
 

 

Abstract 
Fighting games usually include battles against an 

AI-controlled opponent for training. Such AI needs 
to resemble human players to serve as training AI, 
allowing players to have mock battles without other 
players. In this research, an attempt was made to 
create human-like AI in a fighting game using 
reinforcement learning. Similarity to demonstration 
data played by human player is used for human-like 
behavior. The proposed method based on DQN 
worked effectively compared to pure DQN. 

 

1    Introduction 
 In this study, we aim to create human-like AI in a 

fighting game. An AI opponent in fighting games 
serves not only as an enemy to beat but also as a 
training partner to practice with. In a fighting game 
whose main game mode is against real players, it is 
important to also have battle mode against AI, as the 
players can practice in the same setup many times 
without other real players. The AI should behave as 
human players behave to become good training 
partners. Also, since fighting AI often has humanly 
impossible behaviors, such as fast reaction time and 
perfect precision of combos, this makes the players 
feel it is unfair, but human-like AI by itself solves 
this problem. 

   There has been much past research done on AI 
in gaming. In Oh et al., deep reinforcement learning 
is used to create AI in a commercial fighting game 
called Blade & Soul [1]. They employed reward 
shaping to generate three different styles of AI in 
order to utilize self-play. They successfully created 
AI that even surpassed the ability of professional 
players. Needless to say, our goal is human-like AI, 
not strong AI like this work.  

In Dossa et al., they attempted to create a human-
like AI that sustains high performance and tested it 
on three games [2]. In their method, based on 
reinforcement learning, the policy was updated, 
taking into account both human play-based policy 
and pure reinforcement learning-based policy. As a 
result, the created agent achieved both high 
performance and human-likeliness. Their method is 
one example of a method that attempts to use 
imitation learning using reinforcement learning, like 
ours.  

2    Method 
2.1 Algorithm 

To imitate human players’ behavior, one possible 
approach would be behavior cloning. In behavior 
cloning, the agent learns the expert’s policy using 
supervised learning with collected data demonstrated 
by the expert. However, directly learning an expert’s 
policy often has problems, such as requiring 
numerous samples and getting stuck in local optima. 

Instead of directly imitating a human player’s 
policy like behavior cloning, guiding the agent to 
human-like behavior while it is learning how to play 
on its own is also a common approach, especially in 
a more complex environment. We took this approach 
in this research. In our method, DQN [3] was used to 
let the agent learn how to play the game and another 
technique was introduced so that agent can follow 
some given demonstrations while learning the policy. 

DQN is a reinforcement algorithm to learn a 
mapping from a particular state to the value of an 
action. This mapping function is called the Q 
function and is represented by a neural network. At 
each time step, the agent takes an action, 𝑎𝑡  under 
the current state, 𝑠𝑡. Then the agent receives reward, 
𝑟𝑡 and observes the next state, 𝑠𝑡+1. The Q function 
is then updated using the obtained information and 
the Bellman equation to make it more similar to the 
actual Q function. This process is repeated until the 
performance of the agent improves. 

To make its behavior closer to a human player’s 
behavior, we used demonstration data. During 
training, if the agent chooses exploitation based on 
the 𝜖 -greedy algorithm, the agent only takes an 
action, 𝑎𝑡 which satisfies: 

𝑎𝑡 = arg max
𝑎

𝑄(𝑠𝑡 , 𝑎)  where 𝐿(𝑠𝑡 , 𝑎, 𝐷) ≥ 𝐿𝑚 

Here, 𝐿(𝑠, 𝑎, 𝐷)  is a similarity function between 
the state-action pair and the demonstrations 𝐷, and 
𝐿𝑚 is a constant we manually set. 𝐿(𝑠, 𝑎, 𝐷) simply 
returns -1 if action 𝑎 is not found in demonstrations 
𝐷 , otherwise, it returns the maximum cosine 
similarity value between state 𝑠  and a state in the 
demonstrations 𝐷 where the next action is the same 
as 𝑎. With this similarity constraint, an action taken 
by the agent is guaranteed to have some similarity to  
the demonstration data. 
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Table 2: State space 

Elements of state space Explanation 

Agent information isJumping Boolean, true if the agent is 

jumping 

frame advantage Frame information which 

indicates how the agent is safe or 

unsafe 

last move The last move the agent did 

moving forward duration Time duration from when the agent 

starts moving forward until the 

current frame 

moving back duration Time duration from when the 

agent starts moving backward 

until the current frame 

crouching back duration Time duration from when the 

agent starts crouching back until 

the current frame 

Opponent information isDown Boolean, true if the opponent is 

down 

isJumping Boolean, true if the opponent is 

jumping 

isBlocking Boolean, true if the opponent is 

blocking 

Global information distance Distance between two 

characters 

 
Also, potential-based reward shaping was used for 

faster training. An additional reward 𝑓 is added to 𝑟𝑡. 
The new reward signal is: 

 
𝑟𝑡

′ = 𝑟𝑡 + 𝑓(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑎𝑡+1) (1) 
 
where 𝑓 is defined as: 
 

𝑓(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑎𝑡+1) = 𝛾𝐿(𝑠𝑡+1, 𝑎𝑡+1) − 𝐿(𝑠𝑡 , 𝑎𝑡) 
 
Additionally, some common techniques such as 

target Q-network, Experience Replay, and annealing 
𝜖-greedy were used to make the training more stable 
and faster. 

Finally, all parameters were manually adjusted. 
They are shown in Table 1. 

 
Table 1: Parameters 

learning rate 0.00025 
mini batch size 32 
initial epsilon 1 
final epsilon 0.1 
epsilon decay 0.0001 

γ (discount factor for 
future reward) 

0.999 

replay buffer size 10000 
update interval of target 
Q network’s weights 

10000 

𝐿𝑚 0.5, 0.9 

2.2 Testbed 

Universal Fighting Engine [4] was used as a 
testbed. UFE is a fighting game engine that works on 
Unity. We used a demo game in UFE which is 
already playable. The demo game is like a typical 
fighting game: you can move left and right, jump, 
attack, and block, but there are no throws. 

During training, an in-game AI called Random AI 
was used as an opponent. Random AI is a simple 
rule-based AI that approaches to within attack range 
and strikes a reachable move. Also, the opponent and 
the agent used the same character for a fair 
evaluation. 

 
2.3 A model for learning 

The model consists of state space, action space 
and reward function.  

Table 2 shows the structure of state space. State 
space consists of 10 elements. All state information 
is from in-game, not visual information. Each 
element was discretized or normalized accordingly. 

There are 25 actions such as basic moves (walk 
forward and backward, crouch, jump, etc.), attack 
moves (light standing punch, heavy crouching kick, 
etc.), and special moves (dash, heavy fireball, etc.). 
Note that actual moves are used as actions, not 
physical button inputs. This helps the agent learn 
faster as different button inputs are likely to cause 



 

 

different moves depending on the character’s state. 

 

Figure 1: Action frequency errors of (a) 𝐿𝑚=0.5, (b) 𝐿𝑚=0.9, and (c) pure DQN 

 
Decision timing is as important as state and action 

space. In our implementation, the agent decides the 
next action immediately following the previous 
action is executed. The chosen action will be 
executed when it becomes executable. For example, 
when a character is down or blocking an attack, all 
moves are not executable. The agent waits until such 
a state ends and then casts the move. This reduces 
unnecessary decisions in which the chosen action 
doesn’t affect the environment and makes learning 
faster. 

Finally, the environment reward (the term denoted 
as 𝑟𝑡 in (1)) is calculated as follows: 

 
𝑟𝑡 = damage dealt − damage taken

+ chip damage taken / 2 
 
As shown in the formula, the agent is rewarded or 

punished according to the damage dealt and the 
damage taken. Each damage value was normalized 
between 0 to 1. However, if an agent blocks an 
attack but takes a little damage (chip damage), it is 
rewarded with half of the damage received. This is 
intended to prevent agents from perceiving blocking 
as a bad thing due to the chip damage of an attack. 

 

3    Results and discussion 
In the experiment, three types of training are 

compared, namely our DQN with 𝐿𝑚 of 0.5 and 0.9, 
and pure DQN. The agents were trained five 
thousand steps with the same parameters except for 
𝐿𝑚. In each episode, frequencies of each action were 
calculated and compared to the frequencies in 
demonstration data used in the training. The 
frequency is a vector with the size of the number of 
actions and normalized between 0 to 1. Mean 

absolute error is used to calculate the difference 
between two vectors. The used demonstration data is 
play data by a single player against Random AI. The 
data contains eight episodes, approximately 10 
thousand steps. We also collected total reward the 
agent gained per episode to see its performance. 

Figure 1 shows the action frequency errors for the 
three trainings. Action frequency errors were 
smallest when 𝐿𝑚 was 0.9. Errors when 𝐿𝑚 was 0.5 
did not contribute to the reward received, indicating 
that the similarity constraint at 𝐿𝑚 =0.9 works 
effectively for having human-like behavior. 

Figure 2 also shows the frequency for each action. 
(a) represents the frequency of actions within the 
demonstration data used, and (b)-(d) represent the 
frequency of actions within the last episode during 
training. As can be seen from this figure, the case 
where 𝐿𝑚  is 0.9 is the closest to demonstration. In 
particular, action 0 (Neutral, i.e., doing nothing) is 
the most obvious, as it is the most frequently 
selected action in both (a) and (c) despite the fact 
that it does not contribute to the reward received, 
indicating that the similarity constraint at 𝐿𝑚 =0.9 
works effectively for human-like behavior. 

Figure 3 shows the accumulated rewards for each 
episode during each training. Although there is not 
that much difference between the three figures, we 
can see that (a) is the most stable in terms of rewards. 
Since (a) does not affect action selection as 
discussed above, and since reward shaping speeds up 
learning, it can be assumed that performance simply 
increased due to reward shaping. Plus, the fact that 
performance in (b) is slightly lower than in (a) 
suggests that the similarity constraint may have a 
negative impact on performance. 

 



 

 

 

Figure 2: Action frequencies of (a) demonstrations, (b) 𝐿𝑚=0.5, (c) 𝐿𝑚=0.9, and (d) pure DQN 

 
Figure 3: Accumulated reward per episode of (a) 𝐿𝑚=0.5, (b) 𝐿𝑚=0.9, and (c) pure DQN 

 

4    Conclusion 
This study proposes a method for creating human-

like AI in a fighting game based on reinforcement 
learning. Similarity to demonstration data is used for 
human-like behavior, and reward shaping using the 
demonstration data is used to speed up training. It 
was shown that our method affected human-like 
behavior in terms of action frequency at 𝐿𝑚=0.9. It 
was also found that the similarity constraint may 
have a slightly negative impact on performance. 

However, due to computational time and resources, 
it is possible that the training could not be done for a 
sufficient number of steps to know the real impact of 
the algorithm. In addition, in order to compare the 
human-like characteristics of agents, it may be 
necessary not only to simply compare the frequency 
of their actions, but also to consider multiple angles, 
such as comparing a sequence of moves and the state 
when the move is selected. Also, the weakness of our 
method is the extra computational time compared to 
pure DQN, since not only the output of the model 
but also the similarity with the demonstration data is 
required for action selection during inference. 
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