
1

University of Aizu, Graduation Thesis. March, 2023 s1270138

Abstract
Soccer is one of the better choices for creating

multi-agent AI because soccer has many datasets and
there is a simulator that can test AI. Google Research
Football (GRF) is an open-source soccer game for
reinforcement learning and it offers a powerful soccer
game engine. Therefore, this environment is useful for
testing new soccer AI. Also, there is AI which is the kd-
tree based AI. The AI uses an actual soccer game
dataset and performs with low computational cost
because there are no learning steps. Therefore, this AI
excels as a first step of soccer AI.

In this paper, the goal is to integrate GRF with the
kd-tree based AI. Since GRF provides a standardized
soccer AI research environment, we want to focus on it.
We need to modify the kd-tree based AI appropriately
to use in the GRF environment because they are
incompatible at the gameplay level and the level of
player actions. The kd-tree based AI for GRF was able
to run as a first step of our soccer AI.

1 Introduction
Soccer is one of the most popular sports and team

competition sports. Although simulating soccer is
difficult because of a lot of states and actions of players,
it is possible to create multi-agent AI because soccer
has numerous actual datasets. However, a powerful
soccer game engine is necessary to simulate soccer
quickly and correctly.

In this paper, the GRF environment is adopted to
develop a soccer AI. The GRF environment is an open-
source 3D soccer game environment that aims to
control players by reinforcement learning. Also, the
environment can learn specific situations such as
corner kicks, off-sides, fouls, penalty kicks [1].

There is a kd-tree based AI running on the
environment, SimpleSoccer [2]. That AI is controlled
by learning from actual soccer game data. However,
SimpleSoccer is a 2D soccer game and cannot simulate
specific situations.

The purpose of this paper is to integrate the kd-tree
based AI into GRF as a next step. While the basic
movements of soccer should be integrated without
many changes, the pass system and actions of specific
situations should be integrated by appropriate changes.
The reason is that the same basic movements are shared
between SimpleSoccer and GRF environments,

however the SimpleSoccer environment cannot
support certain actions that require 3D.

2 Method

2.1 Google Research Football

The GRF is a 3D soccer simulator as shown in
figure 1 and it makes easy-to-simulate soccer AI which
is the goal of GRF. It can simulate specific situations
such as a corner kick, a shot against an empty goal, a
game between a specific number of people, and so on.
Also, new situations can be added to the GRF
environment. A new AI can be added to use the Player
class that is offered by the GRF environment.

Figure 1: Google Research Football Screen.

The important information of the GRF environment

is about the field, ball, players, and action. The soccer
field size is [−1, 0.42] at the bottom left corner and [1,
−0.42] at the top right corner. Table 1 shows the ball
and player information. The player has a Boolean flag
to show whether the player is on the field or not. The
player can disappear if he receives a red card or due to
an initial setting. There are 19 default actions such as
the following:

⚫ Idle.
⚫ Move in 8 directions.
⚫ 3 types of passes.
⚫ Shot.
⚫ Sprint/Stop sprint.
⚫ Sliding.
⚫ Dribbling/Stop dribbling.
⚫ Reset current movement direction.

Adapting a KD-Tree Based AI to Google Research

Football
Yuto Takiguchi s1270138 Supervised by Prof. Maxim Mozgovoy

2

University of Aizu, Graduation Thesis. March, 2023 s1270138

Although there is an extension action set, this set is not
used because the AI becomes complex.

Table 1: Ball and Player Information

Ball

Coordinate (x, y, z).

Direction (x, y, z).

Rotation (x, y, z).

Who has the ball.

Which team has the
ball.

Left/Right
Team Players

Coordinate (x, y).

Direction (x, y).

Fatigue factor (0..1)

Yellow card (0 or 1)

Active (true or false)

Roles (0..9)

2.2 KD-Tree Based AI

We adopted the kd-tree algorithm [3] to control AI
agents running on the GRF environment. Since the
algorithm can learn from an actual soccer dataset, it can
make a soccer AI more human-like and decrease
computational costs.

In this paper, x and y coordinates are used for the
kd-tree algorithm. Since a z coordinate is not included
in the datasets, it cannot be used.

The algorithm controls ten players simultaneously
excluding a goalkeeper. Since the kd-tree based AI
does not generate goalkeeper actions, a goalkeeper just
passes to a teammate who is in a direction that he is
facing to avoid game stopping. The algorithm [4] runs
as follows:

1. Get all players and ball coordinates.
2. Search the players within a certain range of

the player controlled by AI (see Figure 2).
3. Find situations from the dataset where the

player is located within a certain range based
on the coordinates of the player found by step
2 (see Figure 3).

4. If there are two or more situations, determine
the best situation by the direction of players.
If there are no situations, go to step 2 and
decrease the range of step 2.

5. Get an action from the situation.
In step 3, the range of the controlled player is

smaller than the found players because the controlled
player’s position is the most important. If the range of
the controlled player is large, the kd-tree may return a
situation where the controlled player is far away.

In step 4, if the range of step 2 decreases to the
minimum range, the kd-tree returns no result. This
means that the player cannot be controlled by the kd-
tree. The action is set to the previous movement action

or random passing because there is no way to
determine an optimal action.

Figure 2: Find Players.

Figure 3: Find Similar Situations.

2.3 Boost.Python

While the GRF environment uses Python for player
control, the kd-tree based AI for SimpleSoccer uses
C++. Therefore, it is necessary to send data from
Python to C++. To solve this problem, we use the
Boost.Python library. This library enables C++ and
Python linking.

2.4 Pass System

The problem with integrating the kd-tree based AI
for SimpleSoccer into the GRF environment are the
differences in implementation of each system. One of
the differences is the pass system.

The SimpleSoccer environment uses the id of the
pass target. Therefore, this environment can select the
pass target accurately. However, the GRF environment

3

University of Aizu, Graduation Thesis. March, 2023 s1270138

determines the pass target by the direction that the
passer is facing. This means that if there are two or
more teammates in the line-of-sight of the passer, the
pass target is unclear. Also, the passer needs to first
look in the direction of the pass target before passing,
even if the environment sends the order to pass.

To solve these problems, first, the direction
between the passer and the pass target was calculated.
If the passer hasn't looked in the calculated direction
yet, the passer turns and moves in that direction. Next,
the kind of pass was determined. The GRF
environment has 3 types of passes: short pass, long pass,
and high pass. Since there are no specific guidelines on
categorizing a pass based on its distance in GRF, we
keep thresholds tunable. Currently, the passes are
categorized as follows (see Listing 1):

⚫ Short pass: less than 15 m
⚫ Long pass: 15 - 30 m
⚫ High pass: more than 30 m

Listing 1: How to Select Pass Action.

SelectPassAction (player, target)
1 direction ← GetDirection(player, target)
2 distance ← GetDistance(player, target)
3 𝐢𝐟 direction = player. direction 𝐭𝐡𝐞𝐧
4 𝐢𝐟 distance < shortPassBorder 𝐭𝐡𝐞𝐧
5 𝐫𝐞𝐭𝐮𝐫𝐧 shortPass
6 𝐞𝐥𝐬𝐞 𝐢𝐟 distance < longPassBorder 𝐭𝐡𝐞𝐧
7 𝐫𝐞𝐭𝐮𝐫𝐧 longPass
8 𝐞𝐥𝐬𝐞
9 𝐫𝐞𝐭𝐮𝐫𝐧 highPass
10 𝐞𝐧𝐝 𝐢𝐟
11 𝐞𝐥𝐬𝐞
12 𝐫𝐞𝐭𝐮𝐫𝐧 moveInDirection
13 𝐞𝐧𝐝 𝐢𝐟

2.5 Off-Side

Another difference between the environments is the
rules implemented. In particular, the off-side rule needs
to be modified. While the GRF environment supports
the off-side rule, the SimpleSoccer environment does
not. Therefore, the kd-tree based AI for SimpleSoccer
sometimes believes that passing when off-side is
optimal.

To solve this problem, a function was created to
determine whether the pass would be off-side or not
before passing. The first step is storing distances of the
x-axis between opponents, excluding the goalkeeper,
and the right sideline of the soccer field. Next, the
opponent with the minimum distance is found. The
distances of x-coordinates between the opponent who
is found in the previous step and the pass target is
calculated. Finally, if that distance is less than zero,
then the pass can be off-side (see Listing 2). Therefore,
the environment can send the player an order not to
pass.

2.6 Possession State

One of the system differences is the way to store
the possession state. The possession state is which team
has the ball. The SimpleSoccer environment maintains
the possession state during passing. Therefore, if the
ball leaves the player by passing, the possession state
is maintained if the pass does not fail. However, the
GRF environment does not maintain the possession
state during passing. This means that the moment the
ball leaves the player, the possession state will be that
neither team has the ball (see Figure 4)

To solve this problem, a new possession state was
created based on the old one. Once a team has the ball,
the new possession state maintains its value if another
team does not take the ball (see Listing 3).

bool isOffside (int targetID, GRF::Players& players)

{

std::vector<double> distances(10);

// The reason for p=1 is removing GK

for (int p = 1; p < players.rightPlayers.size(); ++p)

{

distances[p - 1] =

abs(GRF::Filed::RIGHT_OF_METER_FIELD - players.rightPlayers[p].coord.x);

}

auto it = std::min_element(std::begin(distances), std::end(distances));

auto closestPlayerIndex = std::distance(std::begin(distances), it);

auto distClosestPlayer =

players.rightPlayers[closestPlayerIndex].coord.x –

players.leftPlayers[targetID].coord.x;

return distClosestPlayer < 0;

}

Listing 2: Off-Side Function.

4

University of Aizu, Graduation Thesis. March, 2023 s1270138

Figure 4: Possession State During Passing for GRF.

Listing 3: Possession State Converter.

Possession State Converter

1. newPossessionState ← outOfPlay
2. If possessionState = Defending then
3. newPossessionState ← rightTteam
4. else if possessionState = Attacking then
5. newPossessionState ← leftTeam
6. end if

3 Results and Discussion
The ten players excluding the goalkeeper were able

to be controlled simultaneously by the kd-tree based AI
on the GRF environment. Also, the player was able to
pass to the target via three types of passes. The off-side
system reduced off-side pass. The possession state
converter made the possession state behave the same as
on SimpleSoccer. Therefore, the AI ran basically as
expected.

However, some points to be improved were found.
Since the pass system could not pass to the target
accurately, the player sometimes passed to the wrong
player. To improve this, a deep understanding of the
GRF engine library is required and in some cases the
library may need to be modified.

One of the other improvements is the behavior
when an instruction occurs via the off-side system. For
now, the player acts based on the previous action when
he cannot pass due to off-side. However, if there are
other options from the kd-tree, the player should
ideally follow those.

The possession state does not change as long as the
opponent team does not get the ball. Therefore, it may

be better if the possession state is determined
depending on the amount of time the ball is not touched
when neither team has the ball.

4 Conclusion
In this paper, we integrated the kd-tree based AI for

SimpleSoccer into the GRF environment. Although
some possible improvements were identified, to some
extent the AI worked as expected. This integration
allows for deeper AI development in the GRF
environment because many things were not able to be
implemented in the kd-tree based AI for SimpleSoccer.
For example, since the GRF environment supports
many actions, the AI can do various actions. Also, the
AI learns specific situations that are not implemented
on SimpleSoccer such as corner kicks, penalty kicks.

We hope the kd-tree based AI will be helpful for the
development of soccer AI.

References
[1] K. Karol, et al, “Google research football: A novel

reinforcement learning environment,” in
Proceedings of the AAAI Conference on Artificial
Intelligence, Apr. 2020, vol. 34, no. 04, pp. 4501-
4510.

[2] M. Buckland, “Sports Simulation - Simple
Soccer,” in Programming Game AI By Example,
Massachusetts: Jones & Bartlett Learning, 2005,
pp. 133-192.

[3] B. J. Louis, “Multidimensional binary search

trees used for associative searching,”
Communications of the ACM, vol. 18, no. 9, pp.
509-517, Sep. 1975.

[4] G. M. Bogdan and M. Mozgovoy, “Towards
Case-based Reasoning with kd Trees for a
Computer Game of Soccer,” in 2019 IEEE IUCC
and DSCI and SmartCNS, Oct. 2019, pp. 570-572.

