Prof. Maxim Mozgovoy

Table 2: State space

Elements of state space Explanation

Agent information isJumping Boolean, true if the agent is

jumping

frame advantage Frame information which

indicates how the agent is safe or

unsafe

last move The last move the agent did

moving forward duration Time duration from when the agent

starts moving forward until the

current frame

moving back duration Time duration from when the

agent starts moving backward

until the current frame

crouching back duration Time duration from when the

agent starts crouching back until

the current frame

Opponent information isDown Boolean, true if the opponent is

down

isJumping Boolean, true if the opponent is

jumping

isBlocking Boolean, true if the opponent is

blocking

Global information distance Distance between two

characters

Also, potential-based reward shaping was used for

faster training. An additional reward 𝑓 is added to 𝑟𝑡.
The new reward signal is:

𝑟𝑡

′ = 𝑟𝑡 + 𝑓(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑎𝑡+1) (1)

where 𝑓 is defined as:

𝑓(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑎𝑡+1) = 𝛾𝐿(𝑠𝑡+1, 𝑎𝑡+1) − 𝐿(𝑠𝑡 , 𝑎𝑡)

Additionally, some common techniques such as

target Q-network, Experience Replay, and annealing
𝜖-greedy were used to make the training more stable
and faster.

Finally, all parameters were manually adjusted.
They are shown in Table 1.

Table 1: Parameters

learning rate 0.00025
mini batch size 32
initial epsilon 1
final epsilon 0.1
epsilon decay 0.0001

γ (discount factor for
future reward)

0.999

replay buffer size 10000
update interval of target
Q network’s weights

10000

𝐿𝑚 0.5, 0.9

2.2 Testbed

Universal Fighting Engine [4] was used as a
testbed. UFE is a fighting game engine that works on
Unity. We used a demo game in UFE which is
already playable. The demo game is like a typical
fighting game: you can move left and right, jump,
attack, and block, but there are no throws.

During training, an in-game AI called Random AI
was used as an opponent. Random AI is a simple
rule-based AI that approaches to within attack range
and strikes a reachable move. Also, the opponent and
the agent used the same character for a fair
evaluation.

2.3 A model for learning

The model consists of state space, action space
and reward function.

Table 2 shows the structure of state space. State
space consists of 10 elements. All state information
is from in-game, not visual information. Each
element was discretized or normalized accordingly.

There are 25 actions such as basic moves (walk
forward and backward, crouch, jump, etc.), attack
moves (light standing punch, heavy crouching kick,
etc.), and special moves (dash, heavy fireball, etc.).
Note that actual moves are used as actions, not
physical button inputs. This helps the agent learn
faster as different button inputs are likely to cause

different moves depending on the character’s state.

Figure 1: Action frequency errors of (a) 𝐿𝑚=0.5, (b) 𝐿𝑚=0.9, and (c) pure DQN

Decision timing is as important as state and action

space. In our implementation, the agent decides the
next action immediately following the previous
action is executed. The chosen action will be
executed when it becomes executable. For example,
when a character is down or blocking an attack, all
moves are not executable. The agent waits until such
a state ends and then casts the move. This reduces
unnecessary decisions in which the chosen action
doesn’t affect the environment and makes learning
faster.

Finally, the environment reward (the term denoted
as 𝑟𝑡 in (1)) is calculated as follows:

𝑟𝑡 = damage dealt − damage taken

+ chip damage taken / 2

As shown in the formula, the agent is rewarded or

punished according to the damage dealt and the
damage taken. Each damage value was normalized
between 0 to 1. However, if an agent blocks an
attack but takes a little damage (chip damage), it is
rewarded with half of the damage received. This is
intended to prevent agents from perceiving blocking
as a bad thing due to the chip damage of an attack.

3 Results and discussion
In the experiment, three types of training are

compared, namely our DQN with 𝐿𝑚 of 0.5 and 0.9,
and pure DQN. The agents were trained five
thousand steps with the same parameters except for
𝐿𝑚. In each episode, frequencies of each action were
calculated and compared to the frequencies in
demonstration data used in the training. The
frequency is a vector with the size of the number of
actions and normalized between 0 to 1. Mean

absolute error is used to calculate the difference
between two vectors. The used demonstration data is
play data by a single player against Random AI. The
data contains eight episodes, approximately 10
thousand steps. We also collected total reward the
agent gained per episode to see its performance.

Figure 1 shows the action frequency errors for the
three trainings. Action frequency errors were
smallest when 𝐿𝑚 was 0.9. Errors when 𝐿𝑚 was 0.5
did not contribute to the reward received, indicating
that the similarity constraint at 𝐿𝑚 =0.9 works
effectively for having human-like behavior.

Figure 2 also shows the frequency for each action.
(a) represents the frequency of actions within the
demonstration data used, and (b)-(d) represent the
frequency of actions within the last episode during
training. As can be seen from this figure, the case
where 𝐿𝑚 is 0.9 is the closest to demonstration. In
particular, action 0 (Neutral, i.e., doing nothing) is
the most obvious, as it is the most frequently
selected action in both (a) and (c) despite the fact
that it does not contribute to the reward received,
indicating that the similarity constraint at 𝐿𝑚 =0.9
works effectively for human-like behavior.

Figure 3 shows the accumulated rewards for each
episode during each training. Although there is not
that much difference between the three figures, we
can see that (a) is the most stable in terms of rewards.
Since (a) does not affect action selection as
discussed above, and since reward shaping speeds up
learning, it can be assumed that performance simply
increased due to reward shaping. Plus, the fact that
performance in (b) is slightly lower than in (a)
suggests that the similarity constraint may have a
negative impact on performance.

Figure 2: Action frequencies of (a) demonstrations, (b) 𝐿𝑚=0.5, (c) 𝐿𝑚=0.9, and (d) pure DQN

Figure 3: Accumulated reward per episode of (a) 𝐿𝑚=0.5, (b) 𝐿𝑚=0.9, and (c) pure DQN

4 Conclusion
This study proposes a method for creating human-

like AI in a fighting game based on reinforcement
learning. Similarity to demonstration data is used for
human-like behavior, and reward shaping using the
demonstration data is used to speed up training. It
was shown that our method affected human-like
behavior in terms of action frequency at 𝐿𝑚=0.9. It
was also found that the similarity constraint may
have a slightly negative impact on performance.

However, due to computational time and resources,
it is possible that the training could not be done for a
sufficient number of steps to know the real impact of
the algorithm. In addition, in order to compare the
human-like characteristics of agents, it may be
necessary not only to simply compare the frequency
of their actions, but also to consider multiple angles,
such as comparing a sequence of moves and the state
when the move is selected. Also, the weakness of our
method is the extra computational time compared to
pure DQN, since not only the output of the model
but also the similarity with the demonstration data is
required for action selection during inference.

References
[1] I. Oh, S. Rho, S. Moon, S. Son, H. Lee, and J.
Chung, "Creating pro-level AI for a real-time
fighting game using deep reinforcement
learning," IEEE Transactions on Games, vol. 14,
no. 2, pp. 212-220, 2022.
[2] R. F. J. Dossa, X. Lian, H. Nomoto, T.
Matsubara, and K. Uehara, "A human-like agent
based on a hybrid of reinforcement and imitation
learning," in 2019 International Joint
Conference on Neural Networks (IJCNN),
2019, pp. 1-8.
[3] V. Mnih, K. Kavukcuoglu, D. Silver, A.
Graves, I. Antonoglou, D. Wierstra, and M.
Riedmiller, "Playing atari with deep
reinforcement learning", arXiv preprint
arXiv:1312.5602, 2013.
[4] "UFE [Universal Fighting Engine]",
ufe3d.com http://www.ufe3d.com/doku.php
(accessed Dec. 12, 2022).

