
1

University of Aizu, Graduation Thesis. March, 2022 s1260233

Abstract
Nowadays, video games have become a popular

form of entertainment, and all kinds of games leverage
artificial intelligence (AI) technology. Although the
accuracy of game AI has been improving year by year,
fighting game AI still often moves unnaturally. Such
non-human-like behavior can spoil the enjoyment of
the gaming experience. This study aims to solve this
problem by designing an AI that can learn behavior
from human players and act like a human. We also
evaluate how the constructed AI and the human player
are similar using a measure called cosine similarity.

1 Introduction
Video games are a popular form of entertainment

enjoyed by many people. Among them, fighting games
are one of the most popular game genres that have been
gaining popularity over the years. Fighting games are
one-on-one games in which players attack each other
using a variety of actions such as punches, kicks, and
special moves, and the player who loses the opponent's
health or reduces it more within a time limit wins.

Recently, artificial intelligence (AI) technology has
been introduced into various genres of games, and
fighting games are no exception. The term "fighting
game AI" mostly indicates the AI that controls the
NPCs (Non-Player Characters) participating in a match.
The performance of game AI has been improving every
year. However, fighting game AI still often behaves in
an unnatural and non-human-like manner. Such non-
human-like behavior can cause the player to feel
uncomfortable and thus undermine the quality of the
gaming experience. In order to make games enjoyable,
it is important for AI to have human-like
characteristics [1].

In this study, we investigate whether it is possible to
construct a fighting game AI that can behave like a
human by learning behavior from an actual human
player. For this purpose, we use an approach called
"behavior capture." In this approach, a human player
first plays a fighting game to collect match data. Next,
the AI observes/learns from those match data and forms
knowledge. Finally, the AI acts based on the acquired
knowledge. In our research, we use the Universal
Fighting Engine (UFE) as an environment. We also
evaluate how the constructed AI is similar to the

training source human player using a measure called
cosine similarity.

2 Learning AI

2.1 Universal Fighting Engine

In our research, we design an AI system that runs on
the Universal Fighting Engine (UFE) [7]. UFE is an
open-source platform for developing one-on-one
fighting games in Unity [8]. UFE is highly
customizable; users can add, change, or delete options
at will. UFE also supports a variety of actions such as
attacks and special moves and has several pre-
implemented character models with different types of
actions that we can use. The players play the game by
controlling these characters using the four directional
keys and six attack buttons.

2.2 Artificial Contender

The core algorithms and data structures of our AI
system are implemented using TruSoft's "Artificial
Contender" middleware [6]. We call the AI constructed
with this tool Artificial Contender AI (ACAI). The
architecture of our ACAI system is shown in Figure 2.

2.3 Recording Human Playing

In our behavior capture approach, we need training
data from the human player for learning the AI. For this
purpose, our system is equipped with a mechanism to
record the situation of the match in the game as a log
file by playing UFE. The log file consists of basic and
important information in the fighting games. For

Developing Learnable AI From Human Player’s

Behavior in Universal Fighting Engine
Ryoya Ito s1260233 Supervised by Prof. Maxim Mozgovoy

Figure 1: Universal Fighting Engine

2

University of Aizu, Graduation Thesis. March, 2022 s1260233

example, the character’s coordinates, health points of
the character, and status of the character are included
in the log file. Table 1 shows the details of the log file
components.

Component Meaning

currentState Character’s state
(e.g., Stand, Jump, Down)

currentSubState Additional character’s
state other than
currentState
(e.g., Resting, Blocking)

x Character’s x coordinate

y Character’s y coordinate

z Character’s z coordinate

currentBasicMove Character’s basic
movement state
(e.g., Idle, MoveForward)

currentMoveName Character’s attack action
(e.g., Light Punch,
Jumping Heavy Kick)

IsBlocking Whether or not the
character is blocking
(True or False)

characterHealthSelf Character’s health points

characterDistanceSelf Distance between the
characters

Table 1: The log file components

2.4 Acting Graph

Based on the given training data, the ACAI
constructs the knowledge base according to a data
structure called acting graph [4, 5]. The details of the
construction process of the knowledge base are as
follows. Every time the training source player performs
an action, the ACAI stores the pairs of the performed
action (we call it Action) and the state of the game
world at that time (we call it GameSituation) in the
knowledge base. Note that Action includes the case of
"do nothing." GameSituation consists of the attributes
of each character participating in the match, e.g.,
character coordinates and status. Action and
GameSituation are recorded in the aforementioned log
file, which is the training data.

Since the ACAI also stores the consecutiveness
between GameSituations as a link in the knowledge
base, the whole knowledge base can be considered as a
directed graph that stores action chains. Such a graph
is the acting graph. Each node in the acting graph
corresponds to GameSituation, and each edge
corresponds to Action that causes changes in the game
situations. For example, the "crouch" action connects
two game situations that are different in whether the
character is crouching or not.

In addition, the Action object has a counter that
counts the number of times the same (Action,
GameSituation) pair is recorded. If the same (Action,
GameSituation) pair is recorded multiple times, it
means that the Action is preferred and used many times
in that GameSituation. By weighting the actions with
counters, the ACAI can prioritize the more frequent
actions under such a certain game situation.

We use TruSoft's ACGameViewer tool to construct
the knowledge base. This tool reads the log files
obtained by playing UFE and constructs a knowledge
base for learning the ACAI. Figure 3 shows a
screenshot of ACGameViewer.

Figure 2: Architecture of the ACAI system

Figure 3: ACGameViewer

3

University of Aizu, Graduation Thesis. March, 2022 s1260233

3 Acting AI

3.1 Action Searching

The learned ACAI selects the most appropriate
action for the current game situation using the
constructed knowledge base. For this purpose, it is
necessary to identify the node in the acting graph (i.e.,
GameSituation) that matches the current game
situation received from the UFE and then select the
outgoing edge (i.e., Action) from that node. The ideal
scenario is to identify GameSituation in the knowledge
base that perfectly matches the current game situation.
However, a perfect matching of GameSituation is
rarely achieved, and it is not realistic. Therefore, in our
system, the ACAI identifies the closest GameSituation
to the current game situation approximately, and it
selects the Action corresponding to the found
GameSituation.

Our ACAI system defines two sets of attributes with
different numbers of contained attributes and uses them
for GameSituation matching. Table 2 shows the
detailed contents of the attribute sets. The attribute set
of abstraction level 0, which has higher precision,
consists of eight attributes. On the other hand, the
attribute set of abstraction level 1, which is less precise
than level 0, contains only four attributes.
GameSituation matching is done by collating the
attributes contained in the target attribute set between
the current game situation and the GameSituation in the
knowledge base. First, we use the attribute set at level
0 to find a GameSituation that matches the current
game situation. If the matching GameSituation is not
found, we reduce the number of attributes used for
matching (i.e., use the attribute set at level 1) and do
the matching again with lower precision.

Abstraction level Attributes

Level 0 Player’s x coordinate,
Player’s y coordinate,
Opponent’s x coordinate,
Opponent’s y coordinate,
Player’s State,
Player’s SubState,
Opponent’s State,
Opponent’s SubState

Level 1 Player’s x coordinate,
Player’s y coordinate,
Opponent’s x coordinate,
Opponent’s y coordinate

Table 2: The details of the attribute sets

In addition to GameSituation, action chains are also
taken into account for action selection. The ACAI
should not act according to the current game situation
only, ignoring the past behavior of the training source
player; the ACAI should also have the capability to
reproduce a series of actions of the player (action
chains) such as combo attacks. Since the knowledge
base has the structure of the acting graph, if we want to
reproduce an action chain, we can apply the
(GameSituation, Action) pair adjacent to the previously
applied pair in the graph. Whether the action chain is
reproduced or not is determined by the link flag. If link
flag is true, the action chain is reproduced.

Hence, we use a total of four retrieval queries with
different searching levels, which are the combination
of two attribute sets (Level 0 and Level 1) and the link
flag (True or False). Table 3 shows the details of the
retrieval queries. A lower searching level means a more
strict and accurate search. The ACAI searches for
appropriate actions, starting with the most accurate
query (search level 1) and relaxing the searching
conditions sequentially. If multiple applicable actions
are found, the action is selected by random selection
weighted by the action counter. If no applicable action
is found, the ACAI does not take any action.

Searching level
Attribute set

level
Link flag

Level 1 Level 0 True

Level 2 Level 0 False

Level 3 Level 1 True

Level 4 Level 1 False

Table 3: The details of the retrieval queries

3.2 Action Filter

Following the approach described above, technically,
the ACAI can decide the action to perform based on the
acquired knowledge. However, the ACAI often selects
weak and inefficient actions. For example, the ACAI
can select to "stand on the spot." Once standing on a
stick due to this decision, the ACAI learns that "it is
OK to stand" and continues to stand on a stick forever.
In other words, the "do nothing" action causes a loop
in the acting graph. Such game situations are
undesirable for players and should be avoided.

To solve this problem and further improve the
decision-making performance of ACAI, we introduce
an action filter into the system. The action filter
analyzes the actions extracted by the ACAI and accepts
only the actions that satisfy certain criteria as feasible.
In contrast, actions that do not satisfy certain criteria
are rejected as unacceptable by the action filter. The

4

University of Aizu, Graduation Thesis. March, 2022 s1260233

action filter system allows us to exclude weak and
inefficient actions selected by the ACAI.

We implement the "LongNoActionFilter" as an
action filter. This filter scans the stored list of the most
recently executed actions. If all the actions in the list
are "do nothing", the filter rejects the "do nothing"
action from being selected again. In other words, the
"LongNoActionFilter" prevents the ACAI from
selecting "do nothing" if it has been selecting "do
nothing" for a while. We can deal with the problem that
the character keeps standing in place by using this filter.

3.3 AI Controller

By simply selecting the appropriate action to
perform, the ACAI-controlled character cannot
perform that action in the UFE. This is because the
UFE does not recognize the selected action; for the
ACAI to act the UFE, we need a mechanism that could
be called an AI controller, which reads the input
sequence assigned to the selected action and passes it
to the UFE. Therefore, we have created an AI controller
script. When the desired action is selected by the
decision-making system, this script reads the input
button sequence assigned to that action. The input
button sequence is read in three separate categories:
horizontal direction keys, vertical direction keys, and
attack keys (see source code 1). The input sequence is
passed to the UFE, and actions are performed based on
it.

// a fragment of AI Controller
...

if(inputReference != null)
{
if(inputReference.inputType ==

InputType.HorizontalAxis)
return new
InputEvents(currentAction.horizontalAxis);

if(inputReference.inputType ==
InputType.VerticalAxis)

return new
InputEvents(currentAction.verticalAxis);

if(inputReference.inputType ==
InputType.Button &&
currentAction.buttonPressed(

inputReference.engineRelatedButton))
return new InputEvents(true);

}

return InputEvents.Default;

...

Source code 1: A fragment of the AI Controller script

4 AI Evaluation
We need to evaluate the performance of the

constructed ACAI. For the performance evaluation of
fighting game AI, there are some methods such as
checking cosine similarity or conducting a Turing test
tuned for fighting games [2, 3]. In this study, we use
the measure of cosine similarity to analyze and
evaluate the performance of the ACAI from the aspect
of similarity in behavior among players.

In the approach of checking cosine similarity,
"behavior fingerprints," which are numerical vectors
describing the player's behavior, are compared among
players. We represent three consecutive actions of a
player in the game by a tuple (A1, A2, A3). The
behavior fingerprint is a list describing the occurrence
probability for all possible combinations of tuples in
the game, obtained by dividing the occurrence
frequency of the tuple in the game by the total number
of game frames. The player's action is defined by three
elements: currentState, currentSubState, and
currentBasicMove. Therefore, we can obtain the
behavior fingerprint of a certain player by analyzing
the aforementioned log file in which these elements are
recorded. The cosine similarity representing the
similarity between two players in the range of [0, 1] is
calculated by the following formula:

𝑠𝑖𝑚𝑙𝑎𝑟𝑖𝑡𝑦(𝐴, 𝐵) = cos(𝒂, 𝒃)

=
𝒂 ∙ 𝒃

‖𝒂‖‖𝒃‖

=
∑ 𝑎𝑖𝑏𝑖
𝑁
𝑖=1

√∑ 𝑎𝑖
2𝑁

𝑖=1 √∑ 𝑏𝑖
2𝑁

𝑖=1

where 𝒂 is the fingerprint of player A, 𝒃 is the
fingerprint of player B, and 𝑁 is the total number of
tuples.

In order to test whether the following four
hypotheses are valid, we conduct an experiment to
compare the behaviors. Note that the experiment is
based on the conclusion from our previous research
that humans have different playstyles which can be
distinguished in UFE [3].

Hypothesis 1: The similarity between the ACAI and its
training source player is high.

Hypothesis 2: The similarity between the ACAI and
players other than the training source player is not high.

Hypothesis 3: The similarity between different human
players is the same extent as the similarity between
ACAIs constructed from them.

Hypothesis 4: The similarity between the ACAI and a
Fuzzy AI (this AI is described below) is low.

5

University of Aizu, Graduation Thesis. March, 2022 s1260233

We conduct the experiment as follows. Note that in
all cases, the opponent is Fuzzy AI with the difficulty
set to Normal in order to make the match conditions the
same. Fuzzy AI is an AI based on fuzzy logic, which is
standard in UFE. Also, note that a match is over when
either player wins two rounds and that each round is a
maximum of 100 seconds.

1. Three human players A, B, and C play 20 games of
UFE and then create 20 log files recording their
behavior and game situations for each player.

2. We construct ACAIa, ACAIb, and ACAIc learned
from players A, B, and C, respectively by using
these log files.

3. We make both the constructed ACAI players and
the Normal Fuzzy AI play 20 games of UFE and
then create 20 log files for each of them.

4. The steps up to this point create 20 log files
recording the behavior of each of the seven players
(A, B, C, ACAIa, ACAIb, ACAIc, and Normal
Fuzzy AI) for a total of 140 log files. We divide the
20 log files of each player into two datasets of 10
files each for a total of 14 datasets.

5. We calculate behavior fingerprints and cosine
similarity for all possible combinations of datasets,
including those of the same player, and record the
results.

5 Results and Discussion
The experiment of the similarity check yielded the

results shown in Tables 4-6.
There are four ways to measure the similarity

between different players. For example, we can
calculate the similarity between player A and ACAIb
using the following four combinations of datasets.

 Player A's dataset 1 and ACAIb's dataset 1

 Player A's dataset 1 and ACAIb's dataset 2

 Player A's dataset 2 and ACAIb's dataset 1

 Player A's dataset 2 and ACAIb's dataset 2

Table 4 shows the average values of the similarity
obtained in the four measurements for each pair of
players. Table 5 and Table 6 show the maximum and
minimum values of the similarity obtained from the
four measurements, respectively. However, note that
the similarity between the same players is recorded
with the same value in all three tables since the
similarity check between the same players can be
performed in only one way, using dataset 1 and dataset
2 of the target player. In these tables, the higher
similarity is marked with a brighter green color.

For all of the players in the experiment, the similarity
between the same players was high, over 91%. This
result means that all the players consistently fought
with the same playstyles, even in different matches.
Also, compared to the similarity between the same
human players, the average similarity between
different human players was only 58%-73%. This
result confirms the conclusion of the study in [3] that
human playstyles can be identified in UFE. However,
since the average similarity between human B and C
was 73%, and since the maximum was 78%, it should
be noted that they have relatively similar playstyles on
our measure.

Hypothesis 1 is correct because the average
similarity between the ACAI and its teacher, the
training source human player, was as high as 79%-88%.
When comparing the ACAIs with the human players,
all the ACAIs showed the highest similarity to the
teacher player. Observations of matches in which the
ACAI participated showed that it reproduced the attack
actions and tactics (e.g., how to guard and keep
distance) frequently used by its teacher player. We
believe that the similarity was high because the ACAI
has reproduced the unique human-like playstyle of its
teacher players. However, this result does not support

Human A 0.91

Human B 0.58 0.98

Human C 0.62 0.73 0.92

ACAIa 0.79 0.55 0.56 0.94

ACAIb 0.65 0.88 0.72 0.64 0.98

ACAIc 0.71 0.62 0.81 0.79 0.73 0.94

Fuzzy AI 0.50 0.47 0.71 0.40 0.48 0.64 0.99

Average Human A Human B Human C ACAIa ACAIb ACAIc Fuzzy AI

Table 4: The average similarity for each player pair

Human A 0.91

Human B 0.62 0.98

Human C 0.69 0.78 0.92

ACAIa 0.83 0.56 0.61 0.94

ACAIb 0.66 0.89 0.75 0.65 0.98

ACAIc 0.73 0.63 0.83 0.80 0.74 0.94

Fuzzy AI 0.53 0.50 0.72 0.44 0.50 0.65 0.99

Maximum Human A Human B Human C ACAIa ACAIb ACAIc Fuzzy AI

Table 5: The maximum similarity for each player pair

Human A 0.91

Human B 0.54 0.98

Human C 0.53 0.68 0.92

ACAIa 0.75 0.54 0.50 0.94

ACAIb 0.65 0.87 0.68 0.62 0.98

ACAIc 0.68 0.61 0.78 0.77 0.72 0.94

Fuzzy AI 0.46 0.45 0.70 0.37 0.47 0.63 0.99

Minimum Human A Human B Human C ACAIa ACAIb ACAIc Fuzzy AI

Table 6: The minimum similarity for each player pair

6

University of Aizu, Graduation Thesis. March, 2022 s1260233

that the ACAI can perfectly reproduce the behavior of
its teacher players. This is because the similarity
between the ACAI and its teacher player was lower
than that of the same players. In other words, the
playstyles of the ACAI and the teacher player can still
be distinguished.

Comparing the ACAIs with the non-teacher players,
we can see that Hypothesis 2 is not necessarily true.
Indeed, the similarity between the ACAIs and non-
teacher players was lower than that between ACAI and
teacher players. In particular, ACAIa showed a strong
tendency for such similarity. However, the fact that the
average similarity between ACAIb and human C and
between ACAIc and human A was high (approximately
70%) contradicts Hypothesis 2. The high similarity
between ACAIb and human C can be attributed to the
similar playstyles of human B, the teacher of ACAIb,
and human C.

Comparing the ACAIs constructed from different
teacher players to each other, Hypothesis 3 is not true.
If playstyles between different human players are
identifiable, playstyles between different ACAIs
constructed from them should be identifiable to the
same extent. The average similarity between human A
and human B was 58%, which was almost as low as
that between ACAIa and ACAIb of 64%. Similarly, the
average similarity between human B and human C was
73%, which was the same as that between ACAIb and
ACAIc. However, even though the average similarity
between human A and human C was 62%, it deviated
from that between ACAIa and ACAIc, which was 79%,
contradicting Hypothesis 3.

Since the average similarity between the ACAIs and
the Fuzzy AI was only 40%-64%, Hypothesis 4 is true.
The ACAIs are more human-like than the Fuzzy AI in
that they showed higher similarity to the teacher
players than to the Fuzzy AI. Note that the similarity
between human C and the Fuzzy AI was relatively high.
This is because human C used combo attacks that were
similar to those frequently used by the Fuzzy AI.
Accordingly, the ACAIc constructed from human C
also had higher similarity to the Fuzzy AI than the other
ACAIs. We assume that this was because ACAIc was
trying to reproduce the combo attack used by human C,
the teacher player.

Based on the results of testing the above hypotheses,
we can say that although the ACAI learned the
behavior of the teacher player well, the accuracy of
behavior capture is still not sufficient. As mentioned
above, when we actually observed the ACAI in the
matches, we found that the ACAI learned and
reproduced the teacher player's behavior well,
especially in terms of attacking actions and tactics. We
believe that such behavior of the ACAI resulted in the
high similarity with the teacher player and the human-

like nature which surpassed that of the Fuzzy AI. On
the other hand, observation of the matches revealed
that the ACAI, unlike the teacher player, often repeated
the same action more often than necessary and
interrupted combo attacks midway. We think that this
inaccuracy of the ACAI, which still cannot reproduce
the behavior accurately, resulted in the contradiction of
the similarity observed in the testing of hypotheses 2
and 3.

We assume that the low accuracy of the current
ACAI is due to the fact that decision-making is not
working fully. If the decision-making is done correctly,
the ACAI should be able to perform combo attacks
without interruption or take different options instead of
repeating the same action. These problems in the
performance of the decision-making can be solved and
improved by tuning some parameters such as the
components of GameSituation, attributes used for
GameSituation matching, and by adding new action
filters.

6 Conclusion
In this paper, we have investigated whether it is

possible to construct a human-like fighting game AI
using a behavior capture system for UFE. This system
records the matches and learns the behavior of human
players to construct a fighting game AI that reproduces
their behavior. Evaluation by the cosine similarity has
shown that the constructed ACAI has relatively high
similarity to the training source human player.

However, the performance of the ACAI is still not
sufficient due to the fact that the current system has
some issues. In addition to the issues mentioned above,
the current system also has the problem that in some
cases, ACAI cannot perform special attacks (e.g.,
Fireball) that require a button sequence of three or
more inputs to execute, as intended. Our future task is
to improve the performance of the ACAI by solving
these issues that our system faces.

We believe that human-like fighting game AI will
make matches more exciting and fun. We hope that our
behavior capture system will help people to gain a
more meaningful fighting game experience.

References
[1] B. Soni, P. Hingston, "Bots trained to play like a

human are more fun," 2008 IEEE International
Joint Conference on Neural Networks (IEEE
World Congress on Computational Intelligence),
2008, pp. 363-369.

[2] G. Mola Bogdan, M. Mozgovoy, T. Ito, T.

Rikimaru, "Believability Assessment for Fighting

7

University of Aizu, Graduation Thesis. March, 2022 s1260233

Game AI," Proceedings of Game-On'2017
Conference, Carlow, Ireland, 2017, pp. 87-89.

[3] K. Yuda, S. Kamei, R. Tanji, R. Ito, I. Wakana and

M. Mozgovoy, "Identification of Play Styles in
Universal Fighting Engine," Proceedings of
Game-On'2020 Conference, Aveiro, Portugal,
2021, pp. 72-75.

[4] M. Mozgovoy, I. Umarov, "Behavior Capture

with Acting Graph: a Knowledgebase for a Game
AI System," Lecture Notes in Computer Science,
2011, vol. 7108, pp. 68-77.

[5] M. Mozgovoy, I. Umarov, "Building a Believable
Agent for a 3D Boxing Simulation Game,"
Proceedings of the 2nd International Conference
on Computer Research and Development, Kuala
Lumpur, Malaysia, 2010, pp. 46-50.

[6] Artificial Contender [Internet resource],

URL: http://www.trusoft.com (Date: 1.18.2022)

[7] Universal Fighting Engine [Internet resource],
URL: http://www.ufe3d.com (Date: 1.18.2022)

[8] Unity [Internet resource],

URL: https://www.unity.com (Date: 1.18.2022)

