
1

University of Aizu, Graduation Thesis. March, 2020 s1250131

Abstract
 AI is now being used in many different areas of
video games. In particular, character AI has become an
essential part of video game opponents and greatly
helps to make games more interesting. In this paper,
Monte-Carlo tree search (MCTS) was used to build an
AI for a 3D tennis game. By using Monte-Carlo tree
search, it is expected that an AI can be built that does
not rely on predefined behavioral patterns and can
respond to a variety of situations. As a result, I was
able to build an AI agent with rational behavior based
on MCTS. The MCTS based AI played against the
game's built-in AI and won 7 out of 10 matches, with a
score of 59-44.

1 Introduction
 There are several methods for building Game AI.
The most popular one is Rule-Base AI. In Rule-Base
AI, rules which are pairs of condition and behavior are
predefined, and the AI acts according to these rules. For
example, when the opponent's position is in the left
corner, AI hits the ball to right corner. Rule-base AI is
a simple and very powerful approach, but it has two
weaknesses. One is that the person who built the AI
needs to deeply understand the patterns of strong and
weak acts of the players. The other is that it can be very
weak in patterns that the implementer did not anticipate.

 These weaknesses can be overcome by using
heuristic algorithms to select sequentially plausible
actions. In this study, AI for a 3D tennis game is built
by using MCTS which is a kind of heuristic
algorithm [1]. MCTS is a method that combines tree
search and Monte-Carlo methods. The state of the
game is represented by the nodes of the game tree, the
result of each node's action is simulated, and the AI
selects the most appropriate node.

 The game being targeted is a complex 3D tennis
game, so it needs to be properly modeled and applied.

2 Methodology
The research builds AI based on the World of Tennis
(Fig 1). Prior research on game AI for this game
includes examples of rule-based AI and case-based
reasoning AI applications [2, 3].

Each player can take the following actions:

- Making a serve
- Returning the shot
- Recovery movement

 In serving or returning a shot, the player can
choose a target point. There are also multiple choices
for the type of shot. Each player can use normal shots,
lob shots, slices, drop shots, etc. The recovery
movement allows us to move our character after hitting
the ball in order to effectively defend or attack in
subsequent movements. Basically, the AI can also
perform these equivalent actions.

2.1 Monte-Carlo tree search
 I used the Monte-Carlo tree search method to build
the AI for the tennis game. In MCTS, the state of the
game is represented by a game tree. It is an algorithm
that finds effective moves by exploring the game tree.
MCTS consists of the following four steps:

1. Selection
2. Expansion
3. Simulation
4. Back Propagation

 By repeating these steps, the search proceeds like
Fig.2.

The root node is the current game state. From there,
valid moves are explored. Each node has a record of
the number of all attempts and scored attempts, so the

Game AI for a 3D Tennis Game based on Monte-Carlo
tree search
Kaito Kimura s1250131 Supervised by Prof. Maxim Mozgovoy

Fig 1. World of Tennis

2

University of Aizu, Graduation Thesis. March, 2020 s1250131

node with the highest percentage is considered the most
effective.

 In the selection step, the UCT (Upper Confidence
Trees) value is commonly used [1]. AI selects a node
that has the highest UCT value from the root node to
the leaf node.

𝑈𝐶𝑇 = 𝑋! + 2𝐶"(
2𝑙𝑛𝑁!
𝑛!

(1)

The first term 𝑋! is reward team.

𝑋! = 𝑝! + (1 − 𝑝!)
𝑤!
𝑛!

(2)

 The percentage of points scored in the simulation,
𝑤! 𝑛!⁄ , is the sum of the results of the leaf nodes
derived from the node. Therefore, it is a measure of
how likely it is to score points in the destination from
that node. In general, 𝑤! 𝑛!⁄ is used as the reward term.
On the other hand, in the game of tennis, every shot has
the potential to score directly, and some patterns have
very high probability. For example, the probability of
scoring on a lob shot when the opponent is at zero
distance from the net would be almost 100%. However,
since the simulation is done from leaf nodes, the
resulting percentage will not be near 100% and will
place a gap. For that reason, we adopt Equation (2) as
the reward term.

𝑝! is the probability that the node will score directly,
𝑤! is t is the number of points wins in the simulation
and 𝑛! is the number of simulations performed.

 The subsequent terms are for biasing the search
towards nodes that have not explored enough. A high
value is calculated when the number of child nodes 𝑛!

is not enough compared to the number of simulations
for parent node 𝑁!. 𝐶" is a constant that specifies how
strong the bias toward unexplored nodes should be. If
there is not enough search for valid nodes, the node
with the less search is done, and if it is searched enough,
the node with the highest win rate is searched in priority.

 In the expansion step, the game tree is expanded
by adding child nodes if a leaf node has been explored
beyond a certain threshold. In the simulation step, the
result of the game from the leaf nodes is simulated. The
result of the match is reflected in all the nodes selected
in the backpropagation step.

 By repeating these steps, the percentage of scoring
is calculated at each node, and the AI judges the node
with the highest 𝑿𝒊 value of reward as the valid move
and acts on it.

2.2 Application to the tennis game
 Video game looks like a complex game, but
actually it's simple. All a player must do is choose a
target point to return a shot, and to select a type of shot.
The flow of the game can be represented as a repetition
of each player’s action. In other words, the flow of the
game can be represented by a game tree. In this case,
an AI is built such that each node has the following
information:

- Shot from: AI or enemy
- AI position
- Opponent position
- Target position

Each node has three coordinates: the AI’s coordinates,
the opponent coordinates, and the target point’s
coordinates. All of which are indexed by dividing the
court into 48 parts as shown in Fig. 3.

Fig 2. MCTS process.

Fig 3. Separated court.

3

University of Aizu, Graduation Thesis. March, 2020 s1250131

The reason for this is that if nodes were built for each
coordinate, there would be too many valid nodes to
search properly. This allows the application of MCTS,
since it can be represented by a game tree.

 Fig. 4 shows an example of a game tree for a tennis
game.

 The opponent is the player at the top of the screen
in positions 0 to 23, and the AI is in positions 24 to 47.
The root node represents the current state of the game,
where the opponent in position 3 is hitting the ball
towards position 39. The following child nodes are the
effective moves at the next point in time, i.e. when the
AI returns the ball. Both AIs are moving to position 39,
and there is a separate node for each of the next return
positions. Only two nodes are shown in Fig.4, but in
actuality, there are 48 nodes for 24 different return
positions, one for spin shots and one for lob shots.
In this way, the state of the tennis game is appropriately
represented in the game tree.

2.3 Simulation Logic
 In MCTS, the AI simulates the game with a
random selection from leaf nodes in the simulation step.
In each simulation, the AI needs to judge whether the
game will eventually result in a score or a loss of points.
The accuracy of these simulations is very important in
creating a strong AI, because the AI determines which
action is effective based on this scoring rate.

 The difficulty is that there is no clear
scoring/losing rule in a tennis game. From information

about each player's position, target point and the shot
type in a node, we need to create the logic to properly
determine if the shot is a scoring shot or not. In this
research, more than 1400 scoring patterns from
statistical data of 10,000 actual games were extracted.
Each match data is about 2-3 minutes long and contains
about 28 ball hitting events. In our game data, the
coordinates of each player, the coordinates of the ball,
and the ball type are stored as time-series data. From
this match data, we extract the following information,
which is in the same format as the game tree plus the
Boolean value of whether the shot is a scoring shot or
not.

- Attacker's position
- Defender's position
- Target position
- Shot type
- Scoring shot or not

 Then, for each pattern, the possibility of scoring,
the number of scored patterns divided by total patterns
is calculated. For example, when the opponent is at
position 33 and the ball is hit with a lob shot from
position 16 to position 44, there is an 80% chance of
scoring. (Fig. 5).

 In the simulation step of MCTS, the decision that
the shot is scoring or not is made with the same scoring
probability as this extracted shot pattern.
In addition, this scoring probability per pattern is also
used in 𝑝! in Equation (2) which represents the value of
the reward.

3 Result
 The game system has its own AI called “Coach AI”.
The performance of the AI can be determined by
playing multiple matches against the game's AI and
recording the winning percentage.

Fig 4. Node state for MCTS.

Fig 5. Example of shot pattern.

4

University of Aizu, Graduation Thesis. March, 2020 s1250131

 Table 1 shows the results of the game against the
coach AI. 10 games were played and 7 games were won.
The total score 59-44. The scores of the matches show
that the AI is able to take rational actions.
 On the other hand, it cannot be said to be a strong
AI because the coach AI is a simple AI.

I consider the following three points as the cause of this.

(1) The influence of nodes is not deep enough.
(2) The problem of AI movement
(3) Simulation accuracy

(1)
The first is that the influence of nodes is not deep
enough.

MCTS is an algorithm that acts on the indicator of how
much AI will win in the end if AI act on that node, but
in a tennis game, the relationship between choosing
that node and eventually scoring is not that strong.

In basic rallies, there was not much relationship, and
the win rate in the simulations for most of the nodes
converged around 50%. Only MCTS is strongly
effective is when the act of the node is related to two or
three moves ahead.

(2)
Second, there is the issue of the AI's movement.
Connected to the first problem, if MCTS works
effectively, it is in patterns where the choice of that
node results in a score/failure two or three moves ahead.

Since the opponent will come to prevent a clear scoring
pattern from the AI's current position, the strength of
MCTS-based AI should be to score points by taking
actions with a high scoring probability pattern found
using simulation from among many options including
the range of movement.

However, our AI did not generate valid child nodes for
the AI to move to and act from the parent node. For
example, if the opponent hits the ball at position 10, a
valid child node would be for the agent to move to
position 10 and hit any position with any shot.

Thus, the agent can act to prevent a scoring pattern a
few moves ahead, but it is not able to move to a scoring
pattern that the opponent has not identified and go for
the score. The fact that MCTS-based AI scores fewer
points from netplay in Table. 1 also shows this.

This is a problem with game tree modeling and
applying MCTS to AI behavior, so there is room for
improvement.

(3)
Third, there is the issue of simulation accuracy. In this
AI, AI determined whether a shot was a scoring shot or
not by extracting the scoring patterns from 10000
match data. As mentioned in the section on simulation
logic, this accuracy is very important.

However, since the number of patterns is 27648 = 24 *
24 * 24 * 2, the number of data for each pattern is about
3 in both average and median. The number of data for
each pattern is about 3 for both the mean and median.
For some frequent patterns, the number of data is in the
tens of patterns, so they are reliable, but for many
patterns, the accuracy of the simulation is low.

4 Conclusion
 In this paper, we have created an AI for a 3D tennis
game using a heuristic algorithm, Monte Carlo tree
search. By properly modeling the complex game state,
the AI can represent the game state in a game tree and
perform the search. MCTS learns whether a move at a
node is valid or not by repeatedly simulating the game
state from the node. Therefore, the accuracy of the
simulation is important. In this study, we conducted
simulations by extracting patterns that are likely to be
scored from actual game data. As a result, we were able
to simulate with a certain level of accuracy and
construct an effective agent.

 As for future works, there are multiple areas for
improvement the AI.
 One is the modeling of the game state. We believe
that more detailed modeling, including the player's
movement, ball type, etc., will allow us to build a more
flexible AI.
 The second is to improve the accuracy of the
simulation logic. In this paper, we extracted
probabilities from scoring patterns, but there was a
problem that the simulation accuracy was not sufficient
except for highly frequent patterns. We believe that
better accuracy can be expected by increasing the
number of match data from which scoring patterns are
extracted about ten times.
 Finally, there is room to improve the efficiency of
the search time. We need to iterate through at least 2000
simulations to search for valid nodes, which takes 2-3
seconds of time to search. Since this is a real-time game,
we will need to improve the efficiency and drop the
search time to at least 500 microseconds, and also
improve the search to be asynchronous.

5

University of Aizu, Graduation Thesis. March, 2020 s1250131

References
[1] Browne, Cameron B., et al. "A survey of monte

carlo tree search methods." IEEE Transactions on
Computational Intelligence and AI in games 4.1
(2012): 1-43.

[2] M. Mozgovoy. Context-Awareness and
Anticipation in a Tennis Video Game AI System.
Proceedings of the 2018 IEEE International
Conference on Systems, Man, and Cybernetics,
Miyazaki, Japan, 2018.

[3] Shinsei Kinouchi, “Identifying Key Elements of
Successful Behavior in a Video Game of Tennis”

Match Number 1 2 3 4 5 6 7 8 9 10

Score
MCTS AI-Coach AI 7-3 7-3 3-7 7-4 7-5 7-3 7-2 7-3 2-7 5-7

Net Point 1 0 1 0 0 0 1 0 0 0

MCTS AI’s
Miss Shot 0 0 2 0 1 1 1 0 2 2

Table 1. Result of match vs Coach AI

