
University of Aizu, Graduation Thesis. August, 2021 s1252005 1

Testing mobile games with OCR
Yuan Tu s1252005 Supervised by Prof. Maxim Mozgovoy
Abstract
This research is dedicated to the possibility of inte-
grating Optical Character Recognition into game auto-
mated GUI testing. Besides manually functional test-
ing by QA(Quality assurance) stuff, there are many
different ways to test a mobile application like auto-
mated smoke testing and automated GUI testing. OCR
(Optical Character Recognition) is a great method to
recognize the text from pictures, which is now widely
used in scanning documents, translating applications,
and auto drive. etc. However, there is not much re-
search using OCR for mobile application automated
GUI testing, which arouses the interest of integrat-
ing OCR into automated GUI testing with well-trained
Tesseract Open Source OCR Engine on a tennis game
application.

1 Introduction
Game testing plays an important role in game devel-
opment as game genres getting more complicated and
various. Automation testing (Test Automation) is a
commonly used software testing technique that per-
forms using special automated testing software tools
to execute a test case suite. Smoke testing is one of
the automation testing processes to check whether de-
ployed software or game is stable or not. However,
there is a problem still yet completely solved that Au-
tomated smoke testing is especially challenging for
the applications with nonstandard GUI, such as games
made with Unity. Previous research [1] studied by
M.Mozgovoy and E.Pyshkin utilized Image recogni-
tion to solve this issue. Although Image recognition for
mobile testing requires saving all the images of User
Interface elements that are needed to be tested. This
study is based on the research above [1] and to see the
possibility of applying Optical Character Recognition
with Tesseract OCR into automated GUI testing.

2 Method
For integrating OCR testing into GUI Automation test-
ing, a mobile device with the tested game, a software
testing tool and testing scrips are required.

2.1 TestBed
The testbed of this study is a 3D Tennis game devel-
oped with Unity which is also able to adapt to Android
mobile devices. The game is called Tennis Arena can
be seen in Figure 1. This game has both image and
text-based buttons, which provides a good platform
to test the efficiency of OCR GUI testing and the
possibility of merging OCR with Image recognition
GUI testing.

Figure 1: Testbed Game: Tennis Arena

2.2 Tools
As mentioned before, this study is based on Unity Ap-
plication Testing Automation with Appium and Image
Recognition [1]. Researchers of the previous study
used Appium [2] which is a test automation frame-
work designed to assist functional testing of compiled
native (iOS, Android or Windows), and hybrid appli-
cations. [3]. In our study, we also used the same tool
for keeping testing work. Besides, in order to realize
Optical Character Recognition testing, this study uti-
lized Tesseract OCR [4] which is an optical character
recognition engine for various operating systems to re-
alize the goal. Tesseract OCR is also used in google
translate and was considered one of the most accurate
open-source OCR engines then available in 2006. [5]



University of Aizu, Graduation Thesis. August, 2021 s1252005 2

2.3 Testing Steps
2.3.1 Set Up Testing cases
In order to discover the possibility of using OCR test-
ing, there are two sets of testing are set up by writing
specific testing instruction scrips. Appium allows the
scrips to access applications in a similar way as to end
players. Therefore, the testing script can be used to
click the button, wait for specific times, select check-
boxes, etc. The first set of testing is set up with 12 ba-
sic buttons functionality tests that test if the text-based
button can be recognized correctly and function as it’s
expected. Most of these 12 buttons are high frequently
used in most of the games shown as Table 1.

Table 1: 12 Basic button testing set
”LOGOUT” ”RESET” ”OK”
”CANCEL” ”SKIP” ”X” or ”×”
”SEASON” ”RATING” ”LVL”
”BACK” ”START” ”PLAY MATCH”

Another set of testing is series of game steps testing,
which is combination of several waiting for responding
of game and button functionality testing. The purpose
of this testing is to verify whether GUI OCR testing
can be integrated into regular automation testing rou-
tine. This part of testing is set up as follow:

1. Start Match – Quit – Continue – Quit – Confirm

2. Generate New Character – Skip Tutorial

3. Open Season Window – Go back – Open Rating
Window – Go Back – Open Level Window – Go
back

4. Reset – Confirm: Cancel – Reset – Confirm: OK

2.3.2 Test
Before starting the test, the connection build between
the testing device and server is built up stably so the
scrips can run smoothly on the device like how the
player plays the game. The setup procedure is similar
to the procedure in the previous work [1] except in this
study there is only one testing device and the server is
a local server set up on the computer.
For every singular button functionality test, there are
five basic steps.

1. Firstly, get a screenshot from a mobile device
when appium received the response of the game
is waiting for instruction. Shown as Figure 2

2. Next, we put this screenshot into image process-
ing to make the screenshot easier to be recognized
by OCR Tesseract. Shown as Figure 3

3. OCR successfully finds the target text, then return
the coordinate of the target button on the screen-
shot.Shown as Figure 4

4. Then calculates the corresponding coordinate of
the button on the mobile screen, return the new
coordinate for the mobile device.

5. Click the button coordinate on the mobile device,
go to the next step.Shown as Figure 5

Figure 2: Step1:Take a sceen shot

Figure 3: Step2:Image Processing

The series of game steps testing, as mentioned
above, is a combination of several waiting for re-
sponses and button functionality tests. Therefore, to
test series of game steps need to repeat the above 5
steps till the test is over or the test is not able to con-
tinue. Also, during this test there are also image-
based buttons, in this OCR testing is replaced by image



University of Aizu, Graduation Thesis. August, 2021 s1252005 3

Figure 4: Step3:Get Coordinate

Figure 5: Step5: Click target button

recognition testing to ensure the testing going continu-
ously and smoothly.

2.4 Image Processing
Image pre-processing is commonly used for OCR. The
feature of the image such as resolution, messiness, and
low contrast can be the factors that influence the accu-
racy of the OCR result. In our case, as Figure 2 shows
that the texts on the original screenshot can not reach a
fair result, so some common process methods such as
convert image to grayscaled as Figure 7, binarization,
Noise Removal Figure 7 are tried.

After these attempts, a feature of this game has been
noticed. More than 95% of texts in this game are in
white, aiming this point, the most direct image pro-
cessing approach is to make pixels not white enough
black. Thereby, the messiness of the background will
be greatly increased. The processed image is shown as
Figure 8.

3 Evaluation
After testing as the method illustrated above, the re-
sult of 12 button functionality tests shows as Table 2.
In this table, the first volume shows the button’s text,

Figure 6: Gary Scaled Screenshot

Figure 7: Denoised and smoothed Screenshot

Figure 8: Aiming to white pixel Processed Screenshot

the second volume shows the fraction of successful
cases over tested cases and the percentage of test pass
rate. The total pass rate of this set of tests is 84%
which shows that OCR testing is able to test simple
text-based button functionality tests. However, there



University of Aizu, Graduation Thesis. August, 2021 s1252005 4

are also cases that didn’t work fairly. For example,
”LVL” has a 0% passing rate, the reason for this re-
sult is because the shape of this button is a circle with
a white outline, which makes tesseract OCR very dif-
ficult to ignore the white circle to recognize the inner
words. Also ”RATING” facing the similar issue: the
background is still comparably messy for OCR test-
ing. Besides this factor, too few letters in the word also
can create unexpected trouble for OCR. The cases ”X”
or ”×” and ”OK” are the example for such situation.

Table 2: 12 Basic button testing set result
”LOGOUT” 5/5 100%
”RESET” 5/5 100%
”CANCEL” 3/3 100%
”SKIP” 9/9 100%
”SEASON” 7/7 100%
”RATING” 6/7 85.7%
”BACK” 5/5 100%
”START” 6/6 100%
”OK” 6/8 75%
”X” or ”×” 2/3 66.6%
”LVL” 0/7 0%
”PLAY MATCH” 5/5 100%

And the result of other 4 series of game steps testing
shows in Table 3. This table shows that 3 out of 4 tests
passed, which also proves that OCR is able to test a se-
ries of game steps to continue the automated testing. In
conclusion, OCR is able to be integrated into GUI au-
tomated testing. Among these testing cases, Generat-
ing a new character requires more interaction with the
game like selecting a message box and typing a name
into it, or shooting the ball during the tutorial section.
Those additional steps make this test difficult to finish
so that we couldn’t say OCR can work well under such
circumstances.

Table 3: 4 series of game steps tests result
Quit match series Finished
Generating Character and skip tutorial Not Fin-

ished
Open windows and go back Finished
Reset confirm Finished

4 Conclusions and future work
This study successfully integrated OCR testing into
Automated GUI testing by testing both singular text-
based button functionality and series of game steps.
However, there are many parts of this study that have a
large space to improve.

First of all, the image processing algorithm is only
aiming for testbed Tennis Arena only, Other mobile
games have a very high possibility to use other col-
ors text. Therefore the image preprocessing for mobile
game screenshot need to be improved for increasing
the accuracy of OCR result.

Secondly, in our case, the target string of OCR test-
ing is too strict. For ”LVL”, ”OK” and long string, if
OCR can not recognize them all then the test is failed,
however, in real cases, the target string might be par-
tially recognized or be recognized in similar words. In
this aspect, OCR testing should be improved to toler-
ant fragile string or similar string to keep the testing
running.

Moreover, J.Tuovenen and M.Oussalah mention that
OCR recognition tools tend to be slower than other
types of tools because they need to scan the whole
screen for the text. [6] During this study testing, the
same issue has been realized. OCR testing is indeed
slower compare to image recognition testing. For fur-
ther work, we can try to solve this issue by reducing
screen area or improving the image processing algo-
rithm to make OCR recognition tools scan less or scan
faster.

Last but not least, nowadays most games are still
image-based, although there are amount of text but-
tons, also image buttons are not avoidable. So one of
the next steps of this work could be to find the most ef-
ficient way to combine OCR testing and image recog-
nition testing.

References
[1] M. Mozgovoy and E. Pyshkin, “Unity Applica-

tion Testing Automation with Appium and Image
Recognition,” Communications in Computer and
Information Science, vol. 779, pp. 139–150, 2018.

[2] “Appium project homepage,” http://appium.io,
[Online; accessed 1-Nov-2016].

[3] M. Hans, “Appium essentials,”
https://www.packtpub.com/application-
development/appium-essentials/.



University of Aizu, Graduation Thesis. August, 2021 s1252005 5

[4] “Tesseract ocr project homepage,”
https://github.com/tesseract-ocr/tesseract, [Online;
accessed 2005].

[5] L. Vincent, “Announcing Tesseract Ocr,”
http://googlecode.blogspot.com/2006/08/announcing-
tesseract-ocr.html, 2006.

[6] J. Tuovenen, M. Oussalah, and P. Kostakos,
“Mauto: Automatic Mobile Game Testing Tool
Using Image-Matching Based Approach,” The
Computer Game Journal, vol. 8, pp. 215–239,
2019.


