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Abstract 
 AI is now being used in many different areas of 
video games. In particular, character AI has become an 
essential part of video game opponents and greatly 
helps to make games more interesting. In this paper, 
Monte-Carlo tree search (MCTS) was used to build an 
AI for a 3D tennis game. By using Monte-Carlo tree 
search, it is expected that an AI can be built that does 
not rely on predefined behavioral patterns and can 
respond to a variety of situations. As a result, I was 
able to build an AI agent with rational behavior based 
on MCTS. The MCTS based AI played against the 
game's built-in AI and won 7 out of 10 matches, with a 
score of 59-44. 

1    Introduction 
 There are several methods for building Game AI. 
The most popular one is Rule-Base AI. In Rule-Base 
AI, rules which are pairs of condition and behavior are 
predefined, and the AI acts according to these rules. For 
example, when the opponent's position is in the left 
corner, AI hits the ball to right corner. Rule-base AI is 
a simple and very powerful approach, but it has two 
weaknesses. One is that the person who built the AI 
needs to deeply understand the patterns of strong and 
weak acts of the players. The other is that it can be very 
weak in patterns that the implementer did not anticipate. 
 
 These weaknesses can be overcome by using 
heuristic algorithms to select sequentially plausible 
actions. In this study, AI for a 3D tennis game is built 
by using MCTS which is a kind of heuristic 
algorithm [1]. MCTS is a method that combines tree 
search and Monte-Carlo methods. The state of the 
game is represented by the nodes of the game tree, the 
result of each node's action is simulated, and the AI 
selects the most appropriate node. 
 
 The game being targeted is a complex 3D tennis 
game, so it needs to be properly modeled and applied. 

2    Methodology 
The research builds AI based on the World of Tennis 
(Fig 1). Prior research on game AI for this game 
includes examples of rule-based AI and case-based 
reasoning AI applications [2, 3]. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Each player can take the following actions: 
 
- Making a serve 
- Returning the shot 
- Recovery movement 
 
 In serving or returning a shot, the player can 
choose a target point. There are also multiple choices 
for the type of shot. Each player can use normal shots, 
lob shots, slices, drop shots, etc. The recovery 
movement allows us to move our character after hitting 
the ball in order to effectively defend or attack in 
subsequent movements. Basically, the AI can also 
perform these equivalent actions. 

2.1    Monte-Carlo tree search 
 I used the Monte-Carlo tree search method to build 
the AI for the tennis game. In MCTS, the state of the 
game is represented by a game tree. It is an algorithm 
that finds effective moves by exploring the game tree. 
MCTS consists of the following four steps: 
 
1. Selection 
2. Expansion 
3. Simulation 
4. Back Propagation 
 
 By repeating these steps, the search proceeds like 
Fig.2.  
 
The root node is the current game state. From there, 
valid moves are explored. Each node has a record of 
the number of all attempts and scored attempts, so the 
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node with the highest percentage is considered the most 
effective.  
 

 In the selection step, the UCT (Upper Confidence 
Trees) value is commonly used [1]. AI selects a node 
that has the highest UCT value from the root node to 
the leaf node. 

 

𝑈𝐶𝑇 = 𝑋! + 2𝐶"(
2𝑙𝑛𝑁!
𝑛!

(1) 

 
The first term 𝑋! is reward team. 
 

𝑋! = 𝑝! + (1 − 𝑝!)
𝑤!
𝑛!

(2) 
 
 The percentage of points scored in the simulation, 
𝑤! 𝑛!⁄ , is the sum of the results of the leaf nodes 
derived from the node. Therefore, it is a measure of 
how likely it is to score points in the destination from 
that node. In general, 𝑤! 𝑛!⁄  is used as the reward term. 
On the other hand, in the game of tennis, every shot has 
the potential to score directly, and some patterns have 
very high probability. For example, the probability of 
scoring on a lob shot when the opponent is at zero 
distance from the net would be almost 100%. However, 
since the simulation is done from leaf nodes, the 
resulting percentage will not be near 100% and will 
place a gap. For that reason, we adopt Equation (2) as 
the reward term. 
 

𝑝! is the probability that the node will score directly, 
𝑤! is t is the number of points wins in the simulation 
and 𝑛! is the number of simulations performed. 

 
 The subsequent terms are for biasing the search 
towards nodes that have not explored enough. A high 
value is calculated when the number of child nodes 𝑛! 

is not enough compared to the number of simulations 
for parent node 𝑁!. 𝐶" is a constant that specifies how 
strong the bias toward unexplored nodes should be. If 
there is not enough search for valid nodes, the node 
with the less search is done, and if it is searched enough, 
the node with the highest win rate is searched in priority. 
 
 In the expansion step, the game tree is expanded 
by adding child nodes if a leaf node has been explored 
beyond a certain threshold. In the simulation step, the 
result of the game from the leaf nodes is simulated. The 
result of the match is reflected in all the nodes selected 
in the backpropagation step. 
 
 By repeating these steps, the percentage of scoring 
is calculated at each node, and the AI judges the node 
with the highest 𝑿𝒊 value of reward as the valid move 
and acts on it. 

2.2    Application to the tennis game 
 Video game looks like a complex game, but 
actually it's simple. All a player must do is choose a 
target point to return a shot, and to select a type of shot. 
The flow of the game can be represented as a repetition 
of each player’s action. In other words, the flow of the 
game can be represented by a game tree. In this case, 
an AI is built such that each node has the following 
information: 
 
- Shot from: AI or enemy 
- AI position 
- Opponent position 
- Target position 
 
Each node has three coordinates: the AI’s coordinates, 
the opponent coordinates, and the target point’s 
coordinates. All of which are indexed by dividing the 
court into 48 parts as shown in Fig. 3. 

 
 

Fig 2. MCTS process. 

Fig 3. Separated court. 
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The reason for this is that if nodes were built for each 
coordinate, there would be too many valid nodes to 
search properly. This allows the application of MCTS, 
since it can be represented by a game tree. 
 
 Fig. 4 shows an example of a game tree for a tennis 
game.  

 
 
 The opponent is the player at the top of the screen 
in positions 0 to 23, and the AI is in positions 24 to 47. 
The root node represents the current state of the game, 
where the opponent in position 3 is hitting the ball 
towards position 39. The following child nodes are the 
effective moves at the next point in time, i.e. when the 
AI returns the ball. Both AIs are moving to position 39, 
and there is a separate node for each of the next return 
positions. Only two nodes are shown in Fig.4, but in 
actuality, there are 48 nodes for 24 different return 
positions, one for spin shots and one for lob shots. 
In this way, the state of the tennis game is appropriately 
represented in the game tree.  
 

2.3    Simulation Logic 
 In MCTS, the AI simulates the game with a 
random selection from leaf nodes in the simulation step. 
In each simulation, the AI needs to judge whether the 
game will eventually result in a score or a loss of points. 
The accuracy of these simulations is very important in  
creating a strong AI, because the AI determines which 
action is effective based on this scoring rate. 
 
 The difficulty is that there is no clear 
scoring/losing rule in a tennis game. From information 

about each player's position, target point and the shot 
type in a node, we need to create the logic to properly 
determine if the shot is a scoring shot or not. In this 
research, more than 1400 scoring patterns from 
statistical data of 10,000 actual games were extracted. 
Each match data is about 2-3 minutes long and contains 
about 28 ball hitting events. In our game data, the 
coordinates of each player, the coordinates of the ball, 
and the ball type are stored as time-series data. From 
this match data, we extract the following information, 
which is in the same format as the game tree plus the 
Boolean value of whether the shot is a scoring shot or 
not.  
 
- Attacker's position 
- Defender's position 
- Target position 
- Shot type 
- Scoring shot or not 
 
 Then, for each pattern, the possibility of scoring, 
the number of scored patterns divided by total patterns 
is calculated. For example, when the opponent is at 
position 33 and the ball is hit with a lob shot from 
position 16 to position 44, there is an 80% chance of 
scoring. (Fig. 5).  

 
 In the simulation step of MCTS, the decision that 
the shot is scoring or not is made with the same scoring 
probability as this extracted shot pattern. 
In addition, this scoring probability per pattern is also 
used in 𝑝! in Equation (2) which represents the value of 
the reward. 

3    Result 
 The game system has its own AI called “Coach AI”. 
The performance of the AI can be determined by 
playing multiple matches against the game's AI and 
recording the winning percentage.  
 

Fig 4. Node state for MCTS. 

Fig 5. Example of shot pattern. 
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 Table 1 shows the results of the game against the 
coach AI. 10 games were played and 7 games were won. 
The total score 59-44. The scores of the matches show 
that the AI is able to take rational actions. 
 On the other hand, it cannot be said to be a strong 
AI because the coach AI is a simple AI. 
 
I consider the following three points as the cause of this. 
 
(1) The influence of nodes is not deep enough. 
(2) The problem of AI movement 
(3) Simulation accuracy 
 
(1) 
The first is that the influence of nodes is not deep 
enough. 
 
MCTS is an algorithm that acts on the indicator of how 
much AI will win in the end if AI act on that node, but 
in a tennis game, the relationship between choosing 
that node and eventually scoring is not that strong. 
 
In basic rallies, there was not much relationship, and 
the win rate in the simulations for most of the nodes 
converged around 50%. Only MCTS is strongly 
effective is when the act of the node is related to two or 
three moves ahead. 
 
(2) 
Second, there is the issue of the AI's movement. 
Connected to the first problem, if MCTS works 
effectively, it is in patterns where the choice of that 
node results in a score/failure two or three moves ahead. 
 
Since the opponent will come to prevent a clear scoring 
pattern from the AI's current position, the strength of 
MCTS-based AI should be to score points by taking 
actions with a high scoring probability pattern found 
using simulation from among many options including 
the range of movement. 
 
However, our AI did not generate valid child nodes for 
the AI to move to and act from the parent node. For 
example, if the opponent hits the ball at position 10, a 
valid child node would be for the agent to move to 
position 10 and hit any position with any shot. 
 
Thus, the agent can act to prevent a scoring pattern a 
few moves ahead, but it is not able to move to a scoring 
pattern that the opponent has not identified and go for 
the score. The fact that MCTS-based AI scores fewer 
points from netplay in Table. 1 also shows this. 
 

This is a problem with game tree modeling and 
applying MCTS to AI behavior, so there is room for 
improvement. 
 
(3) 
Third, there is the issue of simulation accuracy. In this 
AI, AI determined whether a shot was a scoring shot or 
not by extracting the scoring patterns from 10000 
match data. As mentioned in the section on simulation 
logic, this accuracy is very important. 
 
However, since the number of patterns is 27648 = 24 * 
24 * 24 * 2, the number of data for each pattern is about 
3 in both average and median. The number of data for 
each pattern is about 3 for both the mean and median. 
For some frequent patterns, the number of data is in the 
tens of patterns, so they are reliable, but for many 
patterns, the accuracy of the simulation is low.  

4    Conclusion 
 In this paper, we have created an AI for a 3D tennis 
game using a heuristic algorithm, Monte Carlo tree 
search. By properly modeling the complex game state, 
the AI can represent the game state in a game tree and 
perform the search. MCTS learns whether a move at a 
node is valid or not by repeatedly simulating the game 
state from the node. Therefore, the accuracy of the 
simulation is important. In this study, we conducted 
simulations by extracting patterns that are likely to be 
scored from actual game data. As a result, we were able 
to simulate with a certain level of accuracy and 
construct an effective agent. 
 
 As for future works, there are multiple areas for 
improvement the AI.  
 One is the modeling of the game state. We believe 
that more detailed modeling, including the player's 
movement, ball type, etc., will allow us to build a more 
flexible AI.  
 The second is to improve the accuracy of the 
simulation logic. In this paper, we extracted 
probabilities from scoring patterns, but there was a 
problem that the simulation accuracy was not sufficient 
except for highly frequent patterns. We believe that 
better accuracy can be expected by increasing the 
number of match data from which scoring patterns are 
extracted about ten times. 
 Finally, there is room to improve the efficiency of 
the search time. We need to iterate through at least 2000 
simulations to search for valid nodes, which takes 2-3 
seconds of time to search. Since this is a real-time game, 
we will need to improve the efficiency and drop the 
search time to at least 500 microseconds, and also 
improve the search to be asynchronous. 
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Match Number 1 2 3 4 5 6 7 8 9 10 

Score 
MCTS AI-Coach AI 7-3 7-3 3-7 7-4 7-5 7-3 7-2 7-3 2-7 5-7 

Net Point 1 0 1 0 0 0 1 0 0 0 

MCTS AI’s 
Miss Shot 0 0 2 0 1 1 1 0 2 2 

Table 1. Result of match vs Coach AI 


